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Interpolation of subcouples 
and quotient couples 

Svante Janson(1) 

Abstract. We extend recent results by Pisier on K-subcouples, i.e. subcouples of an inter- 
polation couple that preserve the K-functional (up to constants) and corresponding notions for 
quotient couples. Examples include interpolation (in the pointwise sense) and a reinterpretation 
of the Adamyan-Arov-Krein theorem for Hankel operators. 

I n t r o d u c t i o n  

It is well-known that  even if we know the interpolation spaces of a certain 
couple of spaces, by the real or complex method,  say, there is no general formula 
that  enables us to directly obtain the interpolation spaces of a couple of subspaces 
or quotient spaces of a given couple. Indeed, there are examples that  show that  

interpolation of subspaces (or quotient spaces) in general may be ill-behaved, see 
Triebel [26] and Wallst~n [27]. 

Nevertheless, in many natural  examples, there are very simple relations (often 

with less simple proofs) between the interpolation spaces of a couple and a subcouple 
(or quotient couple). We will here consider only the real method of interpolation, 

and the crucial property then is that  the K-functional  for a subcouple equals (within 
constants) the K-functional  for the supercouple. While this proper ty  was recognized 
a long time ago by Peetre [17], and has been proven in many  concrete cases, it has 
not been studied in detail until Pisier [21] exploited several abstract  properties, 
including relations with quotient couples, duality and approximation.  (See also 
[22], [23], [3].) The purpose of the present paper  is to emphasize this par t  of Pisier's 

work and to develop it in greater detail. 
The basic definition and some simple consequences of it are given in Section 2. 

Quotient couples are studied in Sections 3 and 4. Section 5 treats  simultaneous 

(1) This work was done at the Mittag-Leffier Institute. I am particularly grateful to Richard 
Rochberg for helpful discussions. 
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approximation in several norms. Duality is studied in Section 6. Various examples 
and counterexamples are collected in Section 7, and one example, a reinterpretation 
of the Adamyan-Arov-Kre in  theorem for Hankel operators, is studied further in 
Section 8. Finally, a couple of remarks suggesting possible future extensions are 
given in Section 9. 

1. P r e l i m i n a r i e s  

For the reader 's  convenience, we give some definitions and results that  will be 
used later. For details see for example Bergh and Lhfstrhm [2] or BrudnyY and 
Krugljak [4]. 

Although we are interested in vector spaces (real or complex), it is sometimes 
convenient to forget the scalar multiplication and regard the spaces as Abelian 
groups (under addition). We have to distinguish, however, between quasi-normed 
(Abelian) groups, defined as in [2], and quasi-normed vector spaces, which satisfy 
the further requirement tha t  the quasi-norm be homogeneous (of degree 1), i.e. 

Iltxll--Itl HxlI. 
For example, the vector space So of all finite rank operators on a given Hilbert 

space, with ]lTliz0 =rank(T) ,  is a quasi-normed group but not a quasi-normed vector 
space. 

It  turns out that  most of our results are naturally stated for quasi-normed 
groups, so we will work in that  setting; the reader may well assume that  all spaces 
are quasi-normed vector spaces, or even Banach spaces. We will also abuse language 
by saying space, subspace, etc., instead of group, subgroup, etc. 

A quasi-normed group is a metrizable topological group and a quasi-normed 
vector space is a metrizable topological vector space; the space So defined above is 
not a topological vector space. 

We will sometimes assume that  the spaces are complete (it may be simpler to 
assume so always). A quasi-Banach space is a complete quasi-normed vector space. 
Note that  the closed graph theorem holds for such spaces. 

Two non-negative functions f and g on some set are equivalent if 

cf  <_ g <_ C f  

for some constants c,C>O. In particular, this defines equivalence between two 
quasi-norms on the same space. We will usually not distinguish between equivalent 
quasi-norms and let X - - Y ,  where X and Y are quasi-normed spaces, signify that  
X equals Y as sets (and algebraically) and that  their quasi-norms are equivalent. 
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If X is a quasi-normed space and p>0 ,  we let (X) p denote X with the new 
quasi-norm II I1~. Note that (X) p and X have the same topology, but (in general) 
non-equivalent quasi-norms. X is p-normed if (X) p is normed. Every quasi-norm 
is equivalent to a p-norm for some p>0.  

We define Ilxllz=C~ for x~X. 
A quasi-normed couple is a couple X=(Xo,X1) of two quasi-normed spaces 

that  are continuously included as subspaces of some Hausdorff topological group. 
We may then define E( -~ )=X0+X1 and A(~-Y):X0nX 1 as quasi-normed spaces. 
We will write II IIj for II [Ixj when no confusion may occur. 

The main functionals of real interpolation and approximation are defined by 

K(t,x;X)--inf {llXoHo+tllxllll :x--xo+xl}, x c E ( . ~ ) ,  t > 0 ,  

J(t,x;X)=max{]lXllo,tllxl]l}, xCA( .~ ) ,  t > 0 ,  

E(t,x;X)=inf{llxlll l : x = x 0 + x l , l l x 0 1 1 0 ~ t } ,  x E E ( . ~ ) ,  t > 0 .  

