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Compression semigroups of open
orbits in complex manifolds

Joachim Hilgert(!) and Karl-Hermann Neeb

Introduction

Let G¢ be a connected complex Lie group and GCG¢ a real form, i.e., there
exists an antiholomorphic involution ¢ of G¢ such that G=G&={g9eGc:0(g9)=g}
is the group of fixed points. Now let M=G¢/P be a complex homogeneous space
and suppose that the G-orbit O of the base point is open. We are interested in the
semigroup

S(P):={9g€Gc:9GPCGP}={geGc:9.0C 0O}

of compressions of the open G-orbit.

Such semigroups play a central role in the theory holomorphic extensions of uni-
tary representations of the group G (cf. [HOQ)], [FHO], [Ols], [N5], [N6], [N7], [St]).

More concretely we are dealing with the following two classes of homogeneous
spaces, namely with complex flag manifolds and with certain embeddings of complex
coadjoint orbits into complex homogeneous spaces.

The main results for complex flag manifolds are fairly easy to describe. Since
everything decomposes nicely according to the decomposition of G¢ into simple
factors, we may assume that Gg¢ is simple. In this case three mutually exclusive
possibilities occur (cf. Proposition I1.3, Theorem III.14):

(1) S(P)=Gc.

(2) int S(P)=0.

(8) Gg#int S(P)#0. Then G is a Hermitean simple Lie algebra and we have
two possibilities. Let Px be one of the two maximal parabolic subgroups containing
the complexification K¢ of the maximal compact subgroup K of G. Then int S(P)#
¢ if and only if either PNP; or PNP; contains a Borel subgroup. In the first case
S(P)=S(Py) and S(P)=S(P;)~! in the second case.

(1) Supported by a DFG Heisenberg-grant
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According to these results one has a complete description of all non-trivial
compression semigroups of open G-orbits on complex flag manifolds. One also
has a characterization of the existence of non-trivial compression semigroups in
terms of the projective realizations of the flag manifolds. Recall that each complex
flag manifold Gc/P may be written as the G-orbit G¢.[va] of the projective line
through a highest weight vector vy for a holomorphic representation of G¢ with
highest weight A. Then it turns out that the interior of S(P) is non-empty if and
only if the coadjoint orbit through i) is closed and its convex hull contains no lines
(cf. Theorem III.16).

Compression semigroups can also be determined for more general, non-semi-
simple, groups. All one has to assume a priori is the existence of a compactly
embedded Cartan algebra in g. Then one can embed coadjoint orbits of G as open
domains into a complex homogeneous space of G¢ via a generalized version of the
Borel embedding theorem (cf. Theorem 1.3). For these domains the compression
semigroups theu split up nicely into the complex nilradical and a compression semi-
group for a reductive subgroup (cf. Theorem II.8).

I. The Borel embedding and the compression semigroup

In this section g denotes a finite dimensional real Lie algebra. A subalgebra
aCg is said to be compactly embedded if the closure of the subgroup generated by
e2d® in Aut(g) is compact. We assume that g contains a compactly embedded
Cartan algebra t.

Associated to the Cartan subalgebra tc in the complexification g¢ is a root
decomposition as follows. For a linear functional A€ty we set

go:={Xegc: (VY eto)[Y, X]=A(Y)X}

and
A:=A(ge, te) = {A € 5\ {0} : g # {0} }.
Then
gc=tc® @ e
A€A

A(t)C4R for all A€A and o(gd) =95, where o denotes complex conjugation on
gc with respect to g. Let €Dt denote a maximal compactly embedded subalgebra.
Then a root is said to be compact if gi‘j Ctc. We write Ay for the set of compact
roots and A, for the set of non-compact roots. A subset ZCA is called a parabolic
system of roots if there exists an element X €it such that E={a€A:a(X)>0}.
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A positive system At is a parabolic system with A*N—A+=0. The Weyl group
associated to t is the group

We:=Ng(t)/Zc(t) = Nk (t)/Zk (1)

which coincides with the Weyl group of the compact Lie algbra £. A positive system
At is said to be E-adapted if A} is invariant under the Weyl group. The Lie algebra g
is said to have cone potential if for every non-compact root « and for every non-zero
element X, €g% we have that [X,, X4)#0.

We fix a simply connected complex Lie group G¢ with L(G¢)=gc. Then the
complex conjugation o: gc—gc integrates to an antiholomorphic automorphism of
Gc which we also denote o: g—g. We write G for the subgroup G of fixed points
with respect to 0. We also define K:=expt and K¢:=(exptc)CGe.

Definition 1.1. Let weg* be a linear functional on g which we also consider as
a complex linear functional on gc. The coadjoint action of G on g* is given by

Ad*(g).a=a-Ad(g)!

for g€G and aeg*. Let G¥:={g€G:Ad"(g).w=w} denote the stabilizer of w. Then
g¥:={X €g:woad X=0} is the Lie algebra of G¥.
(a) A complex subalgebra bCgc satisfying

bng=g“, w([b,b])={0}, and b+b=gc

is called a complezx polarization in w. Note that for any complex polarization in
w we have bNb=(g*)c and g+b=gc (cf. [N8]). Recall that the Ad(G*)-invariant
complex polarizations are in one-to-one correspondence with pseudo-Kéhler struc-
tures on the coadjoint orbit O, :=Ad*(G).w which are compatible with the natural
symplectic structure on O,, (cf. [N8]). This symplectic structure is defined by the
2-form {2 given by

Q(B)(Boad X, BoadY) = B([X,Y])

(cf. [LM]).
A complex polarization is called positive if the corresponding pseudo-Kahler
structure is positive, i.e., if the Hermitean form

(X,Y)—w(iX,Y)])

is positive semidefinite on b which means that w(i[X, X])>0 for all X €b. Note that
always b1 =(g*) holds with respect to this form.
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(b) A coadjoint orbit O, is called a pseudo-Kdhler orbit if there exists a complex
polarization in w which is invariant under G¥, and a Kdhler orbit if there exists
such a positive complex polarization in w (cf. [OW] and [Woo, pp. 92, 103]).

In the following we identify the dual t* of the Cartan algebra t always with
the subspace [t,g]* of g*. This makes sense since g=t®[t,g] is a direct sum of
vector spaces. We will see that a pseudo-Kéhler orbit of an element wet*, where
the polarization is defined by a subalgebra

psi=tco@P 0
acl

and X={a€A:a(X)>0} is a parabolic system of roots, can be embedded as an
open G-orbit into a complex homogeneous space of Go. The main achievement of
this paper is the calculation of the compression semigroup of this open G-orbit. For
the case of simple Hermitean Lie groups this was done for the orbit isomorphic to
a symmetric space by Ol’shanskii ([Ols]) and independently by Stanton ({St]).

For the following lemma we recall from [N7, Lemma I1.2] that for every para-
bolic system X the subalgebra b:=ps decomposes as a semidirect product b=b,, x by,
where b;=pgn_x and b, is a nilpotent ideal.

Lemma Y.2. Let XCA be a parabolic system of roots, b:=ps, and B:=
(expg, b). Then the following assertions hold:

(i) The group B is closed, BB, % B,, where B,=exp b, is simply connected,
and B,=(expg, bs).

(ii) The mapping B, x Bsx B,—Gg, (z,y,2z)—zyz is a diffeomorphism onto
an open subset of G¢.

(iii) BNB=B,.

Proof. (i) Since t¢ is a Cartan subalgebra in gc contained in b, the closedness
of B follows from (B2, Ch. 7, §2, no. 1, Cor. 4]. The closedness of B, follows with
the same argument.

