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Stratified materials allowing 
asymptotically prescribed equipotentials 

Bj5rn Gustafsson, Jacqueline Mossino and Colette Picard 

1. I n t r o d u c t i o n  

Let us consider the sequence of  minimizat ion problems: 

P ( a ~ ) : i n f { ~ a P - l , V v , P d x - ~ f v d x ; v E W ~ ' P ( f ~ ) } ,  

where f~ is a bounded  domain in R N, l < p < o o ,  L s tands for suitable Dirichlet 

b o u n d a r y  conditions and, for each n E N ,  O<anELCC(~). In  the  applications we 

have in mind fl is a conductor ,  the an represent rapidly oscillating ( thermic or 

electric) conduct ivi ty  coefficients and we are interested in the possible convergence, 

as n--~c~, of the problems P(an) to  some "homogenized" limit problem when an 

converges to some acL ~ (f~) in a suitable sense. 

In the case N = I  it is well known (eft [12] for p = 2 )  tha t  if 1~an, 1/a and a are 

in L~176  and 

1 1 
(H)  - - - ~ -  in w*-L~176 

an a 

then  the solution un of P(a~) converges in w-WI,P(~) to  the solution u of  P(a) and 

f a p-1 lu~n I p dx --* ~ a p-1 lu'l p dx, 

which is to say tha t  P(an) converges to P(a). 
In the case N > I  the s i tuat ion is more complicated and the hypothesis  (H) 

by no means implies tha t  P(an) converges to P(a). In general not  very much can 

be said, as far as we know, but  if the an happen  to depend on only one variable, 
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say Xl, then it is known (cf. [11], [13] for p = 2  and [9] for more general situations) 
that  if (H) holds and moreover aP-l--*(a*) p-1 in w*-L~(ft) for some a*CL~ 
then P(an) (with P N I Vvl =~=1 IOv/Oxil p) converges to the problem 

N OV p 
i n f { ~ / a  p-10v  ~(a*)P-li~_2_ ~ dx-~fvdx;vCW~'P( f t ) } .  

The present paper is a natural sequel to [7], [8] and is concerned with a kind 
of singular version of the above, namely corresponding to the case a* =+oc .  Let r 
be a given smooth function on ~ and assume that  the an depend only on t=r 
so that  an(x)=an(t ) say. Assume also that (H) holds. In [7], [8] we proved that  
if, in addition to the above, ~ contains an increasing (as n---~cc) number of leaves 
of perfect conductors which are uniformly distributed level surfaces of r (this cor- 
responds to having the additional constraint "v= constant on each leaf" in P(an)) 
then P(an) converges to a limit problem P whose admissible functions are constant 
on each level surface of r In practice P then is a one-dimensional problem. 

In this paper we obtain the same conclusion under more relaxed conditions, 
namely with the leaves of perfect conductors replaced by the assumption that a n is 
very large along many of the level surfaces of r Precisely, the right condition on an 
turns out to be that  

(H') f apn-l(t)dt--*+ec as n--+ec 

for every interval I of positive length. Thus, if (H) and (H')  hold, then P(an) 
converges to the same homogenized limit problem P as before, the solution of which 
is constant on all the level surfaces of the prescribed function r 

This is our main result. It contains as special cases earlier results in e.g. [4] 
concerning periodical reinforced structures. A typical example is when an =a (inde- 
pendent of n) except for an increasing number of thin layers of very high conductiv- 
ity. If there are n uniformly distributed layers of thickness e=~n and conductivity 
A=)'n then (H), (H')  hold if 

nE --~ 0 and n~/~ p-1 --+ c:~ as n --+ (x~. 

In the body of the paper we actually work with more general problems than 
P(an), namely 
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where the functions G~(x,z) satisfy certain natural conditions, e.g. Gn(X,Z)= 
p N IziP/p, where ].]is either the euclidean norm (N =(}-]i=1 ]z~i2)P/2) or the/P-norm 

p N (I z] = ~ i = 1  ]ziiP) �9 Note that  problem P~ is equivalent to the weak formulation of 
the quasilinear boundary value problem 

-div  gn(X, anVUn)= fn in ft, 

where gn is the gradient of Gn. 

Acknowledgements. We are grateful to F. Murat for enlightening discussions, 
and to the Swedish Natural Sciences Research Council (NFR) for support. 

