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Zak's theorem on superadditivity 

Audun Holme and Joel Roberts 

O. I n t r o d u c t i o n  

This paper is concerned with an important  theorem due to Fyodor L. Zak, 
which appeared in [Zl]: Let X c P  N be a (reduced and irreducible) subvariety. A 
k-secant space to X is a k-dimensional linear subspace of p N  which is spanned by 
k + l  points from X, the k-secant variety of X in p N  is the (closure of the) union 
of all the k-secant spaces of X. Zak denotes this space by Sk(X),  we shall also use 
a different terminology: Whenever X and Y are subvarieties of pN,  we define their 
join X Y  in pN  as the closure of the union of all lines in p N  spanned by a point 
from X and a point from Y. This defines a commutative and associative operation 
on the set of subvarieties of pN,  making it into a commutative monoid, see [/~] for 
details. We have Sk (X) - -X  k+l. 

Zak considers a relative secant defect, defined as 

6k (X) ---- dim(X/c) +d im(X)  + 1 - dim(Xk+l).  

We shall always assume that  the ground field is algebraically closed of charac- 
teristic zero. Under this assumption, Zak states the following 

T h e o r e m  (Zak's Theorem on Superadditivity). Let X c P  N be a nonsingular 
projective variety, such that 61(X)> O. Let p and q be integers such that X p+q ~ pN.  
Then 6p+q( X)  > 6p( X)+6q(X). 

The assumption that 51(X)>0 was not explicitly stated in the formulation 
of this theorem in Zak's paper referred to above, but it is quite clear from the 
introduction that  only this case is considered. In fact, there are counterexamples 
to the asserted inequality (for p = q = 2 )  if 51(X)=0,  and also for singular varieties, 
see w below. 

In the applications of this theorem in his paper [Z1], Zak uses the theorem 
above only in the case q = l .  
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The present paper  grew out of an effort to understand Zak's proof of superad- 

ditivity. The proof is not easy to follow, in particular it is not easy to see precisely 
how the assumption ~ I ( X ) > 0  is used for p, q>2.  In fact, if q : l  the claim is true 
also when ~1 ( X ) :  0, it is then an immediate consequence of the string of inequalities 

~1 ~ ~2 ~ ~3 ~ "" ~ ~q 

which holds as long a s  xq~P N. See Proposition 1.2. 

When q = l ,  we give in w an alternative proof of the theorem, which is of an 

infinitesimal nature: One reasons with embedded tangent spaces and their projec- 
tions where Zak works with the actual varieties. In w we show some results about 
embedded tangent spaces which are used in the alternative proof. In the case q= 1 
we also fully understand Zak's proof, of which we will give an exposition and fill 
in some details in the following two sections, w and w Our contribution to this 

picture essentially is Proposit ion 2.4. 

Zak's proof is truly impressive, blending as it does a mastery of intricate tech- 
nical algebraic reasoning with profound intuition from "synthetic geometry" in a 

modern setting. Unfortunately the case of p and q >2  remains a mystery to us, as 
we have not been able to fill in the details in this case. But we also know of no 
counterexamples. In w we analyze in some detail what seems to be needed to make 
Zak's proof work in the case q> 2. To sum up, the conclusion of the superadditivity 

theorem does not hold in the case p, q_>2 if the hypothesis ~1 >0  is dropped. 

This subject has also been t reated by Barbara Fantechi in [Fa], independently 
of our work. Her approach is to verify that  Zak's proof works if the secant vari- 
ety sq-I(X)  satisfies a regularity condition--which she introduces, called almost 
smoothness, see w for the definition. Since smoothness implies almost smoothness, 
her result then yields a proof of superadditivity in the case when q = l ,  along the 
lines of Zak's proof. But examples show that  almost smoothness for Sq-I(X) is a 
stronger property than  what is really needed, see our Remark 2.11. 

Our approach to the general problem has not been to look for new, global 

conditions on the geometry of the secant varieties, but ra ther  to study the local 
structure along the various entry point loci, see w for the definition and w for the 

discussion. 

We would like to thank Bj~rn/[dlandsvik for several enlightening conversations 

on higher secants and related topics. 

This research was supported by a grant from the Nor~wegian Research Founda- 
tion for Science and the Humanities. 
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1. Genera l i t i e s  

In general, let Vo, . . . ,V rcP  N be subvarieties. We use the notation of joins 

V0""V~ from the introduction, and if Vi={xi} ,  then we denote the join by xo.. .xr. 
Put  

S~ ..... ,~ = s ~ -- {(vo, ..., v~, ~) = (~, ~)I~ ~ v~, i = o, ..., r, 

dim(vo...v~) = r, u C vo'"v~) 

in V0 x V, • ... • Vr x p N .  V denotes the tuple (V0, ..., Vr) and v denotes (v0, ..., vr). 

Let 

Sv  = S ~  

We introduce the notation ~V=prpN:Sv  ) p N  py=prv~:Sy  )V/. The join 

of V0, ..., Vr is Vo. . .Vr=~V(Sv)  and as stated in w we write S k ( X ) = X  k+l. When 
V k Vo . . . . .  Vr=X we put Sv--Skx and ~Y=~k ,  Pi ----Pi" Another frequent case is when 

V i = s a ~ ( x ) = x  a~+l, where a0, ...,a~ are integers such tha t  ao+al§  
(Zak makes the additional assumption that  ao~_a,<_...<_a~. This is not needed 
other than as a normalizing convention, and since it tends to destroy the symmetry,  

we will omit this assumption here.) Again we let a denote the tuple (a0, ..., a~), 
and put ~ V = ~ g a = ~ a ~  ..... at, p y _  a_  ao,...,ar - P i  --Pi and Sv  =Ss~(x) =Ss~o(x) ..... so~(x) 
where S ~(X) denotes the tuple (S ~~ (X), ..., S a~ (X)) .  Clearly we have W~ (Sso(x))--  
~(s~)=s~(x). 

Letting Vk E S k (X), we define 

(1) v~ =p~176 c_ x 
as the variety of entry points for vk in X.  For a general point vkCSk(X)  it is the 

closure of the subset 

Y~ k = {x e X [ 3vk- i  e S k - I ( x )  such that  vk e xvk-1 and Vk-1 # x}. 