To see that B, is closed, let B denote the simply connected covering group
of B. Then Egﬁu ><1§s and it is clear that Eu is closed in B.

Let a:=t+iZ(g) Ctc Cbs. We claim that a is a maximal compactly embedded
abelian subalgebra of b. To see this, suppose that a’ Da is compactly embedded and
abelian. Then a'CZ;,(f)=tc and the assertion follows immediately from the fact
that every ad X, X €d’ has purely imaginary eigenvalues.

Now we use [HN1, II1.7.11] to see that Z(E)CexpB(t+iZ(g)) which in turn
yields Z (B)CB Let m(B)CZ (B) denote the kernel of the covering B— B. Then
m(B)By 2B, xm (B) is a closed subgroup and m; (B)NB,={1}. We conclude that
B, is closed and simply connected because it is the injective image of B..
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To see that B,NB,={1}, we only note that B is a semidirect product and
m1(B) is contained in the factor B,.

(i) That the image is an open subset follows from the fact that b, +b s+by=
b+b=gc. To see that the mapping is a diffeomorphism, in view of (i), it only
remains to show that BNB,={1}.

Pick Ecit such that S={A€A:A(E)>0}. Set

¥:(g) :=exp(—tE)g exp(tE).

Then -, fixes B, pointwise and, since A(E)>0 holds for all A€ £\ ~X, we conclude
that lim;_,o 7¢(b)=1 for all b€ B,,. On the other hand, for every b€ B, \{1}, . (b)
eventually leaves every compact subset of the closed subgroup B,. Hence we have
B,nB={1}.

(iii) Since B, is invariant under o, the inclusion B,CBNB is trivial. To see
the converse, pick b=>b;b, € B with b;€B; and b, €B,,. Then be BNB implies that
b,€BNB and therefore b, € B,NB={1}. Hence b,=1 and thus BNBCB,. O

The preceding lemma is a generalization of the well known result of Harish-
Chandra for the case where G is simple Hermitean and Y=A,UA} (cf. [Hel,
p- 388]). The following result is a generalization of the Borel embedding theorem for
Hermitean symmetric spaces (cf. [Hel, Ch. VIII, §7]).

Theorem I.3. (The embedding theorem) Let wet*, XCA be a parabolic sub-
set, and suppose that b=py; is a complez polarization in w. We set B:=(expg, b),
M:=G¢/B, and write xo for the base point of M. Then the orbit mapping G—
M, g—g.x¢ induces an open embedding

0.,=2G/G¥ - Gc/B
which is holomorphic with respect to the complex structure on O, defined by the
complez polarization b.

Proof. In view of Lemma 1.2(i) and [N8, Prop. 1.2], we only have to show that
BNG=GY. First we apply [N10, Thm. 1.18] to see that O, is simply connected.
Let p: G—G denote the universal covering group. Then G is connected and since
p(G¥)=G", it follows that G* is connected. Hence

G¥ = (expg”) C BNG

because bng=g“.
On the other hand Lemma, I.2(iii) tells us that

BNG=B? ={be B, :a(b)=b}.
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Since b is a complex polarization in w, we have bs=bnﬁ=(g“’)c because gc=
b, Db Db, is a direct vector space decomposition. Hence Ad(B;).w=w holds in g¢.
‘We conclude that

BNGCG4NG=G*. O

With the preceding theorem we have a realization of the coadjoint orbit O, as
an open subset D=D,, of the complex homogeneous space Gc/B, namely as the
open G-orbit of the base point. Next we study the semigroup

S(B)={g€CGc:9GBCGB}={geGc:9.DCD}.

We call this semigroup the compression semigroup of the domain D or the compres-
sion semigroup associated to B. Note that S(B) only depends on B or, equivalently
the parabolic set ¥, but not explicitly on w. Consequently there are many elements
w and therefore many coadjoint orbits O, which lead to the same semigroup.

Remark 1.4. (a) Note that we have not assumed in Theorem 1.3 that b is a
positive polarization in w, so that this result also applies to pseudo-Kéhler orbits.

(b) Proposition IV.16 in [N8] shows in particular that the embedding theorem
applies to every coadjoint orbit in a reductive Lie algebra which meets the dual of a
compactly embedded Cartan algebra. This can also be viewed as a result on adjoint
orbits.

The following observation facilitates the determination of the semigroups S(B).

Lemma 1.5. Let G be a topological group, D a subset of the locally compact
G-space M, and S={g€G:9.DCD}. Then the following assertions hold:

(i) If D is open or closed then the semigroup S is closed in G.

(ii) If M is a homogeneous G-space and D 1is relatively compact then

int S={g€G:9.DCint D}.

Proof. (1) This is Lemma 8.34 in [HN2].
(ii) Let s€int S and U be a neighborhood of 1 in G such that UsCS. Then

s.D=35.DCU(s.D)=(Us).D Cint D.
This shows s.DCint D.

Conversely, if s.DCint D, then there exists a neighborhood U of 1 in G such
that Us.DCint D. In particular, it follows that UsCS, i.e., scintS. O
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Hamiltonian functions and the compression semigroup

One first step towards the determination of the semigroups S(B) will be a
result showing that S(B) is rather big whenever O, is a Kihler orbit, i.e., b=pyx is
a positive polarization.

For X €g we write Hx:g*—R,v—v(X) for the associated function on g* and
in particular on the orbit O; which is a symplectic manifold. We define the cone
B,, consisting of all those X €g for which the function Hx is bounded from below
on O,.

Let X denote the vector field on O, defined by

X(B)= 3| _Ad(xp(~tX))f=—ad"(X)(5)=foad X VBEO..
Since the canonical symplectic form on O, satisfies
QB)(BoadY,Boad Z)=pB([Y, Z]) VY,Zeg, €O,
we find that
QB)(X(B), BoadY) =B([X,Y])=—(BoadY, X) = —dHx (B)(Boad Y).

This means that X is the Hamiltonian vector field on O, corresponding to the
Hamiltonian function Hx.

Since the function Hy is constant on O, if and only if the corresponding vector
field vanishes, we see that the set of all X €g with constant Hamiltonian function
Hyx is the Lie algebra of the effectivity kernel of the action of G on O,,. If O,, spans
g*, then the linearity of the vector field X' yields that this Lie algebra consists of
those elements for which ad X =0, i.e.,

Z(g)={X €g:dHx|o, =0}.

Definition 1.6. (a) We say that an element weg* is admissible if the coadjoint
orbit O, is closed and its convex hull contains no lines. We call weg* strictly admis-
sible if there exists a closed invariant convex set CCg* which contains no lines and
which contains the coadjoint orbit O, in its algebraic interior, i.e., the interior with
respect to the affine subspace it generates. We say that O, is (strictly) admissible if
w is (strictly) admissible. Note that strict admissibility implies admissibility ([HNP,
Cor. 5.12]). It is clear that this property implies that the convex hull of O,, contains
no lines.

An element weg® is said to be of convez type if the coadjoint orbit O, lies in
a closed pointed convex cone and of strict convex type if O, lies in the algebraic
interior of a pointed convex cone in g* which is invariant under the coadjoint action.
We recall from [HNP, Lemma 5.9] that f is strictly admissible if and only if (w, 1)
is of strict convexity type in g*xR. [
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Lemma I1.7. Let wet* be admissible and X €int B,,. Then the function Hx
is proper on O,,.

