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Directional operators and
radial functions on the plane

Javier Duoandikoetxea and Ana Vargas(')

Abstract. Let ECS! be a set with Minkowski dimension d(F)< 1. We consider the Hardy-
Littlewood maximal function, the Hilbert transform and the maximal Hilbert transform along the
directions of E. The main result of this paper shows that these operators are bounded on Lf od (R?)
for p>1+d(E) and unbounded when p<1+d(E). We also give some end-point results.

1. Introduction

Given a one-dimensional operator T and a direction u€S™ !, we define the
directional operator T,, in R™ as follows: for a smooth function f and given zeR"™,
set z=(z,u)u+z’ and g(t)=f(tu+z’'); then, T, f(z)=Tg((zx,u)). If T is either
bounded in LP(R) or of weak type (p,p), the same is true for T, in R™ with the
same norm (in particular, the norm does not depend on u).

In this paper we shall consider directional operators in the plane. Associated
to the angle 6 which determines the direction given by the point € =(cos 6, sin §) in
S! we define the maximal operator My, the Hilbert transform Hy and the maximal
Hilbert transform Hy as follows,

h
Mo (z) =sup — / |f@—te®)] dt,
r>02h J_j

Hof(z) = lim 1 fz—te®)

dt = lim H
=0T Jt)>e ¢ iy Ho.ef ()

and
Hy f(z) =sup |Hp,c f()|-
e>0

Thus, all of them are bounded operators in LP(R?), 1<p<oo, and of weak type
(1,1) with norms independent of 6.
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Let E be a closed subset of S1. Associated to F we define the operators

ME f(z) = sup My f(z),
0cE

Hef(z) =sup |Hpf(z)},
(132

Hef(z)= sup H; f(x)

(we shall write §€ E instead of e?cE). We are interested in the boundedness
properties of these operators as functions of E. When FE is a lacunary set, that
is, E={0;} is a decreasing sequence converging to 0 such that limsup(f;1/6;)<1,
then Mg is bounded in LP(R?), 1<p<co ([NSW]), but if F has positive measure,
Mg is unbounded for p<oo.

We consider radial functions. Denote by L ;(R?) the set of radial functions
belonging to LP. We associate to each E a number, d(E), as follows:

. log N (6)
d(E)=1 —,
(B) =lim v s

where N (8) is the minimum number of closed intervals of length 6 needed to cover E.
If E has positive Lebesgue measure, d(E)=1. If F has zero measure and we write
S\ E as the union of a sequence of disjoint open intervals, {I;}, then

d(E):inf{aZO:Z ;| <oo}

where |I;| denotes the length of I;. Our main theorem is the following:

Theorem 1.
(i) Mg is bounded on LY 4(R?) if p>1+d(E) and unbounded if p<1+d(E).
(ii) The same holds for Hg and Hy, if d(E)<1.

There is no standard name for d(F) and one can find the names Minkowski
dimension, box-counting dimension, entropy dimension and logarithmic density
among others. There are also many different equivalent definitions (twelve of them
appear in [T}, including those mentioned above). The number d(FE) is an upper
bound for the Hausdorff dimension of E but they are different in general. Never-
theless, they coincide for self-similar sets like the Cantor ternary set (see [F, p. 118]).

When E is lacunary, d(E)=0 and the operators are bounded in L% ,(R?) for
all p>1; if E is the set of directions given by the sequence k=7, then d(E)=1/(y+1)
and we prove boundedness if and only if p>(y+2)/(v+1). We remark that acting
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on general functions, the operators are unbounded for all 1<p<oo. If E is the
Cantor ternary set, d(E)=log2/log3 and the boundedness on L? ;(R?) holds if
and only if p>1+log 2/ log 3. In this case the question for general functions remains
open. When E=S" the boundedness for p>2 is proved in [CHS2]. A result slightly
more restrictive than our Theorem 2, but still enough to deduce Theorem 1, was
claimed in [CHS1], but it was obtained using an erroneous estimate. The correction
in [CHS2] does not supply a proof to our theorem.