More generally, let a o + a l - - k - 1  as above. Then we have the morphisms 

~o,~1 : Ssoo ( x),sol ( x) ~ S k ( X) ,  
a o , a l . s  a ~ S  a ~  Pi �9 s o(x),so~(x) 

We define, for vk E sk  ( x ), y ao__ao,a~ ( ( ,~ao,~ ~- l ( v ~ ~ vk --FO ~,~,'~ / \ k}], Y ~ l : P ~ ~ 1 7 6  

In general we put 

s k ( X ) = d i m ( S k ( X ) )  and 5k(X)=dim(Y~k)  

where vk is a general point of s k ( x ) .  With n - - d i m ( X ) ,  we have the result below, 
which shows that  this definition of 5k(X) is equivalent to the one given in the 
introduction. When no confusion is possible, we shall write sk instead of Sk(X) and 

5k instead of 5k(X): 
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P r o p o s i t i o n  1.1. The following equality holds for all k such that Sk(X)~kPN : 

8k = 8k-l  q-n+ l--~Sk. 

The proof is straightforward. The following forms part of Proposition 3 in [Z1]: 

P r o p o s i t i o n  1.2. We have the inequalities 

~1 ~ 2  ~ " ' ~ k 0  ~ n  

where ko is minimal among the numbers k such that S k ( X ) = P  N. 

Next, we recall the following basic result. The simplest proof we know is due 
to B. ]tdlandsvik, [/~, Corollary 1.10]. 

T h e o r e m  1.3 (Terracini's Lemma). Let X and Y be subvarieties of P N, where 
k is an algebraically closed field, not necessarily of characteristic O. Let x E X  and 
y E Y ,  and let u be a point on the line xy. Then we have an inclusion of embedded 
tangent spaces t zy ,  uD_tx,xty, y. If  k is of characteristic O, then this inclusion is an 
equality for all u in some open dense subset of the join X Y .  

Let Z C pN  be any projective scheme, and let Y C Z be a projective subscheme. 
Then we denote by T*(Y, Z) the union of all relative tangent stars t~,z,y as yEY .  
t~,z,y is the union of all lines through y which are limiting positions of lines y'z, 
with y ' E Y  and zEZ .  The (usual) tangent star at a point z E Z  is the union of all 
lines through z which are limiting positions of secant lines to Z, thus tz, z - tZ,Z,  z. 
We have the diagram 

T y ( Z )  c ~ y •  c > p N •  ~ >P(f~ N) 

yC  " Y x X C  ~ p N x p N  pr2 : ~ p g  

Here ~rz~ denotes the blowing up of p N  x p g  with center in the diagonal A, 
7rA(v) the blowing up of Y x Z with center in the diagonal A(Y) in Y x Y, identified 
with the canonical subscheme of Y x Z, T y ( Z )  is the exceptional divisor. A induces 
the identity on the exceptional divisor of the blowing up ~rA. A is a PLbundle .  We 
have that  

Y a  ~- p r  I (71A ()~--1 ()~(Y X Z)))). 

In fact, the fiber f - l ( y )  parametrizes the directions of all lines through the point 
y E P  N. Thus if tEP( f~ ,N) ,  then the fiber k - l ( t )  consists of a line with a selected 
point on i t--namely,  the point y = f ( t )  and the line through it given by the direction 
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which corresponds to t. So for yEY, the limiting position of secant lines y~z, as 
y~ E Y and z E Z approach y E Y, are parametrized by T y  (Z)y. In particular, if Y = Z 
then this fiber is the projectivized (usual) tangent star, and if y is a smooth point 
then it is the projectivized tangent space. In general it is the projectivized relative 
tangent star. Thus 

tkz ,y  = W1 ( ~  (A-1 (A(TY (Z)y)))) 

and 
T*(Y, Z) =prl (zc~ (A-l(A(Ty( Z) ) ) ) ). 

We now have the following result, which is due to Zak: 

T h e o r e m  1.4. If T*(Y,Z)~YZ, then 

dim(YZ) = dim(Y) + d i m ( Z ) +  1. 

Proof. Assume that  

m = dim(YZ) ~ d im(Y)+d im(Z)  

but  that  T*(Y,X)#YZ.  Choose a linear subspace L c P  N of codimension m, so 
LMYZ#O, and such that  LMT*(Y, Z)=O and LMZ=O. Let 

P=PL: Z ___~ pm-1  

be induced by the projection with center L. Let 

~ = p x p [ y x z : Y •  ) Pro-1 x p m - 1  

be the induced morphism. Then ~ is a finite morphism, and hence dim ~(Y x Z)--  
dim(Y) +dim(Z)_> m. We recall the Connectedness Theorem of Fulton and Hansen 
(see Theorem 3.1 in [FL]): 

T h e o r e m  1.5. Let X be a complete variety, and let f: X ~pm x P m  be a 
morphism with dim(f(X))>m. If A denotes the diagonal, then f - l ( A )  is con- 
nected. 

Thus in our situation we get that  ~ - l ( A p , ~ - l )  is connected. Moreover, there 
exist yEY and zEZ such that  y#z  and LMyz#O. But ~ - l ( A p , ~ - l ) = A y O D ,  where 

D= { (y,z) E Y x Z [ y ~ z  and p(y)=p(z) }. 

By connectedness we therefore have D M A y r  Let (y, y) be a point in this in- 
tersection. Then there exists a line I c P  N, which is a limiting position of lines of 
the form y~z meeting L, where y~EY and zEZ when y~, z )y. Then IML~O. As 
ICT*(Y, Z) and LMT*(Y, Z)=0 ,  this is a contradiction, and the proof is complete. 

Following Zak we now prove the corollary below. 
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Corol lary 1.6. / f  Sk(X)•P N, then 5k(X)<n--5l(X). 

Indeed, let u be a general point of Sk(X). Then by Terracini's Lemma we get 
T* (Y~, X)Ctsk(x),~. Hence we must have Y~XCT*(Y~, X), so dim(Y~X)=hk(X)+ 
n +  1. Since S I(X) D Y~X and dim(S l ( x ) )  = 2n+ 1 - 51 (X), the claim follows. 

2. Comparison  of  the  cases q = l  and q > l  

Let p, q be integers such that  p, q>0 and p+q=k. We then have the following 
diagram, where the dotted arrows are only rational maps. 