Proof. This is a consequence of [HNP, Prop. 1.17]. O

In the following we say that weg* is reduced if 3(g) is the largest ideal contained
in the stabilizer algebra g¥. For a positive system A+ of roots we define the cone

Crmax = Cmax (A} ) :={X € t: (Va € A}) ia(X) >0}

and
Cumin := Cmin(A}) := cone{i[ X4, Xo]: € A), Xa €98},

where for a subset S of a vector space cone(S) denotes the smallest closed convex
cone containing S. For a cone C in a vector space V we write C*:={veV*:v(C)C
R+} for the dual cone. A closed convex cone is called a wedge.

Lemma 1.8. Let g be a Lie algebra containing the compactly embedded Cartan
algebra t. Then there exists a reductive subalgebra [Cg such that

g=ux!l and t=j3(g)®d(NI),

where n=[t,n]+3(g) is the nilradical.

Proof. (i) Using Lemma I11.7.15 in [HN1], we find a Levi decomposition g=
txs with t=(tNr)®(tNs) and [tNr,s]={0}. Let t; be a vector space complement
for the center in tNt. We set l:=t;®s. Then [ is reductive and [NnCt;Nn={0}
because tNn=Z(g). On the other hand [t,t]C[g,t]Cn shows that t=nxt;. Hence
g=nxl. O

Proposition 1.9. Let wet* be strictly admissible and reduced. Then the fol-
lowing assertions hold:

(i) There exists a unique t-adapted positive system A} of non-compact roots
such that weint C}; (A}) and a unique positive polarization b=ps with AfCE
in w.

(ii) By=Wmax, where Wyax denotes the unique invariant wedge in g deter-
mined by Cmax=WmaxNt.

(i) If an invariant wedge W Cg contains Cmax, then it contains Way.

(iv) Wmax contains the nilradical n of g.

Proof. (i) First we use Theorem IV.23 in [N8] to find a t-adapted positive sys-
tem such that weint CF;,. To see that the system A} is uniquely determined by this
condition, let €A} and pick X,€gg&\{0}. Then, according to [N8, Thm. IV.23],
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the Lie algebra g has cone potential, hence [Xq, Xa]#{0}. Therefore i[X,, X )€
Crin and the choice of A* shows that w(i[X,, X4])>0. Changing o to —a changes
the sign of this expression. Therefore A} is uniquely determined. The second
statement follows from [N8, Thm. IV.21, 23].
(ii) First we apply the convexity theorem for coadjoint orbits [HNP, Thm. 5.17]
which yields that
pe(Oy) = conv(We.w)+cone(iA}),

where pe-: g*—t* denotes the restriction mapping. Note that the assumptions of
this theorem are met because weint C; . Therefore X €t is contained in B, if and
only if Hx is bounded from below on the cone generated by iA}. This means that
X €Crax. Therefore B,Nt=Cnpax. Since an invariant wedge W Cg is uniquely de-
termined by its intersection with t (cf. [N4, Prop. I11.34]), it follows that Wy.x=B,.

(iii) Suppose Crax CW. Let Wi denote the closed convex hull of Ad(G).Cpax-
Then W is a generating invariant wedge contained in Wy, such that WiNtD Cpay.
On the other hand WiNtCW,.xNt=Crax. Therefore WiNt=Cprax and conse-
quently W1 =Wy, by (ii). Now the assertion follows from the trivial observation
that W7, CW.

(iv) The nilradical nCg can be written as n=[t,n]+3(g) (cf. Lemma 1.8). Let
W:=Wgax+n. Then W is an invariant wedge in g and if py: g—t denotes the
projection along [t, g], then pi(W)=WNt=p(Wmnax)=Crmax- Therefore W =W,y
follows from (ii) and therefore we have nCWyay,. O

Let S be a closed subsemigroup of the Lie group G. For the following propo-
sition we recall the definition of the tangent Lie wedge

L(S):={X €eL(G) :exp(R*X) C S}

of S. Recall that a wedge W in a Lie algebra g is called a Lie wedge if e2d X W =W
holds for all XeWN(-W).

Proposition 1.10. Let wet* be strictly admissible and b the positive complex
polarization in w. Then iB,, CL(S(B)).

Proof. We have already seen, in Lemma I.5, that the semigroup S:=S(B) is
closed. Since DCGc/B is a G-orbit, it is clear that GCS, i.e., that gCL(S). Hence
L(S)=g+iW, where W:=(—iL(S))Ng is an invariant wedge.

Next we note that we may without loss of generality assume that w is strictly
reduced because every ideal a contained in 02 is contained in B,, and on the other
hand (exp(ac))CS(B) in this case.

It remains to show that B, CW. In view of Proposition 1.9(ii), (iii), it suffices
to show that int Cyax=(int B, )NCW. Let X €int Cpax and ®: O, — DC M denote
the embedding of O,,.
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Since limy—.ap Hx (®71(p))=c0 (Lemma 1.7), it suffices to show that, for t>0
(Hxo® ') (expitX.2(B8)) < Hx(8) VB€O,.

Let X denote the vector field on g* defined by X(8)=F-ad X for all f€O,,
and recall that this is the Hamiltonian vector field on O, corresponding to the
function Hx. Let J denote the tensor field defining the complex structure on O,,.
Then

dHx (8)(d2~"(2(8))(—id®(B)X (8))) = —dHx (8)(J () X (B))
= —Q(B)(J(B)X(B), X (B))-

This expression is always non-positive since b is a positive complex polarization in
w and the corresponding Kihler structure is compatible with the symplectic form
(cf. [N8]). Now the assertion follows from

O(Ad*(exp(itX)).0) =exp(itX).®(B). O

Let g=nx1 denote the decomposition described above. We set N:=expn, L:=
(expl), Ng:=expng, Lo:=(explc), p:=bNlc, and P:=(expp). Note that

G=2NxL and Gg=NgxLc,

so that N and L¢ are simply connected.

Lemma 1.11. Let N¢ be a complex nilpotent Lie group and N a connected
subgroup such that L(N) is a real form of L(Ng). Let further b be a complex
subalgebra of nc such that for every characteristic ideal aCn we have that ac=
a+(bNac). Then NB=Ng holds for B=expb.

Proof. Let
nl:= {0}Cnl=3n)C.. CnF=n

denote the ascending central series of n. Note that every ideal n? is characteristic.
We write N7 for the associated analytic subgroups of N and N(j3 for the corre-
sponding subgroups of Ng. We show by induction over j that N7 B is a subgroup
" containing Né.

This is trivial for j=0. Suppose that j<k and the claim holds for j. Set B':=
BNNZL. Then (N4 B)ﬂNéH:Nj B’ is a subgroup containing N, and therefore
the commutator group of Né“. It follows in particular that this subgroup is normal.
Therefore N7*1B’ is a product of a subgroup and a normal subgroup, so that it
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is again a subgroup. According to our assumption, the Lie algebra of this group
contains 014+ (bNni!)=n/d". Hence N5'=N7+!B’. From this it follows that
Nit1BDONitIB! =Né+l. Thus it contains the subgroup NéHB because it is right
B-invariant. This shows that N9+1B is equal to this subgroup and the assertion
follows.

For j=k we obtain the assertion of the lemma. O

Lemma 1.12. Let tCg be a compactly embedded Cartan algebra, XCA a par-
abolic system and b=px. Then acCa+b holds for every characteristic ideal a of g.

Proof. Since a is characteristic, its complexification is invariant under t¢, hence
adapted to the root decomposition. Let a€A. If a€X, then acNggCb holds
trivially. If a€—3%, then

acNgg Can(ga+gc™)+gc” Ca+b. O

Proposition 1.13. Let tCg be a compactly embedded Cartan algebra, wet®,
and SCA a parabolic system such that b=px, is a complex polarization in w. Then
the following assertions hold:

(i) NcCS(B).