2. Maximal operators

Due to the result in [CHS2] we can limit ourselves to considering the case
d(E)<1. Decompose S\ E as the union of {I;} as in the introduction and assume
that there are Ny, intervals of length 27%~1<|I;|<2~*. With this notation,

d(E) =inf{a20:ZNk2_k°‘ <oo}.
k=1
To prove the necessity of p>1+d(E), take as f the characteristic function of
the unit ball. On 2'<|z|<21t1, [>0, Mg is of the order 2~ at least on the union
of Eiﬂ N, rectangles of sides 1x 2! which correspond to the directions defined by
end-points of intervals of length greater than 27!~!. Thus, if Mg is bounded in
L? (R?) we have

) 14
> o2t (Z Nk) 2'<c,
=1 k=1

which is the same as

oo [ o]
Z Ni Z 2l(1-p) <C.
k=1 =k
Hence, p—1>d(E).
Theorem 1 will be a consequence of the following:
Theorem 2. Ifp<2 and ), |I;|P~" (log(1/|1;]))P~'*¢ < oo for some e>0, then
Mg is bounded in LP ,(R?).
Let ¢ be a nonnegative one-dimensional Schwartz function such that ¢(0)#£0
and set ¢;(t)=2"7¢(277t). Define the operator

/ 65(t) f(—te'®) d].
R

Mof(x) =Ssup
A

Thus, My and M;(|f|) are equivalent in the sense that their quotient is bounded
between two strictly positive constants, so that we can study Mg f=supycp My f
instead of 9 g. The following lemma is used in a crucial way.
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Lemma 3. Let feL? ,(R?) and 1<p<2. Then
1Mo f My 11, < Cyl0~6'1/7 | £l
where |§—6’| denotes the length of the shortest arc joining e® and et

Proof. Consider first the case p=2, the others following by interpolation. For
the sake of simplicity, we can assume that §’=—6 (that is, the directions 6 and ¢’
are symmetric with respect to the OX;-axis). For every function g we have

(Mag(@) ~ o g(a)| <sup / 6;(1) {g(z—te") —glz—te=0)} dt

| o
=sup T9(0)|:=Tog(0)< | ITa(aP|

The Fourier transform of Tg g(z) has an explicit expression,
(T39)"(6) = [(27(e%,€)) - d(2 (7%, €))]3(6)-
Let xg be the characteristic function of the {double) sector centred at the OX,-axis

of width 40 and P, the multiplier operator associated to xg. For a radial function
f, the inequality

1P fll2 < CI61'/2 || f 2,

is a consequence of Plancherel’s theorem and the fact that f is also radial. Hence,

ITo(Paf)ll2 < || Mo (Pof)ll2+ | Mo (Po f)ll2 < CIBIM2 i £ |2

Therefore, we are reduced to estimate
1/2

(S imes-ronp)

= [ 3 B, ) -d@ e PIFOP1-xo(E)) d.

j=—o0

2
| To(f—Paf)lI3 <

2

Using the bound
27 |§2 siné |

B2, )~ B2, )] < O e

valid when 1—x4(£)#0, we add the series in j and integrate in polar coordinates
(o,7) to get

o n/2-26
c / F@)Pe / tan? r dr tan® 8o < CJ01]| 7 |12.
(4] 0

The result for 1<p<2 is an almost straightforward application of the Marcinkiewicz
interpolation theorem. There is only a minor technical problem: My— My is not
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sublinear. It is not difficult to go around this failure. We have defined a new
operator Ty satisfying |Mgg M_gg|<ng, and Ty is sublinear, of weak type (1,1)
and ||Tpgll2<C|0|*?)ig|l2. We can perform the interpolation over Ty. O

We use the preceding lemma to prove
Lemma 4. Let 01,0,,... ,0y5 be N directions in an interval ICS'. Then, for

radial f we have

| |I51;P|M0jf—M0Nf|H2SC(logN)|I|1/2||f||2

and

|Isup|M9jf—MVoNf|H <CONHP-YIYP | fll,, 1<p<2.
j P

Proof. Without loss of generality we can assume that N=2!—1 (adding points
if necessary) and label the directions consecutively. Decompose the index set J=
{1,2,... ,2'—1} into I subsets containing 1, 2, 22, ..., 2!! points as follows: J;=
{21}, Fn=Tm-1£2!"™ (m>2). This definition associates to each point §; with
j€Jm a unique point 0,(;y€Jm—1 in a canonical way. Now, we have

Sup | Mg, f — Mp,, f| < S | M, - Mog(,)f|+ sup | M, ;, f — Mo, f,
FE€ETm

and using Lemma 3

sup |Mojf*ﬁonf|
j€e YU T

i<m

p

—_ — , 1/p
<| sup 13— Fhay s +( > |0j—eo<j>|f’/”) £l
Jet fL'n.J 1‘71 P JEJm

Applying Holder’s inequality, the last term is bounded by 2(m=D@/2=1)|1|1/7'| f||.
The lemma follows by induction. O

Proof of Theorem 2. By a limiting argument we only need to consider the
directions determined by the end-points of the intervals I;. Denote by Ej the set
of end-points of intervals of length 27%~1<|I|<2~* which are not end-points of
intervals of length greater than 27%. The connected components of the complement
in S' of the union of these latter intervals (of lengsh greater than 27%) will be
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denoted Ji; let Ej; be the subset of Ej contained in Ji; and Ni,; the cardinality
of Ek,l- Then Zl Nk,ISQNk and Zl le,l|Szj2k sz—j.