(1) Ss~(x),sa-~ (x) 

Sx,sp-l(x),sq-l(x) 

~O 0 ' p - l ' q - 1  SsP(X),Sq-l(x) 

s (x) 

On the dense open subset where it is defined, A is given by A(x, Vp-1, Vq-1, u)= 
(Vp, Vq-1, u) where {Vp} =XVp-1Nvq_lu. Similarly #(x, Vp-1, Vq-1, u)--(Vp-1, Vq, u) 
where {vq}--XVq_lnVp_lU. The situation is shown in the Diagram (2): 

/ / ~  vp-1 

/ 
x 

Vq 

V q - - 1  

(3) 

Diagram (2) 

We will now show that  

~p,q-1 (A(~-I (Vp-1, Vq, u))) = u. 
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Indeed, let F(#)CSx,sp-~(x),sq-~(x)xSs,-~(x),s~(x) denote the closed graph of 
the correspondence p. Then #-m(vp_l, Vq, u)=F(#)(.~_l,.q,~) which is contained in 
F(#)~. Thus equality (3) follows. (3) implies similarly that  

(4) 

Thus 

(5) 

In fact 

vq, c_ 

pO,p--l,q--1 [,~--1 (~(/~--1 (Vp_l, Vq, U)))] C pO,p--l,q--1 ((~o0,p--l,q--1)--I (U)). 

Yu : p  O'al ..... ar ((~0,al ..... ar)--I (U)) 
(6) 0,ol . . . . .  , 

=Po ~ x , s o l  (x),...so~(x))~) 

when am+.. .+ar=k-r.  Hence for a general point uESk(X),  

(7) 6k = dim(Yu) _> dimP~ 'p-l'q-1 [A -1 (A(# -1 (vp-1, Vq, u)))]. 

We next show that  

(8) dim A(#-l(Vp_l, Vq, u) ) = dim ]~--1 (Vp_l, Vq, U) : (~q. 

We note first that  A and # obviously are dominating. Next we compute the dimen- 
sion of the fiber of # and its image under A. Since we are considering a general point 
u, we may restrict our attention to open dense subschemes of Sx,sp-l(x),sq-l(x), 
Ssp-~(x),sq(x) and Sx,sp(x),sq-~(x). Thus we may assume that A and # are mor- 
phisms: Namely, we have the situation 

F(/~) ~ > Ssp-~(x),sq(x) 

(9) S.x,s,~(x),sq-~(x) D D(A, #) 

F(A) - - 7 - >  Ss,(x),s~-~(x) 

where D(#, A) is (isomorphic to) a dense open subset of F(#) and F(A) and is such 
that  both # and A are defined on it. Then it follows that  for a general point 

cr6Ssp-~(x),sq(x) 

dim #-1 (~r) = dim F ( # ) - d i m  Ss~-~(x),sqx) 

= dim D(#, A) - dim Ss~- ~ (x),s~ (z) 

= dim p -  1 (a). 
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Now assume that  

To show is that  

dim ]~--1 (0") ---- dim/~(]~-1 ((7)). 

d im ]z -1 (ry) : d im ~ ( ~ - 1  (o')). 

But this is clear since _> holds, and moreover = holds if we replace the fiber # - l ( a )  
by the open (not necessarily dense but of the same dimension) subset #-1 (a). This 
proves the emphasized assertion above. 

To prove (8), note that  when we observed that  A is dominating, then the set 
of points x satisfying the condition of the argument 

3Vp_l such that  Vp �9 XVp_ 1 and (x, Vp_l, Vq_l, U) maps to (Vp, Vq--1, U) 

constitute a dense subset of the variety Yvp of entry points for Vp in X. Thus 

(10) dim )~-l(vp, Vq__l, U) = ~p 

and similarly 

(11) dim ~--1 (Vp_l, Vq, U) -~ ~q 

which proves the last equality in (8). To prove the first equality, it now suffices to 
show that  A induces a generically finite morphism 

~:#-l(vp_l,Vq,U) ~ Ssp(x),s~-l(x). 

To see this, let (Vp, Vq-1, u)E im(y). Then the set of points in p - l (Vp_l ,  vq, u) 
which map to (Vp,Vq_l,U) consist of those points (X, Vp-l,Vq-l,u) such that the 
configuration in Diagram (2) holds. In this picture Vp, Vp-1, vq, vq-1 and u are 
given. This determines x uniquely, unless vp=vp-1, and (hence) vq=vq_l. But then 
u C S k- 1 (X), contradicting the assumption that  u be a general point of S k (X). Thus 
we have shown that  y is generically 1-1. Hence the remaining part  of (8) follows. 

It is an immediate consequence of (8) and (10) that 

(12) dim A -1 [/~(~--1 (Vp_l, Vq, U))] ---- ~p +~q. 

In view of (7) and (12) the proof of the general version of Zak's Theorem on 
Superadditivity would be complete if we could show the following: 
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Lemma 2.1. (First Conjectured Lemma) The restriction of the morphism 

pO,p- l,q-1 
0 : oX,SV-l(X),Sq-l(X) ) X 

to the closed subscheme A -l[A(#-l(vp_l ,  Vq, u))] is finite-to-one at a generic point 
of that subscheme. 

Analysis of proof. Let 

y e pOo'P--l'q--1 [)~--1 ()~(]~--1 (Up--l, Vq, U)))] 

be a general point. Then (pO,p-X,q-1)-l(y) consits of quadruples (y, Vp_l, Vq-1, u) 
where 

VpEyVp-- 1, {Up}=XVp-INUq-lU, VqEXVq-1. 

To show is that  there only exist a finite number of such triples. The configuration 
is shown in Diagram (13): 

,Y J 

Vq 

Diagram (13) 

Choose vk-1 as indicated, { Vk_ I } :Vp_ l Vq_ I NyU. Then 

y:Lll  : p~l-l,q-1 [(~p--i,q--1)--I (Vk--1)] 

~ {w C S q - l ( X )  lSVp C S p - I ( x )  such that  w E vk-lVp_ 1 and v~_ 1 r w}, 

where the subset on the second line is dense in Yq~l 1 . Similarly, we also have 

yvq/1 = pOl,q-1 [((00,q-1 )-1 (Vq)] 

~_ {w E S q - I ( X )  I Sx E X such that  w E vqx and x r w}, 
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where again the subset is dense. 
Now the configuration in Diagram (13) holds if and only if vq-1 satisfies the two 

conditions for w, i.e. q-1 q-1 Vq-lEY~k_ 1NY~q . Thus the assertion of Lemma 2.1 would 
follow if we could show the 

L e m m a  2.2 (Second Conjectured Lemma). If  y is a general point as above, 
and Vk-1 is an entry point for uy in Sk- I (X) ,  then Y ~ l  1NY~q -1 is a finite set. 