© (ii) LNc=GNc¢.

(iii) LPNc=GB.

(iv) S(B)=NcS(P), where S(P) is the compression semigroup of the open
L-orbit of the base point in Lc/P.

Proof. (i) First we use Lemma 1.12 to see that the subalgebra ncNb satisfies
the assumptions of Lemma I.11. Thus NB=N¢B and therefore

NcGB=GNcB=GNB=GB.

(ii) Since G=NL, we have that GNc=LNNc=LN¢.
(iii) First we note that (i) implies that No CS(B). Hence

G.B=Ng(G.B).

Since both subalgebras [ and n are invariant under t, it follows that their com-
plexifications are adapted to the root space decomposition. Now it follows from
g=I[+n that g&=(g&Nnc)®(g&Nlc) holds for all roots a€A. It follows that
b=(bNlc)+(bNng) which in turn yields that

nc+p= nc+(Eﬁ[C) =nc+b,
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and therefore PNc=BNc. Using (i), this leads to
LPNg=LBNg=LNcB=GNcB=Nc(GB)=GB.
(iv) Since Ge=Ngx L, it is clear that, for g€Lc,
| WUPNeCUPINe <« g(LP)CLP.

Therefore S(B)NLc==S5(P) and the assertion follows from NcCS(B). O

In view of the preceding proposition, the investigation of the semigroup S(B)
boils down to the semigroup S(P) associated to the reductive group Lc.

Lemma 1.14. Let v:=w|;. Then p=px- is a complez polarization in v. If b is
positive, then the same holds for p.

Proof. Since b=pyx, holds for a parabolic system X of roots, it follows that the
set X:={\€X:g3NIc#{0}} is also parabolic. Therefore p=bNlc is a parabolic
subalgebra of [c. Since [I,n]C[t,n] ([HN1, II1.7.15]), we find that

U={Xel:y([X,1])={0}} ={X el:v([X, g]) = {0}
={X el:w([X,g])={0}} =g“ni=pNL

Hence (I*)c=pNp and consequently p is a complex polarization in v.
If, in addition, b is a positive polarization, then

(X,Y)—v(i[X,Y]) =w(i[X,Y))

defines a positive semidefinite Hermitean form on p and therefore p is also posi-
tive. [J

This result entails that we find exactly the same situation as in g in the re-
ductive Lie algebra {. As we have seen in [N8], the subalgebra p is well adapted to
the decomposition of [¢ into simple ideals. It follows immediately that the space
G /P decomposes accordingly, and the same holds for the G-orbit of the base point.
Hence S(P) is a direct product of semigroups of the same type corresponding to
the simple factors. So it remains to study the simple case.

In the next section we conclude the determination of the semigroup S(B) cor-
responding to a strictly admissible coadjoint orbit O,. The determination of this
semigroup for the case where O,, corresponds to a Hermitean symmetric domain is
due to Ol'shanskii (cf. [Ols]).
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T1. The case of simple Hermitean groups

In the next two sections we consider the following problem. Let G be a linear
simple Lie group, G¢ its complexification, M =G¢/P a complex flag manifold and
OCM an open G-orbit. We assume that P is the stabilizer of a point in O. Then

S(P)={g9eGc:9.0C0O}.

We will show in Section III that these semigroups have non-empty interior
different from G if and only if G is Hermitean and the orbit O is a Borel embedding
of an admissible coadjoint orbit.

Let g=t+po be a Cartan decomposition, tC¥ a Cartan subalgebra, and h=
t+a=Z,(t) the corresponding Cartan subalgebra of g. Then gc=(£+ipo)+(it+po)
is a Cartan decomposition of gc and §’:=it+a is a maximal abelian subalgebra of
it+po.

To study our semigroup S(P) we first need some knowledge on the G-double
coset decomposition of G¢.

Proposition II.1. Let G be semisimple and 4, , ... ,t,, representatives for the
conjugacy classes of Cartan subalgebras in g. Then the set

i=1
cofitains an open dense subset of Gc.

Proof. For geG¢g we set g*:=0(g) ™!, where o denotes complex conjugation on
Gc. Let GSE denote the set of regular elements in Ge,

c:={9€Gc:g99* € G},

and T;:=Zg. () the Cartan subgroups corresponding to the Cartan subalgebras
t;cCgc. Then it follows from [OM, p. 400] that the open set G is a union of the
finitely many open sets G :=GH]G, where

H;:={geGc:9g*€T;} and H]:=H,NGe.

To obtain a better description of the representatives of the double cosets, we
need to shrink the sets H;. Solet g=hh*€T;NGSE. Then Ad(g) fixes t;c pointwise.
Since

Ad(h*) =00Ad(h) oo,
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it follows that Ad(h)~!, and therefore Ad(h), commutes with o on t;c. Hence
Ad(h)(t;) is a Cartan subalgebra of g and we find A'€G and j€{l,... ,n} with
Ad(h') Ad(h)t;=t;. Then i=j by Corollary 2.4 in [Ro72]. Hence

(WR)(Wh)* =R (hh*)h' ' =R gh'™*.
We conclude that GH,GCGNg(4)G and the assertion follows. [l

Corollary I1.2. A subsemigroup SCGe containing G with dense interior is
completely determined by its intersections with the groups Ng(t:). More presicely

SNGg=|_J G(SNNg,(t:))G.

i=1

Proof. Since G is open and dense in G¢ and int S is open and dense in 8, it
follows that SNGg is dense in S. On the other hand GCS§ shows that

SN(GNgo(k)G) =G(SNNg(6))G. O

Proposition I1.3. Let G be a linear simple Lie group, G its complezification,
and M=Gg/P a complez flag manifold. Assume that S(P)°:=int S(P)#0. Then
either

(1) S(P)=Gc, G acts transitively on Go/P, or

(2) G is Hermitean and S(P)°Nexp(iZ(¥))#0.

Proof. Let S:=S(P) and suppose that this semigroup is non-empty. Then
Proposition II.1 shows that there exists a Cartan subalgebra {;Cg such that Son
Ng (tj)#0. Let a; Cit; denote the vector part of it;. Then an application of [HN2,
Cor. 1.20] entails that S°Nexp a;#0 because exp(t;)CS and therefore S® exp(t;)=
S9. The subspace ia; Cg is abelian and compactly embedded. Hence there exists g€
G such that Ad(g)ia; Ct (cf. [HN2, Prop. 7.3]). Then Ad(g)a; Cit and consequently
S9nexp(it)#0.

Let C:=exp |;1(S°). Then C is an open subsemigroup of it which is invariant
under the Weyl group We. Let ceC. Then

0= 1deC
YEWe

is a fixed point for We. There are two possible cases:

Case (1): ¢g=0. Then 0€C and 1€int S. This means that S=Gc¢ because G¢
is connected.

Case (2): c9#0. Then ¢ is a non-zero We-invariant element in it. It follows
that iRcoC Z(), and in particular that Z(¢)#{0}. Hence g is a Hermitean simple
Lie algebra (cf. [Hel, p. 382]) and S%Nexp(iZ(€))#0. O
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Proposition I1.4. Let g be simple Hermitean, tCg be a compactly embed-
ded Cartan algebra, A" a positive t-adapted system, and Cmax=(1A7)* the corre-
sponding mazimal cone. Suppose that SCGc is a subsemigroup with dense interior
containing G. If

SNexp(it) C exp(iCmaxU—iChax),

then
SCGNg:(1)G.