2. S t a t e m e n t  o f  t h e  m a i n  result  

We shall work with domains ft of annulus (or shell) type (cf. however w 
Let ~ - -~ t0 \~ l  where ~t0 and ~1 are bounded domains in a N, (N>2)  with smooth 
boundaries and satisfying ~0D~I .  Let C E C I ( ~ , R )  satisfy r  on 0~o, r on 
0~1 and V r  on ~. It then follows that  0 < r  in ~; the condition V r  also 
imposes topological restrictions on ~. The geometry we think of is that  with ~0 
and ~tl homeomorphic to balls, but the above assumptions also allow ~0 and ~tl to 
be e.g. nested tori. 

Let us consider the following sequence of minimization problems 

( P n )  i n f { / 1 G n ( X ,  anVv) d x - / f n v d x ; v E W l ' p ( ~ ) }  

where 
�9 anEL~(~t) ,  an(x)>c>O for every n E N  and a.e. xE~ ,  
�9 w l ' p ( ~ - ~ ) = { v e W l , p ( ~ ) ; v = O  o n  O~o ,v= l  on Ofh}, ( l<p<oo) ,  

�9 f ~ e L # ( ~ ) ,  1/p+l/p'=l, fn--*f in w-L#(~), 
�9 Gn are standard functions in the calculus of variations, that  is: 

- Gn : (X, Z) E ~ X R y ---+ Gn (X, Z) E R is a Carath@odory function (that is, mea- 
surable with respect to x, continuous with respect to z) 

- for every nEN,  for almost every xE~ ,  G~(x, .) is a strictly convex function 
which admits a gradient denoted by gn(X, "), 

- there exist constants Cl, c2, c4>0 and c3ELI(~) such that,  for every nEN,  
for almost every x E ~ and for every z E R N, 

(1) CllZl p z) 
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(2) Ign(x, z)l _< c4(l+lzlP-1). 

�9 There exists G satisfying the same properties as G,~, such that  for almost every 
x �9 f~ and for every z �9 a y , 

(3) G n ( x  , z)  ----> G(x ,  z) a s  n -----> oo,  

(4) gn(x,  z) -~ g(x, z) as n - ~  oo. 

Clearly (cf. [10]), problem (Pn) admits a unique solution Un, and u ,  is also the 
unique weak solution of 

- div g,(x, anVUn) = fn  in ~, 

u~ �9 w~'p(a). 

T h e o r e m .  We assume that (an) satisfies the following hypothesis: 

(5) an:anor witha~�9176176 1) and 3c>O:Vn�9 te]O,l[,c<_a~(t), 

1 1 
(6) ~aC L~(O, 1): - -  -~ - weakly* in L~(O, 1) as n-~ oc, 

a n a 

f 
(7) for every non degenerate interval I C [0, 1],/x aP-1 (t)dt --* +oz. 

Then, as n~cc ,  the solution U n of  (Pn) converges weakly in W I , p ( ~ )  to the solu- 

t ion u of 

(P) i n f { ~ l G ( x ,  a V v ) d x - ~  fvdx;v--vor 1)}, 

where a = a o r  and W~'P(O, 1)={veWl ,p (0 ,  1) ;v(0)=0,  v ( 1 ) = l } .  Moreover 

(8) ~ ~nGn(x, anVun)dx---+ /~ l G(x,a~Tu)dx, 

which is to say that the infimum of (Pn) converges to the infimum of (P). 

Remark 1. The assumptions in the theorem are actually slightly excessive. 
In (5) we could allow c>0  to depend on n. This would still guarantee that 1/awE 
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L ~176 (0, 1) and then it would follow from (6) and the uniform boundedness principle 
that c actually could be taken independent of n. 

Conversely, with (5) as it is, (6) could be replaced by the weaker condition that 

a - - ~  --+ a(t) 

for every interval I c  [0, 1] (making (6) more similar to (7)). In fact, by (5) the se- 
quence (1/an) is bounded in L~~ 1) and then it is enough to have the convergence 

a ~ r  ) dt 

for a dense set of functions CELl(0,  1), e.g. for all step functions. 