This, in turn, would follow from the 

L e m m a  2.3. (Third Conjectured Lemma) Suppose that S k - I ( X ) r  N. Let 
Vk-l CSk- l (X)  be a general point, and yq~l be the locus of entry points for vk-1 
in Sq-I(X),  as above. Then dim(Y:~l  X) =dim(Yq~l ) + n +  1. 

We show that  Lemma 2.3 implies Lemma 2.2: Namely, assume the negation. 
Then for fixed, general v and y, v=(vp-1, Vq, u), yap ~ [A-1 (A(#-l(v)))] there 
would exist an infinite number of points (y, Vp_ 1 '  , vq-1, u) satisfying the configuration 
in Diagram (13). Thus the locus of points x E X  which can appear in Diagram (13) 
is infinite. This is easily seen to contradict the hypothesis that  y ~ l  be of maximal 
dimension. Thus the implication is proven. 

The proof of superadditivity is completed for q= 1 by the following 

P r o p o s i t i o n  2.4. The conjectured Lemma 2.3 is true when q=l.  

Proof. We have sq-I(x)~-X, put yq~l  1 =YCX. It suffices to show 

(14) T*(Y, X)  ~ Y Z .  

To see this, let L=tsk-~(X),vk_~. vk--1 is a general point of Sk- I (X) ,  hence smooth. 
Thus dimL=Sk_l, in particular L ~ P  y. Since X ~ L ,  we have YX~=L, so (14) will 
follow if we can show that  T*(Y, X)C_L. X is smooth, so for all y E Y  

(15) t~,x,y = tx,y C L, 

and the claim follows. 

In order to make this work for q> 1, one needs a generalization of (14): 

(16) T* (Yqk-_ll, S q-1 (X)) ~ y q : l  sq-1 (X) = YqS_11X q . 

This will imply the claim in Lemma 2.3: By Theorem 1.4, (16) implies that 

d i m ( Y ~ l  Sq-1 (X)) = dim(Y[L1 ) + sq-1 + 1. 
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But since q > 2, we can write y q~l sq-1 (X)= y qs xsq-2  (X), and hence obtain the 

diagram 

(17) 

Sy~[~ , x c > Sy:[__~l,X,S~_2(x ) ~ > Sz:[~ ,s,_~(x ) 

y~s X c " Z ~ l  S q -1 

Let uEYqL1sq-I(X) be a general point. Then there exists a point vcY[L1X 
such tha t  uCvw for some wcSq-2(X). For the purpose of computing fiber di- 
mensions we may replace S by S O in the top level of the diagram. Then ev- 
ery point in /3-1(v) gives a point in ~ ' - l ( u )  by adding the coordinate w. Now 
~ ( / 3 ' - l ( u ) ) = ~ - l ( u ) .  We need to conclude dim(a- l (u))>_dim(/3-1(u)) .  This fol- 

lows if we have ~ finite-to-one over a - l ( u ) .  If  this were not so, there would exist a 

point (y, Vq-1, u) �9 Sy:[_~ ,sq-~ (x) with ~ -1  (y, Vq-1, u) infinite. Thus the line yVq-1 

would meet s q - 2 ( X )  in infinitely many  points and hence be contained in sq-2(X). 
So u�9 i.e., not a general point. Thus it suffices to prove (16), which in 

the present approach amounts to proving the following assertion: 

(18) For all y E Y[~I  1- we have t*yvk_l ,sq-~(X),y C_ tsk-~(X),vk_l" 

Remark 2.5. This presents a non-trivial difficulty. The assertion of (18) is false 
for some counter examples to superadditivity for which 61 =0,  see below. Thus this 
is where the assumption of 51 >0  would have to be used: In fact, it was not needed 
in the case of q = l ,  as we have noted above. If X is a cone (thus singular), then 

(18) fails completely, as is easily seen. 
Let Y be a nonsingular rational curve of degree d in p N - 2 c p N ,  and let L be 

a line such that  LNpN-2=O, so that  CL(Y) is a 3-dimensional cone in p g .  

In [Da], M. Dale constructed families of smooth surfaces Xd,bCCL(Y). The 
subscript b is the degree of the curve which is the intersection of the surface X=Xd,b 
with a generating plane of the cone CL (Y). In the case where b--1 and Y is a rational 
normal curve, this type of surface is a rational normal scroll. Let B be the blowup 
of p N  along L. It is well known tha t  there is a commutat ive diagram: 

(19) 
p N  <-771 p N  •  pr2 > pN-2 
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where ~r is the structural  map  of the blowing up, and A is a p2-bundle  map. In 
fact, B is the graph of projection from L, and the exceptional divisor is isomorphic 
to L x p g - 2 .  It  is also well known that  ~ e2 B--P(OpN_2 ~OpN-~(1)) as schemes over 
p N - 2 .  

Now, we consider a nonsingular rational curve y c p N - 2 c p  N. I t  will always 

be assumed that  Y spans p g - 2 .  The blowing up CL(Y) along L of the cone CL(Y) 
fits into a commutat ive diagram: 

(20) 

N 

cL(Y) 

cL(Y) cL(Y) x Y y 

N 

and CL(Y) is the closure of the graph of the projection from L of CL(Y) onto 

Y. Alternatively, CL(Y)~P(OyOOy(1) ) .  Since y ~ p 1  is embedded as a curve of 

degree d, we have an isomorphism CL(Y)~P(OpI@OpI(d))  of schemes over p1.  
Let E be the exceptional divisor of the blowing up r .  It  follows by the observation 
above that  A is a p2-bundle  and that  E ~ L x Y - ~ P  1 x P  1. 

For any b> 1, the invertible sheaf s174 (1)) is very ample. 
Following Dale, we define ZCCL(Y)  to be the scheme of zeros of a sufficiently 

general section of s so tha t  Z is a nonsingular surface and Z n E  is a nonsingular 
curve on E = P  1 x P  1. We define Xd,b=r(Z). 

P r o p o s i t i o n  2.6. Let X=Xd,b be defined as above. Then X is a nonsingular 
surface. 

Proof. Because of the isomorphism E = P  1 x p1 and our hypotheses about  Z, 
it follows that  ZNE is a smooth curve of type (b, 1) on p1 x p1.  Hence Z intersects 

each fiber of the projection ~r: CL(Y)--~CL(Y)  transversally at a single point. Thus 
7r maps Z bijectively onto its image, and ~lz  is unramified. Therefore r l z  is proper 
and quasi-finite, and hence finite. Since Irlz is also bijective and unramified it 
follows that  Z is mapped  isomorphically onto its image. 