Proof. In view of Corollary I1.2, we have to show that
int(S)NNg (t') =0

for every Cartan subalgebra t' Cg which is not conjugate to t.

As before, let ECg be the unique maximal compactly embedded subalgebra
containing t and pick a Cartan subalgebra t' Cg not conjugate to t. Using [PR, 1.3],
we may assume that ¢ is invariant under the Cartan involution determined by &,
ie.,

t = (¢ ne)+(¥Np),

where p is the orthogonal complement of € with respect to the Cartan—Killing form.
Moreover, since all compactly embedded Cartan algebras are conjugate by [PR,
1.4], and ¢ NE may be extended to a Cartan subalgebra of £, we even may assume
that tNECt.

Now we consider the group N':=Ng (¥'). Its Lie algebra coincides with ¢ and
A':=exp(i(t'NE)+(¥Np)) is a normal subgroup such that N'/A’ is compact. Let
S§’:=int(S)NN and suppose that S'#0. Then S'A’/A’ is an open subsemigroup of
the compact group N’/A’ and therefore it is a subgroup ([HN2, 1.21]). It follows
in particular that it contains the unit element. This means that A'NS'#0. Since
exp(Y Np)CGCS, it even follows that

S’ Nexp(i(t' NE)) =int(S)Nexp(i(t' NE)) £ 0.

Let X ci(tNE)Cit. If there exists no non-compact root vanishing on X, then
Z4(X)C¥ and therefore ' NpCZy(X)CE yields a contradiction. Thus we find an
element X €itNit’ and a non-compact root o such that a(X)=0 and exp(X)€int(S).
This is impossible since SNexp(it) Cexp(iCmaxU—1Cmax). 0

We want to apply Proposition I1.4 to study the semigroup S(B). The following
lemma can be found in [N1, IV.6]. Its proof is basically obtained by reduction to
the case of sl(2,R).
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Lemma I1.5. Let G be simple Hermitean, A+ a positive t-adapted system,
and BCGc the corresponding Borel subgroup. Then

S(B)Nexp(it) C exp(—iCrax)-

Before we can compute the compression semigroup for the Kahler orbits, we
need a result on the open G-orbits in flag manifolds.

Lemma I1.6. Let G be simple Hermitean, At a positive ¥-adapted system,
BCGc the corresponding Borel subgroup,

W:=Ngo(t)/Zgc(t) and We:=Ng(t)/Za(t)

the Weyl groups. Let m:Goc—Gg/B denote the orbit mapping and zo=n(1) the
base point. Then the action of Ngo(t) on the orbit through zo factors to an action
of W on G¢/B and the open G-orbits are the orbits through the points in the orbit
of W(Gg). If v,7' €W, then

G.(’)’.IL‘Q) =G.(’)’/..'Eg) A== ’)’,’)’_1 € Wk.

Proof. This is Corollary 4.7 in [Wol]. O

Proposition I1.7. Let G be a simple Lie group which is Hermitean or com-
pact, and PCG¢ a parabolic subgroup such that the set Lp:={a€A:g& Cp} satisfies
TpNAp=AF, where AT is a ¥-adapted positive system. Then the following asser-
tions hold:

(i) If G is compact, then S(P)=Gc.

(ii) If G is Hermitean, then S(P)=G exp(—iWnax), where Wnax is the gener-
ating invariant cone in g such that

WmaxNt=Crax = cone(iA;;)*.

Proof. (i) Since an open G-orbit is also compact in the manifold Go/P, it
follows that G acts transitively on Gc/P. Hence S(P)=G¢ (cf. Proposition II.3).

(ii) (cf. [Ols], [OH]) Let BCGc denote the Borel subgroup defined by the
positive system AtCA and Pga.x the unique maximal parabolic subgroup such
that Xy =AxUAS. We also write N for the commutator group of B and P*:=
exp(@,\eA; 98)- Then BCPC Pyax- We claim that GB=GPnax. To see this, we
consider the Levi decomposition Pp.,=P*txKc and the Iwasawa decomposition
Kc=K exp(it)(NNK¢g). Then

GPox =GKc P =GK exp(it)(NNKg) Pt =G exp(it)N = GT exp(it) N =GB.
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It follows in particular that GP=GB. Applying the complex conjugation on G,
we also see that GP=GB. Therefore

S(P)={geGc:9GPCGP}={ge€Gc:9gGBCGB}.

So we may assume that P=B. To see that the G-orbit in Go/B comes from a
coadjoint orbit, we pick we— int C’mm(A;,r )* such that O, has maximal dimension,
i.e., g@=t (cf. [N8, Lemma II.4]). Then p=b is a positive complex polarization in
w (cf. [N8]).

It follows that O, corresponds to the open domain G.xzg in G¢ /13. Hence
Proposition 1.10 implies that iB,,=—iWyax CL(S(P)) and therefore

L(S(F)) 2 g_ina.x-

We conclude that G exp(—iWmax) CS(P).
It remains to show that S(P)CG exp(—iWyay). From Lemma IL5 we infer
that
S(B)Nexp(it) = S(P)Nexp(it) C exp(—iCrax)-

Then Proposition I1.4 applies and since S(P) has dense interior, we find that
S(P)CGNg.(H)G

and that G(S(P)NNg(t))G is dense in S(P). Let s€ Ngs(t)NS(P). Then s.zge
G.xg, G.(s.20)=G.xo, and Lemma I1.6 yields that s€ Ng(t)Zg (t). Using Zg. ()=
exp(tc), we conclude that

G(S(P)NNgo (1)G =G(S(P)NZss(1))G = G(S(P)Nexp(tc))G
= G(S(P)Nexp(it))G C G(exp(~iCrmax))G C G exp(—iWimax).

Now Corollary I1.3 shows that S(P)=G exp(—iWpnax). O

We subsume the results obtained in the first two sections in the following
general theorem.

Theorem I1.8. (Theorem on compression semigroups of Kéhler orbits) Let
g be a Lie algebra with the compactly embedded Cartan algebra t, wet* strictly
admissible and reduced, At a ¥-adapted positive system, and X a parabolic set of
roots such that b:=pyx is the unique positive complex polarization in w. Write Gg
for a simply connected Lie group with L(Gc)=gc. Then B:={expb)CGc is closed,
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the G-orbit of the base point in Gc/B is open, and the compression semigroup S(B)
of this orbit is given by

S(B) = NcL exp(—iWpnax),

where G=N %L is a semidirect decomposition into the nilradical and a reductive
Lie group L, and Wy is the mazimal invariant cone in | corresponding to the
t-adapted positive system A+,

Note that if w is not reduced, then one obtains a reduction to the reduced case
by factoring the ideal a:=0} and looking at w as a functional in (g/a)*%2al Cg*.

II1. Compression semigroups and highest weight orbits

In the first two sections we have determined the compression semigroups of
all open orbits in G¢ /E arising via the Borel embedding of strictly admissible
coadjoint orbits. If G is simple, this includes all the semigroups S(P), where P is a
parabolic contained in one of the two K-invariant maximal parabolics Ppax=KcP*
and Ppo=KcP-.

In this section we will extend these results to general parabolics and therefore
complete the whole puzzle for simple groups. Recall that we have already reduced
matters to the case where G is simple Hermitean in Proposition II.3.

We start with a simple lemma from linear algebra.

Lemma IIL.1. Let V be a real vector space and geGl(V) be diagonalizable
with positive real eigenvalues, and [v]€P(V). Then [vo]:=lim, o0 g".[v] ezists and
-V0=AmaxVo, Where Amax is the largest eigenvalue of g on the smallest g-invariant
subspace of V' containing v.