If 6, is anyone of the end-points of Ji; (which are in Uj <k Ej), according to
Lemma 4, we have for p<2

| sup 13 f - Mo, < ONEE = a7 1.

0€Ey
Since
. N 1/p
sup sup (8o (@) <sup ¥ f(0)|+ (3 sup [¥os(a)=FHa fP)
0€Ey 1 7 9€Ek,
we deduce
swp (Mo sw (W] +c(ZN,3;”|Jk,z|P-) 171
e, < E; p €U cp1 B P 1

Applying Hélder’s inequality to the sum in [ with exponents 1/(2—p) and 1/(p—1),
the coefficient of || f||, in the last term can be bounded by

(2-p)/p (r—1)/p 2/p1 NP
C(Z Nk,,> (Z|Jk,,|> =CN*® (Z Njw) )
14

izk

By induction, supgc g M, is bounded in L? J(R?)if

(1) ZN%: 1 (ZN 2_])1/19 o

j>k
Assume that IIj]”‘l(log(l/|Ij|))b<oo for some b>0, i.e.,

(2) D N2 7R Db < o0,

k=1
To check that > po | N, 2/ L 1(2 >k N;279)1/% is finite, apply first Hélder’s inequal-
ity with exponents p/ (2 p) and p/(2p—2), after including 2~*(®—1)(2—p)/ppb(2-p)/p
in the sum and the same with opposite exponent. We get a factor like (2) and we

are left with
=) 1/2
Z(Z Nj2—j> ok(2-P)/2;~b(2~p)/2(p-1)
k=1 “j>k
Applying the Cauchy-Schwarz inequality, we get
oo 1/2 , o0 1/2
(Z (Z Nj2—j)2k<2—p) kb> (Z k—b/(p—l)) .
k=1 \j>k k=1

The second term is finite if and only if 5>p—1. Rearranging the first term we again
get (2). O
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3. Hilbert transforms

The counterexample to show the necessary condition is the same as above. To
prove the theorem for Hilbert transforms we need first two lemmas like in the case
of maximal functions. The first one is:

Lemma 5. If f is a radial function, then
| Hof —He fllp < Cpl0 67 | fllp, 1<p<2,

o 1-2/p
IHof ~Ho 1l <Clo-017>(log 525 ) Ifl 2<p<cc.

Proof. The multiplier of the operator Hg— Hy is supported in a (double) sector
of width |§—6'|. This gives the L?-result. For 1<p<2 we interpolate with the weak
type (1, 1) estimate, and for p>2 with a uniform estimate for big ps. O

Applying this lemma we get the following counterpart of Lemma 4:

Lemma 6. Let 0,,0;,... ,6n be N directions in an interval ICS'. Then, for
radial f we have

[sup 1Ho, £~ Ho £1|| <ON7=1p 7 I, 1<p<2
7

and

2

1-2/p
2< .
i) Ml 2<p<e0

||sup \Ho, f— HoNf|” <caogN>|I|1/Psup(log

The proof of the theorem now follows the same scheme as before for 1+d(F)<
p<2. But we cannot interpolate with p=o0 as in the maximal function case and the
range p>2 also needs a proof. Minor changes using the second estimate in Lemma 6
lead to the following substitute of condition (1):

(3) ZlogNk(ZN2 J) k2P <00

j>k

which is satisfied if d(F)<1 since N; <C27 for some a<1.
To treat the maximal Hilbert transform we apply Cotlar’s inequality. Usually
it is written as
H* f(z) < CIM(H f)(z)+M f(z)]
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with M the Hardy-Littlewood maximal function, but it is easy to see ([S, p. 67])

—

that the first term can be taken as M(H f). Then, for directional operators
H; f(z) < C[My(Ho f)(2)+ Mo f ()]
and ~
Hiof () < C [sup My (Ho ) () + 95 )]
We shall need a new modification of the key lemma:

Lemma 7. Let f be a radial function. Then

Mo (Ho f)— Mg (Ho: f)llp < Col0—6"[""'| £, 1<p<2

2m
|0—0'|

— o 1-2/p
IIMe(Hof)—Mo'(Ho'f)llpSCplé’—H’I””<log ) 1l 2<p<oo.