We are now ready to state and prove our main results about  these surfaces. 

T h e o r e m  2.7. Let Y be a nonsingular rational curve of degree d in p g - 2 ,  

and let X----Xd,bCCL(Y) be defined as above. Then: 
(i) Sk(x)=CL(Sk(y)) for all k>l .  Equivalently, x k = y k L  for all k>2. 
(ii) / f N > 5 ,  then 61(X)=0 .  
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(iii) dim(Sk(X))=2k+3 for all k such that 2 k + 3 < N .  
(iv) 5k(X)=l for all k > l  such that 2 k + 3 ~ N .  

C o r o l l a r y  2.8. / f N > _ l l ,  then 54(X)<252(X). 

Proof. Without loss of generality, we may assume that  N > 5. Since Y is a curve 
which spans p g - 2 ,  we have dim(Sk(Y))=2k+l for all k such that  2 k + l < N - 2  

(see [h., Corollary 1.5]). 
Clearly sk(X)CCL(Sk(Y)) for all k. In particular, dim(CL(S(Y)))=5 and 

d i m ( S ( X ) ) = 5  because X is not the Veronese surface. Thus S(X)=CL(S(Y)) and 
dim(Sk(x))<dim(CL(Sk(Y)))=2k+3. Let ko be the first subscript k such that  
dim(Sk(X))<2k+3. Then dim(Sk~ and dim(Sk~ 
Now Proposition 1.3 of [/~] asserts that  if X and Y are subvarieties of p g  such 
that  dim(XY)=dim(X)+l, then X is a cone whose vertex contains Y. This im- 
plies that  S k~ (X)=XS k~ (X) is a cone whose vertex contains X,  but  as the vertex 
is a linear subspace, sk~ N. Hence sk(x)=CL(Sk(Y)) for all k<ko. This 

implies (i). (iii) and (iv) are easy consequences of (i). 

We shah see how the proof of superadditivity fails if applied to X=Xd,b. We 
investigate whether or not Lemmas 2.1, 2.2 and 2.3 are valid in this case. In 
particular suppose that  k=4 and p=q=2. Since Sq-I(X)=S(X) is a cone with 
vertex L and sk-I(x):s3(X)=S(S(X)),  it follows that  for a general point vk-1C 
sk-I(X), the entry point set Y/~I 1 is a union of planes which contain L. The entry 

point set yq -1  has dimension 52=1. It is not hard to see that  y [ - 1  is a union 
of curves which are contained in planes which contain L. Since a general point of 
sq-~(X)=S(X) is contained in a unique plane which contains L, the intersection 
Y~q~l 1 nYq  -1 contains at least one of these curves. Thus, the intersection is not 
finite. In other words, the conclusion of Lemma 2.3 does not hold. The conclusion of 
Lemma 2.3 also does not hold. The point is that  y q ~ l  is a cone with vertex L. Since 
X intersects each generating plane of the cone CL (Y) in a curve, we have tz,~ A L ~ 0 
for every xEX. Therefore, it follows from Terracini's Lemma that  dim(Yq~l~X)< 

dim ( Y~11 ) + dim(X) + 1. 
Returning to general theory, note that  clearly (18) means that  the singularities 

of S q-1 (X) are not "too bad" along yf l~l :  The restricted tangent stars are not too 
much bigger than the tangent cones there. 

The approach taken by Barbara Fantechi in [Fa] is to introduce a condition on 
the singularities which the higher secant variety Sq-I(X) can have: In general she 
defines a point z of the embedded variety Z c pn  to be almost smooth if the tangent 
star of Z at z is contained in the join zZ. With the above considerations it is then 
proved that  the conjectured lemmas hold if one assumes that  sq-I(X) is almost 

smooth, see her Theorem 2.5. 
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While this certainly settles the question for q = l ,  it is not clear how to verify 
the condition of almost smoothness for sq-I(X) when q > l .  Also, the condition 
is rather special since one can have superadditivity without this condition being 
satisfied, as we can see from the following class of examples. 

Let 2 < d < n/2, and let V = pd  • pn-d C pN,  embedded by the Segre embedding. 
We consider pNcpN+I, and set Z=Cp(V), where PEpN+I-P N. Define X= 
ZMH, where H is a general hypersurface of degree >2 in p N +l  such that  P~H. 
Thus X is a nonsingular variety of dimension n. 

P r o p o s i t i o n  2.9. In the situation above we have 
(i) sk(x)=Cp(Sk(V)) for all k-> l. 
(ii) 61(X) = 1. 
(iii) 6k(X)=2k for k=2,  ..., d, and s d ( x ) : P  N+I. 

C o r o l l a r y  2.10. / f d > 2 ,  then 62(X)>261(X). 

Proof. We show first that  6k(V)=2k for all k<d and sd(v)=P g. Indeed, VC 
pN can be described as the zero-set of the 2 x 2 minors o fa  ( d + l )  x ( n - d + l )  matrix 
of homogeneous indeterminates and Sk(V) is then the zero-set of the (k+2)  x (k+2)  
minors of this matrix. Hence, the codimension of Sk(Y) in p N  is (d-k) (n-d-k)  
for k<d, and sd(v)-~P N. It follows that 

dim(Sk(V))-dim(Sk-l(V)) = codim (sk-I(V))-  codim (Sk(V)) = n +  1 - 2 k ,  

for k = l ,  ..., d. This implies that  6k(V)=2k for k<d. 
In particular, we have dim(S(Y))=2n-1. Since Z=Cp(V), it follows that 

we have dim(S(Z))=dim(S(Y))+l=2n. By Terracini's Lemma Theorem 1.3, this 
implies that  dim(tz,xMtz,y)=2 for general points x, yEXcZ.  The tangent spaces 
tx,x and tx,y are the intersections of tz,~ and tZ,y with the hyperplanes tH,x and 
tH,y respectively. It follows that  if H is sufficiently general, then 

dim(tx,x Mtx,y) = dim(tz,~ Mtz,y)- 2 = O. 