Proof. We may assume that the smallest g-invariant subspace of V containing
v coincides with V. Let do<A; <...<Ax=MAmax denote the different eigenvalues of g
on V. Then v=Y%_ v; with g.v;=Av; and therefore

k k n
As
=t =[Sa] <[] =[5 (o o] <t
This proves the lemma. 0O

It will be useful to review a few facts about invariant control sets for semigroups
acting on spaces: An invariant control set for a subsemigroup S of GG acting on a
set X is a set Cg which satisfies

L%:és VCGCS

and is maximal with respect to this property.
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Proposition II1.2. Let X be a G-space and SCG a subsemigroup. Then the
following assertions hold:

(i) Fach closed invariant control set for S is S-invariant.

(ii) If S has non-empty interior S°, and G acts transitively, then each invariant
control set is closed and the set C3:=5°.Cs is open dense in Cg. It satisfies CO=
S%.c for all ceCy.

(iii) If G is semisimple, X=G/P is a flag manifold, and S has non-empty
interior, then there is a unique invariant control set given by

cs=ﬂs._x.

zeX
Proof. (i), (ii) [HN2, Prop. 8.1].
(iii) [HN2, Prop. 8.2. O

Proposition II1.3. Let G be a semisimple Lie group, P a parabolic subgroup,
and L a closed subgroup such that LP is open in G. Suppose that

S(L,P):={geG:gLPCLP}
has non-empty interior. If Q=LP/P is the open L-orbit of the base point, then the
closure Q of Q in G/P is the invariant control set for S(L, P).
Proof. This is a special case of [HN2, Prop. 8.8]. O

Let us return to the setting where G is simple Hermitean and
S(P)°Nexp(iZ(t)) #0

(cf. Proposition I1.3). Then S(P) is a subsemigroup of G¢ with non-empty interior
containing G and Cg(p)=0 is the corresponding unique invariant control set on M.

Highest weight modules

In this subsection gc denotes a simple complex Lie algebra, g a real form, and
tCg a Cartan algebra. Let V be a goc-module. For a linear functional X on tc we
write

VA={weV:(VX ehc)X.v=A(X)v}

for the weight space of weight A\. We set Py :={\e€t:V*#{0}} and call this set
the set of weights of gc with respect to tc. An element wePy is called a highest
weight with respect to the positive system A+ if

(w+AHNPy =0.
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Next let s denote the Cartan—Killing form of gc and (-,-) the bilinear form
on the dual g¢ of gc induced by ». Then (-,-) is positive definite and real on
spang A and for every root A€A there exists an element A€tc such that

p(d) = 2((;)’5)

Yu€ets.

We write R for the abelian subgroup of tc generated by A, define the weight lattice
P={uets:u(R)C 2},
and define the set of dominant weights by
Pr=P*A%):={ueP:(Vac At){u,&) € No}.
Note that if Y is a basis of the root system, then a basis of P is given by

0 iff+#a,

{wa: €T}, Wherewa(ﬁ)={ 1 i
if B=a.

Then P+=3}_ v Nowa.

Proposition II1.4. Let V be a finite dimensional go-module and A+CA a
positive system. Then the following assertions hold:

(i) PvCP.

(i) V=,ep, V"

(iti) If V is irreducible, then PyNP+ contains a highest weight with respect
to A+,

(iv) For every AeP* there exists, up to isomorphy, a unique irreducible gc-
module called Vy such that X is a highest weight with respect to A* in Py, .

Proof. (i), (ii) ([B2, Ch. 8, §7, no. 1, Prop. 1]).
(iii), (iv) ([B2, Ch. 8, §7, no. 2)). CI

Let V be an irreducible gc-module, G¢ a connected group with L(Gc)=gc,
and suppose that the representation of g¢ integrates to a representation of G¢ (this
is always the case if G¢ is simply connected). We write P(V) for the projective
space of V. Then the representation of G¢ on V induces an action of G on P(V)
defined by

9-lvl=[g9.v] VgeGg, veV\{0},
where V\{0} =P (V),v—[v] is the quotient mapping.
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Proposition II1.5. Let A\ePy be a highest weight with respect to the positive

system A* and va€V? a highest weight vector. Then the following assertions hold:
(i) The stabilizer of [va]€P(V) is a parabolic subgroup Py associated with A*.
(ii) Let A=), cy Nawa- Then px:=L(Py)=px with

L=A%U(-A*Nspang{a € T :n, =0}).

(iii) If 8,8’ €Py with Ge.lug|=Ge.[vg], then BEW.X. In particular if B is
the highest weight, then ' is an extremal weight.

Proof. (i) Let a€A*. For X €g& we have that X.vy€V**+*={0}. Hence v, is
a common eigenvector for the Borel subgroup B=B(A*). Thus B fixes the point
[va] in the projective space. This means that the stabilizer of [v,] is a subgroup
which contains B, hence parabolic.

(ii) It follows from [B2, Ch. 8, §7, no. 2, Prop. 3] that go®Cpy holds for A€ A*
if and only if A(&)=0. Let A=}y Nowq and a€Y. Then A(d)=n,=0.

(ili) According to our assumption, there exists geG¢ such that [vg]=g.[vg].
Hence the stabilizer Pg of [vg/] satisfies Pgr=gPgg~!. Since Ad(g)tcCpp:=L(Py)
is a Cartan algebra, there exists p€ Pg such that Ad(p) Ad(g)tc=tc. Now pge
Ng(tc). Hence v:=Ad(pg)|ic €W satisfies v.6=0" since g.vgCCuvs. O

Since every parabolic subalgebra pCge associated with b(A+) occurs as some
px for a parabolic subset DA+, let &/:=TNX. We consider the weight

wy = Z Wa
agy!

and the corresponding highest weight module V. Then the preceding proposition
shows that P=Ps=P,, arises as the stabilizer of a highest weight vector [v,.]
in P(V). Thus we have obtained a realization of the flag manifold G¢/P as a
compact submanifold of the projective space P(V). This realization will turn out
to be crucial for the investigation of the compression semigroups.

For the following we recall that for a finite dimensional irreducible highest
weight module V' the weight spaces corresponding to the extremal weights are one-
dimensional (cf. [B2, Chap. 7, §7, Prop. 5)).

Definition II1.6. (a) Let Y be a diagonalizable endomorphism of the complex
vector space V with real eigenvalues. An element veV is said to be generic with
respect to Y if the smallest Y-invariant subspace containing v contains eigenvectors
for the maximal and minimal eigenvalues of Y.

(b) If V is a finite dimensional module of the complex Lie algebra gc and
Py the corresponding set of weights, then we say that an element X €it is weight
separating if the values a(X),a€Py are pairwise distinct.
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Lemma IIL.7. Let V be an irreducible finite dimensional Go-module, vy€V
a highest weight vector, OCGc.[va] an open G-orbit, and Y €exp(it). Then there
exists a vector veV which is generic with respect to Y such that [v]€O.

Proof. The fact that V is a simple Gg-module entails that V' is spanned by
the set {veV:[v]eGc.[v,]}, and, by the analyticity of the orbit mapping, it is
even spanned by {veV:[v]eU} for every open subset UCGc.[vy]. This applies in
particular to the G-orbit O. Let v=) v, denote the decomposition of a vector
v€V into Y-eigenvectors, where v, is an eigenvector with eigenvalue o. Write Amin
and Amax for the minimal and maximal eigenvalue. Then, since O spans V', we first
find [v']€O with v} __#0. We note that the complement of this set is an analytic
set, hence nowhere dense. So we even find [v] €O with vy, 70 and vy, #0. Now
the smallest Y-invariant subspace containing v also contains vy, and vy o

Proposition IIL.8. Suppose that g contains a compactly embedded Cartan
algebra and that the complex flag manifold M is realized as a Gg-orbit of a highest
weight vector in P(V). Then the following assertions hold:

(i) Every open G-orbit in M contains an element [v)], where A€Py is an
extremal weight.