Proof. Again, we only need to prove the case p=2. From it, the estimate for
p<2 is obtained by interpolation with the weak-type (1,1) estimate (which holds
because M(H f)<C(H*f+Mf)) and for p>2 we interpolate with an estimate for

big po.
To prove the case p=2 write first

My(Ho f)— My (Hg: f) = [Mo(Ho f) ~ Mo (Hor )|+ [ Mo (Hor f) — Me: (Hor f)].
For the first term we have
Mo (Ho) f — Mo(Hor)fll2 < C||Ho f — Ho fll2 < Cl0—6'|/2|| f |2

and we only need to control the second one. Observe then that in the proof of
Lemma 3 we can replace f with Sf where S is a bounded multiplier operator,
without modifying the estimate. O

With this lemma we prove the theorem for H exactly as we did it for Hg.
Notice also that if p<2 the condition in Theorem 2 is sufficient for the boundedness
of Hg and HE.

4. Further results
4.1. End-point boundedness

The proof of the necessity in Theorem 1 shows that if the operators are bounded
n L5 (R2), then

(4) Z |Ijld(E) < 00.
J
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In the case where E is given by a decreasing sequence ¢; converging to 0, such
that 6;—0;41 is also decreasing (i.e., the intervals are ordered by their lengths),
condition (4) is also sufficient. Indeed, in the proof of Theorem 2, Ji; is reduced
to just one interval of length <Ni27F and Nii=Nyg. Then,

| sup 1Mos Mo fI|| <CNYP2~H7| 1|,
0By 4 .

where 6y, is the direction in |J; 4 E; closest to Ex. Then

—~ _ ol 1/p
Jsun 111, < Jsup Bt 1] +0(3- ze=0) s
0cE P k P =

The last sum is bounded for p=1+d(E), assuming (4). Moreover |0 —0k41|<
N2k <C25(1—4E)) 50 that 37, |6 —Ok+1]° <oo for all >0, if d(E)<1 and, there-
fore, the first term is bounded for 1<p<oco.

4.2. Rearrangement of directions

When F is finite and has N points, Mg is bounded in L?, 1 <p<co, but then
the interesting problem is to study the dependence on N of the LP norm of the
operator. It is known that

19MEefll, < Clog N+1)%(|fll, (e=a(p)>0, 2<p<oo)
and

I9Mefll, < CpN*/PHlog N+1)*|fll, (e=al(p) 20, 1<p<2),

if the directions are equidistributed (see [Col] and [St]). Without this hypothesis it
is an open problem to determine the above estimates. When f is radial, no matter
what the directions are, both results are given by Lemma 4 and even more, if the
N directions are distributed in a small arc I, the norm can be made smaller, more
precisely

IME£ll2 < C(A+(log NIV f a2,
IMefll <CA+NYPHIVP) | flp, 1<p<2.

An estimate of this type is impossible for general f, a change of variables showing
that the norm is independent of the length of the arc in that case.
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This observation is sometimes useful in order to show that an operator is un-
bounded in the general case. In fact, if there are N consecutive intervals of length
2-k=1<|I|<27* and the sequence {N;} is unbounded, the associated operator can-
not be bounded in L? for p<co.

We have shown in Theorem 1 that the boundedness of Mg, Hg and HE on
L? ,(R?) depends only on the length of the intervals in S*\ E (except maybe the
end-point). In the general case the distribution of the intervals can modify the
boundedness of the operator. More precisely, we can give two sets E and E’ such
that S*\E and S'\E’ are decomposed as unions of sequences {I;} and {I} such
that |I;|=|I}|, and Mg is bounded in LP(R?), 1<p<oco, while Mg is unbounded
if p<oo. To this end, decompose S dyadically and decompose then each dyadic
interval into dyadic pieces again. Take as E the set of end-points of these intervals.
Rearrange the intervals so that they are ordered according to their length and take
as E’ the complement of their union. Then Mg and Mg satisfy the above claim.
For the positive result see [SjSj], for the negative one apply the observation in the
preceding paragraph.

Added on March 24, 1995. The maximal operators studied in this paper are
of restricted weak type in LP, p>1, if and only if there exists a constant C such
that Ni<C2FP-1 where Nj denotes the number of intervals I. ; whose length is
between 27%~! and 2% (or equivalently, the minimum number of intervals of length
2% needed to cover E).

This result is particularly interesting at the end-point p=1+d(E). The coun-
terexample is the same as in Section 2 and to prove the sufficiency decompose the
operator into two parts according to the length of the intervals I;. Then apply to
each one of them an L? estimate or an L' estimate. The result follows by choosing
the decomposition in such a way that both terms are of equivalent size.
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