By Terracini's Lemma, this implies that  dim(S(X))=2n. Therefore S(X)=S(Z). 
It is clear that  sk(x)CSk(Z)=Cp(Sk(V)). This implies that  d im(Sk(X))<  

dim(Sk(y))+l. Since S(X)--S(Z)=Cp(S(V)), we have Pets(z),v for general v e  
S(X). Equivalently, PEtx,xtx,y for general x, ycX. It follows that  PCtsk(x),~ for 
every k_>l and general ucSk(X). For general xEX, projection from P maps tz,x 
onto ty,~, , where x'CV is the image ofx .  Since tsk(x), ~ is a span of tangent spaces 
tz,~, projection from P must also map ts~(z),~ onto tsk(y),~, , where u'csk(v) is 
the image of u. Since PEtsk(X),~, it follows that  dim(tsk(x),u)=dim(tsk(y),~,)+l. 
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Therefore, d im(S k (X))  = dim(S k (V)) + 1, and S k (X) = Cp (S k (V)). This proves (i). 

Conclusion (ii) is already proved, and (iii) follows because 

dim( Sk ( x ) ) -d im(  Sk- l  ( X ) ) = dim( Sk ( V ) ) -d im(  Sk-  l ( V ) ). 

Remark 2.11. This class of varieties shows that  Fantechi's notion of almost 
smoothness as a condition on Sq- I (x )  in order to have the superadditivity result 
for q is not sufficiently general: Indeed, by (i) in Proposit ion 2.9 we find tha t  this 
condition does not hold in this case for q_> 1: Recall that  almost smoothness for the 
embedded variety Z c P  N at z means tha t  the tangent star of Z at z is contained 
in the join zZ. When Z is a cone with z in the vertex, this will be true only when 

Z is a linear subspace of p N .  
We end this section by some details concerning the local geometric s tructure 

of the secant variety sa - I ( x ) .  We put Y=Yq~I  1. In the case where Sq-I(X)  is 
* C follows in the same way as in smooth at y, the inclusion ty, sq_~(X),~tSk-~(X),vk_l 

the proof of Proposition 2.4 above. In the case where Sq-I(X)  is singular at y, the 
validity of this inclusion seems more doubtful, for reasons which we will explain in 

the next paragraph.  
It  is easy to check the inclusion for any point y E Y  such tha t  vk-1 lies on a 

line of the form yz, where zcSP(X)  and zr  Indeed, Terracini 's lemma implies 
the stronger inclusion tsq-l(x),y C_tsk-~(z),v~_l. On the other hand, this inclusion 
is not obvious in the case when y EY merely lies on some line 1 which is a lim- 
iting position of lines of the form y'z', where y 'EY,  z 'cSP(X),  and Vk-lEy'z'.  
If  Sq-I(X)  is smooth at y, then the inclusion follows as before: Indeed, the lin- 

ear space tsk-l(x),v~_~ contains certain irreducible components of the closed set 
Y-~ Uycy tsq-1 (Z),y because ts~-~ (x),~ C tsk_ ~ (x),vk_ ~ for every y in some dense open 

subset of Y. If Sq-I(X)  is singular at y, it is not clear how to verify the correspond- 

ing inclusion. The point is that  there does not seem to be any way to conclude tha t  
tSk-l(Z),~k_~ contains the particular irreducible component  of T which contains 

tsq-l(x),y. 

3. Entry point  loci and their tangent  spaces  

We consider closed subvarieties X C p N  and Y C p N ,  and define X Y  to be their 

join as defined in the introduction and in w We will be especially interested in 
the case where X C Y ,  but this hypothesis will not actually be used in this section. 
In w however, we shall apply our results to the case where Y---X k for some k>2 .  

Let S c X  x Y •  be the join correspondence. Recall tha t  S is the closure of 

So={ (x , y , z )  l x e X ,  yEY ,  x r  , a n d z E x y } ,  
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where as before xy denotes the line joining the points x and y, i.e., the join of {x} 
and {y}. We have the maps Pl: S---~ X,  p2: S , Y, and P3: S ) p Y  induced by 
the projections, and similarly the morphism Pl,2: S )X x Y. If (x, y )EX • y - A ,  
then -1 pz,2(x,y)~-P 1. Thus, dim(S)=dim(X)+dim(Y)+ l. Moreover p3(S)=XY;  it 
follows that  dim(XY) < dim(X) + dim(Y) + 1. Hence an immediate generalization of 
the secant defects considered earlier is the join defect defined by 5(X, Y )=d im(X)+  
dim(Y)+ l - d i m ( X Y ) .  

It follows from standard facts that  dim(p~Z(z))=5(X, Y) for general z E X Y .  
Our first goal is to describe the tangent spaces of the fibers p~-l(z), where z E X Y ,  
and z ~ X U Y .  In an obvious way, we can define the embedded tangent space ts,(x,y,z) 
as a subspace of pN  X pN X pN,  or more precisely as a subspace of tx,x x ty, y x pN,  
where tx,x and ty, y are the enbedded tangent spaces of X and Y at x and y, 
respectively. Clearly, the tangent space at (x, y, z) to the fiber p3-Z(z) is contained 
in tx,x X ty, y x z, and the linear tangent space map (dp3)(x,y,z) is induced by the 
projection of tx,x x ty, y x pN  onto the third factor. It follows from standard facts 
that  the tangent space to the fiber is actually equal to ker(dp3)(x,y,z). 

P r o p o s i t i o n  3.1. Let X and Y be as above; let x E X  and y E Y  be points 
such that X ~ t y ,  y and that y~tx,~, and let zExy with zT~x, y. Let (~, ~) Etx,~ x ty, y. 
Then: 

(a) If (~, ~, z) is contained in the tangent space of the fiber, then ~Etx,~ Mxty, y 
and similarly ~ E ty, y Aytx,x. 

(b) If ~Etx,xMxty, y, then there is a unique point ~Ety, yflytx,x such that  
(~, ~, z) is contained in the tangent space of the fiber. 

Proof. As in [FR, w we begin by working with with affine open sets. We can 
choose an affine open piece A N c p  g with x, y, z E A  N. Let X o - : X A A  g and Y0 = 
Y N AN; assume that  x---- (Xl, ..., XN) E Xo and y = (Yl,..., YN) E Yo. By renumbering 
variables we may assume that  y17Lx1. Then the defining equations of S in some 
neighborhood of (x, y, z) are: 

(Zi - -Xi ) (Yl  --Xl) = (Zl - -X l ) (Y i - -X i ) ,  i = 2, ..., N 

together with the defining equations of X0 and ]I0 in the appropriate sets of vari- 
ables. Therefore, the condition for (x, h , z ) E A  3N to be in the embedded tangent 
space of S at (x, y, z) is: 

(1) ( ~ / - ~ i ) ( Y l -  Xl) + (?~1 - ~ l ) ( Z i - X i )  -~ (?~i - ~i) (Zl - X l )  + (~1 - ~ l ) ( y i - x i )  

for i=2, ..., N, together with the defining equations of tx,x in the ~-variables and 
the defining equations of ty, y in the 7j-variables. 