(ii) Every G-orbit of an extremal weight ray is open in M.

Proof. [HN2, Prop. 8.25). O

min *

Lemma IIL.9. Let SCGc be a subsemigroup with non-empty interior con-
taining G, M a complex flag manifold realized as a highest weight orbit Ge.[va],
CsCM the invariant control set for S, and Pc, the set of all extremal weights o
with [va|€Cs. Then Pgg has the following properties:

(i) We.Pcs=Pcs.

(i) If X eit is weight separating with exp X €S, then

o(X) =max{B(X):Be Py}
implies that a€Pc;.

(iii) If X it is weight separating with exp X €S, p€Pcg, 0 €A, and sq €W is
the corresponding reflection, then sq(p)(X)>u(X) implies that so(p) €Pcy.

(iv) Pcs ={a€7>vz[va] €int Cs}.

Proof. (i) Let yYEWp= Nk (t)/Zk (t). Then there exists k€ K with Ad(k)|¢ ="
1t follows that k.[va]=[k.va]=[Vaey-1]={vy.a].

(ii) Since the invariant control set Cg is G-invariant with non-empty interior,

it contains at least one open G-orbit O ([HN2, Prop. 8.10(ii)]). Using Lemma IIL7,
we find [v]€O such that v is generic for X. Then, according to Lemma II1.1,

[V]:= Jim_ exp(X)"™.[v] € Cs
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exists in P(V) and ' is an eigenvector of exp(X) for the maximal eigenvalue e*(X),

hence a weight vector of weight « for t¢ because X is weight separating. Finally
a(X)=max{B(X):B€ Py}

and the weight separating property of X show that « is extremal.
(iii) Let Go(e) denote the analytic subgroup of G¢ with
gc(@) :=L(Gc(e)) =gc+ac” +188, 8] =s1(2, O).
Further let W denote the smallest gc(a)-submodule containing v,. This module
is irreducible with highest weight vector v, and lowest weight vector v/, where
p'i=5,(1) ([B2, Ch. 8, §7, no. 2, Prop. 3]).

It follows that the Gg(a)-orbit M, of [v,] contains exactly two weight rays,
namely [v,] and [v,] (cf. [B2, Ch. 8, §7, no. 2, Prop. 5]). The orbits of these elements
under the group G, :=(exp(gc(a)Ng)) are relatively open in M,, (Proposition I11.8).

Since gc(«) is invariant under Ad(exp it), it follows that

exp(X).Mq =exp(X).(Gc().[vu]) = Go(a).((exp X).[v,]) = Gela).[v,]) = M,.
On the other hand, the orbit G,.v, spans W, so it contains a generic vector v for
X on W (Lemma IIL1.7). Note that G,.[v,]|CG.[v,]CCys since p€Pcy. Now our
assumption p'(X)>p(X) shows that the maximal eigenvalue of X on W is p/(X).

Hence —
[vu]= lim exp(X)".[v] € G.[v] € Cs,

so that p’'€Pg;.

(iv) Since every G-orbit of an extremal weight ray is open by Proposition IT1.8,
and Cg is the closure of a union of open G-orbits ([HN2, Prop. 8.10(ii)]), the con-
dition [ve]€Cs even implies that [v,]Cint Cs. O

We apply these results in the special case where G is simple Hermitean and
the interior of S(P) intersects exp(iZ(€)) non-trivially. We fix an element Z,¢€
S(P)°nexp(iZ()) and consider a realization of the flag manifold M=Gg/P as a
Gc-orbit of a highest weight ray [v,] in a highest weight module V of G¢. Let Py
denote the corresponding set of weights. Then the extreme points of the convex
hull of Py consist precisely of the Weyl group orbit W.A of the highest weight A
([B2, Ch. 8, §7, no. 2, Prop. 5]).

We choose a weight aePy such that a(Z) is maximal. Then there exists a
weight separating element Z, €it arbitrarily close to Z such that

o(Za) =max{B(Z,):B€Pv},
and exp(Z,)€S(P)°. Now Lemma IIL9(iii), (iv) yield [v,]€int Cg(py. So we have

shown that Pcy ., contains every weight o, where a(Z) is maximal.
To evaluate this condition, we need the following lemma.
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Lemma IT1.10. Let A*CA be a t-adapted positive system. Then the following
assertions hold:

(i) Let peCry,. Then W.unCx, =We.p.
(ll) WP‘_{’YEW - C:l('un I‘:un}

(iii) If ZeiZ(¥) such that a(Z)>0 holds for the positive non-compact roots o
and pEt*, then

iw€Chin = wZ)=max{(v.p)(2):veW}.

Proof. (i) That the right hand side is contained in the left hand side follows
from the invariance of Cpip under the small Weyl group W;. Suppose that yeW
with 7.4€Cp;,. Then (7.p)(id) <0 for all «€A}. Thus there exists 7/ €W, such
that

(Y7) 1) (i) <0 VaeA*.

On the other hand there exists v/ €W, with (v”.u)(i&)<0 for all aeA*. Thus
(¥'v)-u=~".p ([B1, Ch. 5, §3, no. 3.3, Thm. 2]) and therefore

1//

Y= ()T € Weps.

(ii) That W; leaves Cy,, invariant is clear. To prove (ii), pick u€C%,, such
that the stabilizer of x in W is trivial. Suppose that yEW leaves the cone C%;,
invariant. Then v.u4€C};, ©We.u shows that yeW,.

(i) Let acit*Ctg such that a(Z)=max{(y.a)(Z):yeW}. Pick a positive
non-compact root 3 and consider the reflection sg at the hyperplane ker 5. Then

spla)=a— (a b)
ole) ()

Since sg(a)(Z)<a(Z), this means that o(3)3(Z)>0. This shows that « is non-
negative on all the elements [X, X ] for X € gg, BeA;. Inview of [HN2, Lemma 7.7],
this means that ia€C%,,, since JER*[X, X .

If, conversely, ia € Cgy, then (v.a)(Z)=a(Z) holds for all y€W. So, as in (i),
we may assume that a(ﬁ)ZO holds for all € A*. This means that « is contained
in the positive Weyl chamber corresponding to A+. It follows that

T B=a—a(B)8.

W.aCa— Z R*B
Beat

(cf. [He2, p. 459]), so that the assertion follows from 3(Z)=0 if 3 is a compact root
and B(Z)>0 if 8 is non-compact. []
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Lemma IIL.11. If Gc#S(P)°#0 and M=Gc.[v)], then there erists a -
adapted positive system A% such that iA€Cmin(A})* is a highest weight, and O=
G.[va] holds for a highest weight vector vy in V with respect to A*.

Proof. If a€Py is such that a(Z;) is maximal among the Weyl group translates
of a, then a(Z;)>0 and Lemma III.10 yields that ia€C};, .
Thus there exists yEWs such that (y.a)(8)>0 for all €A} since ia€C¥,,
and the Wj-translates of the positive Weyl chamber cover Ck;, ([B1, Ch. 5, §4,
no. 4, Cor. 1]). Thus A=7.a is a highest weight for V' with respect to the positive
system A*. Pick g€G such that y=Ad(g)|t,. Then g.[va]={vy.o] entails that

O=G.[v,]. This proves the lemma. [

Proposition I11.12. Let O=G.z, Py be the stabilizer of x in Gc and BC P,
be o Borel subgroup. Then S(B)CS(P.), and equality holds if b=pa+ for a
E-adapted positive system and P,NG is compact. In this case S(B)=S(P;)=
G exp(iWhax)-

Proof. Let geS(B). Then gGBCGB and therefore gGCGBCGP; entails
9GP, C(GP,)P,=GP;,

ie., geS(Py).