Remark 2. The limit problem (P) of (Pn) is the same as that obtained for a 
foliated material with leaves of a perfect conductor in [8] and by Lemma 2.2 of [8], 
(P) can also be formulated 
(P) 

inf{~lG(x, aVv)dx-/afvdx;vEW~'P(f~),Vtc]O,l[,v= constant on Ft }, 

where Ft is the level surface {r  
Actually (P) is a one dimensional problem (cf. [8], w where the coarea 

formula of [6] is used). More precisely, let 

�9 G(t,z)=.~ G(x, Z~7r 
IVr dv, 

{~01 ~a ~01 } �9 (P ) : i n f  G(t ,  av ')  dt- fv dt;v E WI'pL(O, 1) , 

�9 u the solution of (P). 

Then u = u o r  and 

~lG(x'aVu)dx- f fudx=j~ollG(t'au')dt-~o Ja 

Remark 3. In [91 we investigate a case when f1 aP-l(t) dt is bounded; more pre- 
cisely we determine the limit problem of (Pn) assuming f1 aP-1 (t)dt--*fx a*p-l(t)dt 
where a* EL~(O, 1) instead of hypothesis (7). 
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Example. Stratified annulus containing numerous thin layers of very high con- 
ductivity which are uniformly distributed in ft. 

For each nEN,  let Tn={ti,n;O<_i<_n} where (ti,n)i is a sequence of points 
in [0, 1] such that O=to,n<tt ,n<. . .<tn,~=l.  Let e=en  such that 

O < e < ~l min{ti,n - t i - l , n  ", 1 < i < n} 

and let Ei,~,e be the layer located between the two level surfaces of r of values 
t i ,n -S  and ti ,n+e, that is 

~i,n,e={Xe~;ti,n--E<~(X)<ti,n~-C}, l<i<n--1 and set ~n ,e=U~i ,n ,~ .  

Let us suppose that  this stratified annulus gt (which contains the n - 1  thin layers 
Ei,n,~) has a conductivity coefficient an such that 

{b~  in ft \En,e,  

an = /~n in En,e , 

where bn=bnor bn eL~(0 ,  1), An=Anor An EL~(0,  1), ,Xn(t)__>An >0 and An-~Oc 
aS n---+ cx:). 

The problem (Pn) can be written 

inf{ f ~Gn(x, bn~v) dx-~ / ~--~Gn(X,/~n~Tv) dx-/ fnvdx;vEWl~P(~)}. 
gt\ ,~ E~,~ 

Coro l l a ry .  Let us assume that 
�9 3c>0:YnEN, a.e. tE]O,l[, c<bn( t ) ,  
�9 3bEL~(0 ,  1 ) : l / b n - * l / b  weakly* in L~(0,  1) as n--*c~, 
�9 3/~>0:VnEN, V l < i < n ,  ti,n--ti_l,n~_/3/n, 
�9 n~--~O and ncAP-1--+oo as n--*oo. 

Then, the solution un of (Pn) converges weakly in WI,P(~) to the solution u of 

i n f { ~  l~G(x, bVv) d x - ~ f v d x  ;v = vor v E WI'p(0~ 1) } 

where b=bor Moreover, 

~\En,e E~,e 



Stratified materials allowing asymptotically prescribed equipotentials 299 

Proof. We have to prove that the sequence (a,~) has the properties (5), (6), 
and (7) of the theorem. It is clear that (5) holds. As to property (6), we have 
1/a,~--*l/b weakly* in L~(0 ,  1), since 1/b~---~l/b weakly* in L~(0 ,  1), ns---~0 and 

An ---+(~. 
To verify (7) finally, let I be a subinterval of [0, 1] and denote by k the number 

of intervals [ti-l,~, t~,~] which meet I. We have III <_k~/n. The number of intervals 
[t i ,~-s,  ti,~+c] contained in I is at least k - 3 .  Hence we get 

~iap-l(t) dt ~_ (k -  3)2sAp-l >_2(~nlII- 3)sAp-1--* +oc. 

Remark 4. Periodical reinforced structures have been studied in [2], [3] and [4]. 
In [4], p=2 ,  a n = l  in fl\En,~, an=A in E,~,~, Ft are hyperplanes, G is "less general" 
and the limit behavior of (P~) was obtained if ncA---~kE[0,+oc]. The previous 
example extends the case ns)~--~+co, that is the case of "very high" conductivity. 
The case nsA-~kE [0, +cc[ of "high" conductivity is a particular case of the results 
of [9]. 