Z a k ' s  t h e o r e m  o n  s u p e r a d d i t i v i t y  115 

As noted in [FR], we may assume that  the coordinate system is such that  
xi=yi--zi=O for i--2,  ..., N. Under this assumption, (1) simplifies to: 

(~i-~i)(Yl - x l )  = (~i-~i)(zs -X l ) ,  i = 2, ..., N, 

or equivalently: 

(2) ( y l - x l ) r  = (Zl -Xl)?~i-(z l -Yl)~i ,  i ---- 2, ..., N. 

Note that  there is no condition on ~1, because the line x2 . . . . .  xN=O lies in 
the join correspondence S. (More precisely, x x y x xy lies in S.) 

Suppose that  (~, ~, ~)Eker(dp3)(x,y,z). The subspace ker(dp3)(x,y,z)Cts,(x,y,z) 
is defined by the equations ~1-Zl =~2 . . . . .  cN=0. If we substitute these equations 
into (2), we obtain: 

( 3 )  ~ i -  Z l - - X i  - - ~ i  for i = 2 ,  ..., N. 
z l - y l  

Conversely, it is easy to see that  if (3) is satisfied, then (~, ~, z)Cker(dp3)(x,y,z). 
To prove (a) it is enough to show that  if (3) holds, then (1,~1,...,~N) is 

a linear combination of (1, Xl, 0, ..., 0), (1, ~1,..., YN), and (1, Yl, 0, ..., 0). Let Q--- 
( Z l - X i ) / ( z i - Y i ) .  Then we can use (3) to show that  

(1, ~1, .-., ~ i )  -- Q(1, ~1,.. . ,  ~N) = (1-- Q, ~1 - -  ~?~1 ,  0 ,  . . . ,  0). 

Since y l#Xl ,  the expression on the right side of this last equation is a linear 
combination of (1, Xl, 0, ..., 0) and (1, Yl, 0, ..., 0). This implies that  ~ C tx,x Nxty, y, 
which proves (a). 

To prove (b), suppose that  ~Etx,xnxtv,  y. Then 

(~1,  . . ' ,  ~ N )  = O' (?~,  . . . ,  ~ )  + (1 - - O ' ) ( X I ,  0 ,  . . . ,  0 )  

for some aCk and ( ~ ,  ...,~rN)Cty, y. We define (~1, ...,~N)Cty, y by the formulas 

Z l - - Y l  -Yl )  = ?~1--Yl  - -  - -  0"(/]~ ( ? ~ - - Y l )  
Z 1 - - X  1 

Z l  - -  Yl ~ O" 
?~i - -  - -  O'?~i = ?~ f o r  i = 2, ..., N, 

Z1 - - X l  

where Q is defined as above. With this choice of 77 it follows that  (3) is satisfied, 
so that  (~,T],z)6ker(dp3)(~,y,z). It is clear from (3) that  ~?2,...,UN are uniquely 
determined by ~. Since x~ty, y, any line parallel to xy meets ty, y in at most one 
point. Therefore 711 is also uniquely determined. This completes the proof of (b). 

Let X and Y be closed subvarieties of pN,  and let u 6 X Y .  As in w we denote 
the variety of entry points for u in X by X~. Recall that  it is the closure of 

{ x l x 6 X  and u 6 x y  for some y 6 Y ,  y ~ x } .  

The entry point set Y~ in Y is given in a similar way. The following observation 
will be useful in proving the main result of this section. 
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L e m m a  3.2. Let X and Y be closed subvarieties of pN.  
correspondence, and P3: S 
for general u E X Y .  

Proof. We have 

If  S is the join 
) X Y  is defined as above, then p31(u)CZ~ xY~ x {u} 

pEi(u)nSo c_ X~ x Y~ x {u} 

because So is closed in (X x Y - A )  •  If we have p 3 ( S - S o ) r  t h e n p 3 1 ( u ) =  

p31(u)M So for every u C X Y - p 3 ( S - S o ) ,  so that  the conclusion is immediate in this 
case. In general, we have dimp31(u)  =dimp31(u)MSo=5(X, Y)  for every u in some 

dense open subset UoCXY.  If p 3 ( S - S o ) = X Y ,  then there is a dense open subset 
UICUo such that  dimp31(u)M(S-So)<~ for every uEU1. In this case, p31(u) 
is the closure of p31(u)MSo for every uEU1, so tha t  the conclusion of the lemma 
follows. 

It would be interesting to know whether the inclusion p31(u)EX,  x Y ,  x{u} 
holds for all u E X Y ,  or at least to have a more precise version of the lemma. 

We can now state and prove the main result of this section. 

Propos i t ion  3.3. Let X and Y be closed subvarieties of pN,  where the field 
k is of characteristic O, as before. Let u be a general point of X Y - ( X U Y )  and let 
x and y be general points of the entry point varieties Xu and Y~, respectively, such 
that uExy. In particular, assume that x~ty ,  y and y~tx,x.  Then tx,,~ =tz,~Mxty, y 
and ty~,y =ty,  y Mytx,~. 

Proof. Let S be the join correspondence, and let P3: S ~XY be defined as 
before. Then p31(u)M(S-Sing(S)) is smooth of dimension 5(X,Y)  for general 
u C X Y - ( X U Y ) .  Moreover, p31(u)CZ~•215 for general u, and each gen- 

eral u c X Y  lies on at least one line xy such tha t  x~ty, y and that  y~ t z , , .  Since 
u ~ X U Y ,  each line through u contains at most finitely many points of X U Y .  This 
implies that  dim(X~)=dim(Y~)=5(X,Y)  and that  pl :S  ~X and p2:S ~Y in- 
duce generically finite morphisms of p3 l(u) onto X~ and Yu respectively. By generic 
smoothness, the corresponding tangent space maps are surjections of the tangent 

space tp~l(u),(x,y,u ) onto tx~,x and rye,y, respectively. Therefore, the conclusion 
follows from Proposit ion 3.1. 

4. A n  alternative  proof  

In this section we will present an alternative proof of the case q--1 in Zak's 
theorem. Specifically we prove the following, where the notation is as in w 
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T h e o r e m  4.1. Let X c P  N be a nonsingular projective variety which spans 
pg .  Then 5k+l>_Sk+51 for all k such that Xk+I=sk (x )~pN .  