Now suppose that b=pa+ for a t-adapted positive system, and that P,NG is
compact. Let Ty denote the set of all compact base roots in T. Then T=T,U{é}
and the parabolic P:=P, is a parabolic containing B. We also write N for the
commutator group of B. We claim that GB=GP. To see this, write p:=L(P) as
px for a parabolic subset ZCA. Then the compactness of PNG is equivalent to
YN—XCA,. Now Proposition 11.7 shows that S(P)=S(B)=G exp(iWnax). O

Proposition IT1.13. Let A* be a €-adapted positive system, A€ P* such that
iAECmin(A})*, Vi a corresponding highest weight module, and O:=G.[vA]CGc.[va]
the corresponding open G-orbit. Then B€Py and [vg]|€O implies that FEWp. AC
—iCmin(A7)*

Proof. Since [vg]=G.[v,], there exists g€ G with g.[v)]=[vg]. We first use [HN2,
Thm. 8.30] to find a G-invariant pseudo-Hermitean structure J on V' such that the
corresponding moment mapping is given by

:Q—g", []— (XHi%j);—;)»,

where Q={[v]eP(V):J(v,v)#0}. Then ®([v)])=iA and

i =2 ([vp]) = Ad*(9)®([va]) = Ad"(g)-1A
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because & is equivariant. Let p:g*—t* denote the restriction mapping. Then,
according to the convexity theorem for coadjoint orbits ((HNP, Thm. 5.17}),

i =p(iB) € p(Ad*(G).i\) C conv(We.iX) +Clax & Coin-
Since, according to Proposition II1.5, e W.), we conclude with Lemma II1.10 that

BEW.AN—=IChy, =WeA. O

Theorem II1.14. Let P be a parabolic in the complezification G¢ of the Her-
mitean simple Lie group G. Then @#int S(P) if and only if P contains a Borel
subgroup associated to a positive -adapted system A*. In this case S(P) is the
mazimal Ol’shanskii semigroup Smax:=G exp(iWnax) associated to A} .

Proof. It remains to show that Spa.=S(P) holds in all these cases, where
S:=S(P) has non-empty interior.
We want to apply Proposition I1.4. So we have to show that

Snexp(it) C exp(iCmax)-

To do this, we return to the realization of the complex flag manifold G¢/P as an
orbit of a highest weight ray [v,] in the projective space P(V') of a highest weight
module. Let X €it\iCpax be weight separating and suppose that exp(X)€int(S).
Then there exists a non-compact root a with a(X)<0. Since every short non-
compact root is the average of two long non-compact roots ([Pa, p. 219]), we even
find a long non-compact root « such that a(X)<0. We also know from [Pa, p. 220]
that the long non-compact roots are conjugate under We. Hence We.a generates
the same cone as AJ.

Since A(8)>0 for all €A}, it follows that (X, 8)>0 for all B€A}. We find in
particular that (A, We.a)CR*. Since, on the other hand, W;.a generates it*, there
exists €W such that (), ~.c)>0. The semigroup S is invariant under conjugation
by Ng(t), so that we can replace X by .X and therefore assume that X ¢iCrax,
a(X)<0, and A(&)>0. Hence

sa(N)(X) = MX)~(\, @)a(X) > A(X).

Thus, using Lemma ITL.9(iii) and (iv), we see that [v)]€Cs implies that [vs,.x]€
Cs. Let B:=54.). Then BEWs. X by Proposition I11.13. As before, let Z€3() such
that Af={B€A:B(Z)>0}. Then B(Z)=\(Z), so that A(&)a(Z)=0, contradicting
the fact that A(&)>0 and a(Z)>0.
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So we have proved that SNexp(it)CexpiCmax. Now Proposition II.4 shows
that SCGNg (HG.

Let s€ SNNgc(t). Then s.[va]=[vy.n], where YEW is the element of the big
Weyl group represented by s, i.e., y=Ad(s)|¢o. Now, again using Proposition ITI.13,
we find that y.A€Wy.A. This means that s.[v]€Ng(t).[va]. The same argument
applies to every other weight vector in We.[vy]. Thus v.(We.A)CWe.A. Let B:=
Y wew, W-AE—iint Cyy,. Then B#0 and v.f=0. It follows that v preserves the
set of Weyl chambers containing R* 3. Since the small Weyl group W4 acts simply
transitively on this set of Weyl chambers and W acts simply transitively on the set
of all Weyl chambers, it follows that yeW;. Hence s&€ SNNg.(t) is represented by
an element in W, so that

SNNgc(t) € Na(t)Zao(t) = Na(t) exp(tc) C G exp(it).

For s€SNNg(t) this implies the existence of geG such that gs€exp(it)ynSC
exp(iCrax)- S0 SNNg (1) CSmax and since G(SNNg (t))G is dense in S, we con-
clude that SCSpax- O

We collect the information obtained in Sections I-III in the following theorem.

Theorem II1.15. Let tCg be a compactly embedded Cartan algebra, wet*, ¥
a parabolic system of roots, b=ps; a complex polarization in w, and p=bNlc. Then

S(B) = NcS(P)
and if [=3([0)69@;’=1 I; denotes the decomposition of | into simple ideals, then

k
S(P)=2(Lc)ox [ S(F;),
j=1
where p;:=pN(l;)c. More precisely, S(P;)=(L;)c holds if and only if ; is not
simple Hermitean or if p;=(I;)c. The interior of S(P;) is non-empty and different
from (L;)c if and only if 1; is Hermitean and p; contains a Borel algebra associated
to a t-adapted positive system of roots. In this case S(Pj)=L; exp(—iWmax), where
WnaxCl; denotes the corresponding mazimal invariant cone.

Proof. This is a collection of the results from Proposition .13, Proposition II.3,
and Theorem III.14. [

Compression semigroups and admissible orbits

In this last subsection we want to relate the non-triviality of the semigroups
S(P) to a convexity property of the coadjoint orbit ;) associated to P by realizing
Gc/P as a highest weight orbit G¢.[vy].
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Theorem I11.16. Let G be a simple Lie group contained in a complezification
Gc and P be a parabolic in Go. We realize the flag manifold Gc/P as a highest
weight orbit Go.[vy]). Then the following are equivalent:

(i) 0#int S(P)#£Gc.

(ii) O;x is of convex type and not zero.
If these conditions are salisfied, then G is Hermitean.

Proof. (i) = (ii): Proposition I1.3 shows that G is Hermitean. Then we can
apply Lemma II1.11 to see that i) is contained in an invariant cone. Moreover i\
cannot be zero since that would imply P=G¢ and hence int S(P)=G¢.

(i) = (i): If O;, is of convex type and non-zero, then g contains a non-trivial
invariant cone and hence is Hermitean. Moreover [HNP, Thm. 5.20] shows that
there exist a f-adapted positive system such that Ae—iC* Then i\ permits

a complex polarization py such that XDA*. This implies P=Ps and therefore
Proposition II1.12 shows that int S(P)#0. Finally the proof of [HN2, Thm. 8.49]
shows that int S(P)#£G¢. O
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