3. P r o o f  of  t h e  t h e o r e m  

Since the convergence of minimization problems is related to the F-convergence 
of the functionals we want to minimize (cf. [5] and also [1]), the theorem will be 
easily deduced from the following three lemmas: 

L e m m a  1. Under conditions (5) and (6), for every v = v o r  with vEWI'p(0, 1) 
there exists a sequence v,~eW~'P(~) such that v~ converges to v in w-WI'P(~) and 

limsup /1Gn(x ,a~Vv~)dx<_  / 1 G ( x ,  aVv)dx. 

L e m m a  2. Under conditions (5) and (6), if Vn converges to v in w-WI'P(~), 
then 

l i m i n f ~  1G "x _ 1G(x, aVv) --an n( , anVVn) dx > ~ dx. 

L e m m a  3. Under conditions (5) and (7), if vneW~'P(~) and converges to v 
in w-wl ,p(n)  and if/  a -llVv lPdx is bounded, then there exists veWi' (O, 1) 
such that v = v o r  

Before proving these lemmas we establish the theorem: 
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Proof of the theorem. Let un be the unique solution of (Pn). Let v = v o r  with 
vEW~'P(O, 1). By Lemma 1, there exist vneW~'P(f~) such that  vn converges to v 
in w-Wl'P(f~) (therefore in LP(f~)) and 

(9) 

~ lG(x, aVv)dx-~ fvdx>-limsup(f -~G~(x, anVvn)dx- f fnv~dx) 

> limsup(~ -~G~(X, anVun) dx- fa fnu~ dx ) 

> limsup(f cld'-llVunlP dx- fa fnundx). 

Using Poinca%'s inequality, we deduce that (u~) is bounded in WI'P(f~) and that  
f~ a~lG~(x, an~7ttn)dx is bounded. Hence a subsequence of Un, say u~ again, con- 
verges to some u in w-W~'P(~) and in LP(~) and due to hypothesis (1), 
f~aP-ll~TunlPdx is bounded. By Lemma 3, there exists UeWLl'P(0, 1) such that  
u = u o r  and, by Lemma 2, 

~ l G(x, aVu)dx-/~ fudx<liminf(~ l G~(x,a~Vun)dx-~ f~u~dx). 

Consequently, by (9), for all v = v o r  with veW~'P(0, 1), we have 

f lG(x, aVu)dx-/fudx<-f~G(x, aVv)dx-/fvdx. 

Therefore, u is the unique solution of (P), the whole sequence (Un) converges to u 
in W-WL'P(f~) and in LP(~I) and 

~ l G~(x, anVu~)dx-~ ~ l G(x, aVu)dx. 

Proof of Lemma 1. Let v = v o r  with VEWLI'B(0, 1). Let v,~ be defined by 

1/0  /0 a v '  ds, where ~ = a v '  ds, Vn (t) = ~n an an 

and let vn=v~or Then vneW~'P(~), v~--+v in w-WI,P(~) and in nP(f~) (cf. [8], 
Lemma 2.4 where the same functions were used), and 

Gn(x, an~Vn)=Gn(x,~-~aVv). 
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Let us write 

Gn(x, anVvn)-G(x, aVv) 

=Gn(X, ~-~aVv)-Gn(X, aVv)+Gn(X, aVv)-G(x,a~v). 

Using hypotheses (3), (1) and Lebesgue's theorem, we get Gn(x, aVv)--+G(z, aVv) 
in Ll(ft). Moreover, 

jfl 1/~ 

since ~n---~l and using (2), (1) and Lebesgue's theorem, we deduce that 

Gn(x, ~--~aVv)-Gn(x, aVv)---*O in Ll(f~). 

Consequently, 
Gn(x, anVVn) ~G(x, aVv) in Ll(ft). 

Since, by hypothesis (6) and Lemma 2.1 of [8], we have 1/an--*l/a in w*-L~(ft), 
it follows that ~i 

Proof of Lemma 2. Let vn--~v in w-W"P(O). Since Gn(x, .) is convex, 

~ l Gn(x, anVvn) dx 

> fa~Gn(x, aVv)dx+ fa l ~ngn(X , aVv). (an VVn--aVv) dx. 