If 51 =0  then the claim is proved in Proposition 1.2. So assume that  51 >_ 1. The 
proof uses our description of the tangent spaces of the variety of entry points, Ter- 
racini's Lemma, and the Fulton-Hansen Connectedness Theorem. We will discuss 
the case k=  1 before presenting the general case. This is done only to exhibit the 
main ideas separately from the notational complexities of the general case. 

The case k--1. In the first part of the proof, we will show that  three general 
embedded tangent spaces of X have empty intersection. In doing this, we will use 
a method of applying the connectedness theorem which is due to Zak, along with 
our description of the tangent space of an entry point set. 

Let u be a general point of X2=S(X),  and let X~ be the corresponding entry 
point locus in Z .  Let T(X~,X)=(.J{tx,~[xEX~}. Then T(X~,X)cts(x) ,~ by 
Terracini's Lemma, Theorem 1.3. Since S ( X ) r  N, the tangent space ts(x),~ is a 
proper subspace of pN,  so that  X~X~ts(x),~. Hence, T(X~, X )~X~X .  Exactly 
as in the proof of Proposition 2.4, it follows from Theorem 1.4 that  d im (X ~X )=  
d i m ( X ~ ) + d i m ( X ) + l .  By Theorem 1.3 we conclude that  

tx~,~Ntx,z=O for general x E X~, zEX .  

If x,y is a general pair of points such that  uExy, then 

tx~,x = tX,x nx tx ,y ,  

by Proposition 3.3. On the other hand, if x and y are general points of X and u is 
a general point of the line xy, then u is a general point of S ( X ) = X  2. Therefore 

tx,~nxtx,yNtx,z ----0 for generM x,y ,z  EX. 

It follows a fortiori that  

(1) tx,xNty, yNtx,z =O for general x,y, z E X. 

Remark. In the case 51--1, Theorem 1.3 implies that  the pairwise intersections 
tx,~nty, y, etc. are points, so that  the relation (1) is an immediate consequence of 
the fact that  X is not a cone. But this identity is not as obvious in the case 51>2, 
since the pairwise intersections then have dimensions > 1. There does not seem to 
be any elementary way to rule out the possibility that  the triple intersection could 
be a variable point. 
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To finish the proof in this case, we study incidence properties of certain sub- 
spaces of pN.  Thus, let x, y, z be general points of X; let M l = t x , ~ ,  M2=tx,y, and 
Af=tx,~tz,y. Let Ai=tz,zMMi for i=1 ,2 .  Now, Af=ts(x),u, where u is a general 
point of xy. We have dim(A~)=51-1 by Theorem 1.3, and dim(tx,zMAf)=52-1 
similarly. The relation (1) implies that  ALMA2=0, therefore dim AiA2 =251-1 .  
Since A1 M As C tz,~ MAr, it follows that  52 > 251, as claimed. 

The proof in general. To simplify the notation, we will prove the equivalent 
statement that  5k_>hk-1+51 provided that  X k ~ P  N. Let u be a general point of 
X k, and let X ,  be the corresponding entry point set on X. Define T(X, ,  X) as 
before, it is contained in tx~,, by the same argument as in the special case. Because 
X k ~ P  N the tangent space tx~,~ is a proper subspace of pN,  thus XuX~=txk,u. 
As in the special case it then follows that d i m ( X ~ X ) = d i m ( X , ) + d i m ( X ) +  1, which 
implies as before that  

tx~,~Mtx,~=O for general xEX~,  z c X .  

By Proposition 3.3 we have tx,,~=tx,xMxtx~-~,v , where (x, v )CX x X k-1 is 
a general pair such that  uExv. As in the special case, we must check that  the 
hypotheses of Proposition 3.3 are satisfied, namely that  u ~ X  k-l, v~tz,x, and x~ 
txk-~,v. For this we first take x E X  and vEX k-1 to be general points and then take 
u to be a general point of the line xy. It is not hard to see that  u can be moved to 
any point of some dense open subset of X k by moving x and v through appropriate 
dense open subsets of X and X k-1 respectively. The equality t z , , ,  Mtx,z =0 leads 
immediately to: 

tx,xMxtxk-l,.Mtx,z----O for general x, zE X and v E X  k-1. 

As before it follows that  

(2) tx,xMtXk-l,vAtX,z = 0  for general x, zC X and v E X  k-1. 

Also as in the special case, we finish the proof by studying the incidence prop- 
erties of certain linear subspaces of pN.  Thus, let xCX and vEX k-1 be general 
points, and let u be a general point of xv. Then u is a general point of X k. Let 
M1 =tx ,x ,  M~=txk-l,v, and H = M I M 2 ,  so that Af=tzk,_~ by Theorem 1.3. Con- 
sider another general point zEX  and set AI=tx,zMM1 and A2=tx,zMM2. Thus, 
d im(A1)=51-1  and d i m ( A 2 ) = h k - l - 1  by Theorem 1.3, similarly dim(tx,zMA/')= 
5k-1 .  The relation shown in Diagram (2) implies that ALMA2=0. Therefore, 
we have d imAiA2=51+hk_1-1 .  Since AIA2Ctx,~MN, it follows that we have 
5k >_ 51 + 5k- 1, as claimed. 
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To use similar methods to prove the general inequality 5p+q >Sp+Sq, one might 
consider general points v ~ X p and w E X q, and a general point u C vw. Let M1 = txp,v 
and M2=tx%w. As above, define JV'=MIM2 =txp+q,u. Let z be  a general point of 
X,  put AI=tX,zMM1 and A2=tx,zMM2. As above we see that  d i m ( A t ) = S p - 1  and 
dim(A2) = 5q - 1, while dim(tx,z MA/') = 5p+q - 1. Since AIA2 C_ tX, z Mlv r, it suffices 

to prove that  ALMA2=0, or equivalently tha t  tx~,vMtx%wMtz,~=O. This is an 
analogue of Diagram (2), and one might plausibly seek to prove this by studying 
the tangent spaces of entry point sets on one of the higher secant varieties. But 
since the higher secant varieties X k have singular points, the variety T(X~, X )  must 

be replaced by an appropriate  variety of relative tangent stars. For the type of proof 
proposed here, the main difficulty is that  we do not know much about  the size of 
the relative tangent star at a point of some subvariety of X k which is a singular 
point of X k. In particular, we don' t  know whether there is a useful replacement for 

the inclusion T(X~, X)Ctzk ,~ .  
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