We have 
~ l Gn(x, aVv)dx-~ ~ lG(x, aVv)dx 

since Gn(X, aVv)--*G(x, a, Vv) in Ll(f~) and 1/an--~l/a in w*-n~(Q). Moreover, 

--~n gn(x' aVv)'(an Vvn-aVv) dx = ~ gn(x' aVv)" ( Vv~-a  , dx ---+ O 

since gn(X, aVv)--*g(x, aVv) in s-LP'(~2) (using hypotheses (4), (2) and Lebesgue's 
theorem), Vvn-+Vv in w-LP(f~) and (a/an)VV----+Vv in w-nP(ft). Therefore, 

--an(X, anVvn) dx>/gtlG(x, aVv) dx. liminf [ 1 
Ja an 
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Proof of Lemma 3. Let v~EW~'P(~t) and Vn---+v in w-Wl'p(gt). Suppose that  

/ aPn-llVvnlP dx<_C. 

In order to simplify the computations, we switch to "cylindrical" coordinates on f~: 
it is easy to see that  ~ is CLdiffeomorphic with (e.g.) [0, 1] • F0 by 

D = (r r  x c f i - ~  (t, y) �9 [0, 1] •  

where t= r  and y= r  e.g., can be defined to be the point of F0 which lies on 
the orthogonal trajectory to the level surface Ft={r which passes through x 
(ef. [8], Appendix). 

Let Vn=vnoD -1 and V=voD -1. We have Vn-~V in w=Wl'P(]O,l[xFo). We 
will prove that  VyV=0  a.e.; therefore Y(t, y)=Y(t) for a.e. tE[0, 1] and then v = v o r  
with vcW~'P(0, 1) and v = V .  

For that  purpose, let us approximate the functions V~(t, y) by the functions 
Wm,n(t, y) (which are step functions with respect to t) defined as follows: given 
m e N ,  let Ik=[(k-1)/m, k/m], for k = l ,  ..., m and let 

W,~,~(t,y) = J~Ik Vn(s,y)'an~(s)P-~fik ap-1 ds, for tEIk and yCFo,  

that  is, for tE[O, 1] and yEF0 

m 

w,,,,~(t, y) = F_, x~  (t) /~ Vn(~, y) d,,,,~(~), 
k=l k 

where Xxk=l  on Ik and Xik=O elsewhere a n d  d#n,k(8)=(an(S)P-1)/(Lk ap-1)d8 
on Ik. Observe that  #n,k is a probability measure on Ik. 
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We have 

f01 [W.~,n (t, y) - Vn (t, y)I p dt 

=~:.l~= k IW'~'n(t'Y)-Y~(t'Y)lPdt 

= ~ k  ~ k 
m 

E~II ~II ]gn(s'Y)-gn(t'Y)]Pdl-tn'k(8)dt 
k=l k u 

= E  OVn(r, d#~,k(s) dt 
Or k=l k k 

~ ~ ~/k ~/k ( ~ / k k = l  "~TOVn (r, y)dT)Pdlzn,k(8) dt 

m (T,y)  ~E~II ~II 'ITk'P--I~II Ogn p k=l k k k ~ drd#n,k(s) dt 

m f IOVn r,y)l p :ElIkllIklP--lJik ~-T ( dT 
k=l 

1 fo 1 OV~ t P 
= m---; --g-i - ( ' y )  at  

< - -  I V V ~ ( t ,  y ) l  p d t .  
- -  ~n p 

Thus, integrating with respect to yEFo, 

I Wm,n (t, y) - V~ (t, y)I p dt d~/(y) < I VVn (t, y)I p dt d 7(y) < 
o o TaP' 

since V~ is bounded in WI'p(]o, l [xro) .  Consequently Wm,~eLP(]O, l [x ro)  and 

C 
(lo) IIw,~,,~-V~]lL,(]O,l[• ~_ - -  m 
with C independent of n and m. 

Next, for tC[O, 1] and yEI'o 

m 

VyW.~,~(t, y) = E XIk (t) fz VyVn(s, y) dpn,k(S), 
k=l k 



304 B j 6 r n  G u s t a f s s o n ,  J a c q u e l i n e  M o s s i n o  a n d  C o l e t t e  P i c a r d  

/o 1 p ]VyW~,n(t,y)[Pdt= E VyVn(s,y) d#n,k(s) dt 
k = l  k k 

m 

~-- E j~I ~ ]VYYn(8'Y)]P d~tn'k(8)dt 
k = l  k k 

m 

= Z  IIkl f~ 
IVyV,~(s,Y) lP d,,~,k(s) 

k = l  k 
m 

=~-~ Ilkl f~ IVyVn(s,Y)[ pds 
a p - l ( s )  

k = l  k L k  apn-1  

1 1 fo 1 < aPn -1 (S)IVVn (s, y)I p ds. 
- m mink fzk ap- 1 

Thus, integrating with respect to yEF0, we deduce that 

fo IV W,o,n( , 
1 1 g i g  

< p-1 a~-l(t)lVVn(t,Y)lPdtdT(Y) 
- -  m m i n k  f Ik an o 

C 1 < 
- "~ mink fIk a~-l' 

since fn a p-1 I Vvn I p dx is bounded. 
Now, given any m, we can choose M = M ( m )  so large that  mink fIk a P - l > l  

(e.g.) whenever n>M(m)  (this is by assumption (7) in the theorem). Thus 

(11) IVvW~ n(t, y)I p dt dT(y) < - -  whenever n > M(m) .  
0 ' -- m -- 

For each m, we choose an n such that  n>_m, n>_M(m). Then, it follows from 
(10) and (11) that  Wm,n"'~V in s-LP(]O, l[•  as m--+ec and that  VyWm,n-~0 in 
s-LP(]O, I[• as m--+oc. Thus we have V y V = 0  a.e. as desired. 

The proof of the theorem is now complete. 

Correctors. The convergence of un to u in w-Wl,P(f~) can be made more pre- 
cise, introducing correctors. Let rn be defined by Vun=~nlaanlVU+rn �9 Assume 
that  the operators gn are uniformly strongly monotone, that is there exists a > 0  
such that  for every n E N ,  xEf~, zl, z2ER N, 

~lZl-Z~l ~ ~ (gn(x, zl)--gn(X, Z2))'(Zl--Z2). 
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Assume also that  either Gn is positively homogeneous of degree p or G~=G. Then 
r~--~0 in s-LP(Q). 

Proof. Let Vn(t)=5~lf~ a a n l u ' d s  where 6n=f~ a a n l u ' d s  and let vn=VnOr 
Then ~TV~=6n 1 aa~lVu. Since the operators gn are strongly monotone, we get 

o~cP-1 ~f IVUn-Vvn]P dx~3f (gn(X, anVltn)-gn(X, anVVn))'(VUn-Vvn)dx 

~ ~ fn(Un-vn) dx-/~ gn(X, ~aVu)'(VUn-Vvn)dx. 

Since Un--Vn--*O in w-WI'p(~) and in s-LP(~), it follows that 

~ lVu~-Vv~lPdx--~O as n - - ~ .  

Hence V u n - ~  1 aanlVU=r~--~O in s-LP(~). 

4. Some generalizations 

Other geometric settings can be considered with practically no change in the 
proof. In fact, we never used the assumption that  F=F0  (or F1) was the boundary 
of a domain ~t0 (~1 respectively). Therefore F could as well be any bounded smooth 
hypersurface (with or without boundary) in R N and ~ could be any domain for 
which we have, as in the proof of Lemma 3, a diffeomorphism D = ( r 1 6 2  xC~--~ 
( t ,y)e[0,  1] •  In this case F t c ~  ( 0 < t < l )  is to be the inverse image under D of 
{t} x F and F0 and FI now just make up part of the boundary c9~ of f~ (in general). 

Thus e.g. f~ could be any kind of deformed rectilinear box with F0 and F1 being 

two opposite faces. 

The proof goes through as in the case ~=f~0\~1 with WI'p(f~) now defined 

as {veWl'P(~);v=O on F 0 , v = l  on F1}. The minimization problem (Pn) will be 
equivalent to (the weak formulation of): 

- d i v  gn(x,a~Vu~)=f~ in ~, 

Un----O on Fo, 

un = 1 on F1, 

gn(x,a Vu ) . = O  on 0 \(r0url), 

where ~, denotes the outward normal vector of 0f~. 
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