(The E-functional may be infinite.) 
The K-method  is defined as follows. Let �9 be a quasi-Banach lattice on (0, co) 

that  contains the function 1At. (Such lattices are called parameters of the K-  
method.) Then 

K ~ ( X )  = {x  e E( .~ ) :  IIxlIgo<x> = ILK(., x; X')I]~ < c~}. 

K~(X) is a quasi-normed space. It is complete if X0, X1 are, and a Banach space if 
X0, Xl,  �9 are. In particular, the choice O=Lq(t -~, dt/t)--{f:t-efeLq(dt/t)} yields 
the usual interpolation spaces (X)aq, 0 < 0 <  1, 0 <q <c~ .  

For the general definition of the J -method we refer to [4] (which also discusses 
the E-method).  This method is fully developed for Banach spaces only; the in- 
terpolation space Jr is defined for a Banach couple X and a Banach lattice 
OCLI(1At -1, dt/t) with ~ r  For certain parameters ~, the method can be de- 
fined for all quasi-normed couples. In particular, this is the case for O=Lq(t -e, dt/t), 
(we may here take 0 < 0 < 1  and 0 < q < ~ ) ,  and then J~(R)=K~(X)=(X)eq, see [2]. 

If X is an intermediate space, i.e. A(X)CXCE(X), we define X ~ to be the 
closure of A(X)  in X. In particular, 

(1.1) xEX~ c~xEXo and limK(t,x;X)=O, 
t---*0 

and similarly for Z ~ The couple X is regular if X ~ =X0 and X ~  i.e. if A(X)  
is dense in Xj,  j=O, 1. 

If X is an intermediate space we also define its Gagliardo completion X c to 
be the set of all limits in Xo+X1 of sequences that  are bounded in X. A space X 
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is Gagliardo complete if Xc=X; the couple X is Gagliardo complete if X0 and X 1 

are. (We do not require the quasi-norms to be equal, but that may be assumed by 
renorming.) Note that  X~ and X~ are special cases of the K-method, obtained by 
choosing ~ - -L  ~ and L~(t-1),  respectively. 

If X is a Banach couple we define the dual couple X'=(X~, XI) by 

X} = {x* E (X0nX1)* : JJx* [ix} = sup {[(x*, x}[: x E XoNX1 with IJxJJj _< 1} < oc}. 

Then r p Xo+X~=(XonXz)* (isometrically). If X is regular, we furthermore have 
natural isometries Xj = Xj and X 0 n X 1 = (X0 + Xl) �9 

It is easily seen that  a dual couple is Gagliardo complete. 

2. Subcouples 

We say that  Y=(Y0, Y1) is a subcouple of a quasi-normed couple X=(X0,  Xl) 
if Yj is a subspace of Xj with the induced quasi-norm, j = 0 ,  1. Obviously, Y then 
is a quasi-normed couple and 

(2.1) K(t ,y ,Y)>_K(t ,y ,X) ,  t > 0 ,  yEYo+Y1. 

In general, there is no converse inequality; as remarked in the introduction, we will 
study the case when there is. 

Def in i t ion .  A K-subcouple of a quasi-normed couple X is a subcouple Y such 
that for some C < oc, 

(2.2) K(t ,y;Y)<_CK(t ,y;X),  t > 0 ,  yCYo+Y1. 

Because of (2.1), the condition can equivalently be given as 

(2.3) K(t ,y ;Y) •  t > 0 ,  yEYo+Y1. 

Remark 2.1. This notion was introduced by Peetre [17], although he imposed 
the stronger requirement 

(2.4) K(t, y, Y) = K(t, y, .~), 

i.e. C = 1  in (2.2). (Our definition is the same as Pisier's [21], although he uses the 
term K-closed subcouple.) There are several reasons for allowing a constant in the 
definition; for example, it means that  the property is preserved if the norms are 
replaced by any equivalent ones, and it is (to our knowledge) needed in many of the 
results and examples below. 

We call subcouples satifying (2.4) exact K-subcouples. 
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P r o b l e m  2.1. If Y is a K-subcouple of X ,  is it possible to renorm .V~ (with 
equivalent quasi-norms) such that Y becomes an exact K-subcouple? 

Remark 2.2. If X and Y are quasi-Banach spaces, condition (2.1) for a fixed t 
is equivalent to Y0+Y1 being a closed subspace of X0+X1. The main point of the 
definition is, thus, that  the constant C does not depend on t. 

Remark 2.3. We may similarly define (exact) Kp-subcouples (0<p_<c~) by re- 
placing K by Kp. Obviously, Y is a Kp-subcouple of X if and only if it is a 
K-subcouple. For Banach couples and p >  1, it follows by Holmstedt and Peetre [11] 
that  the best constant in (2.2) is independent of p; in particular Y is an exact Kp- 
subcouple if and only if it is an exact K-subcouple. This may fail for quasi-normed 
couples, see Example 7.9. 

There is a similar definition using the E-functional. 

Def in i t ion .  An E-subcouple of a quasi-normed couple X is a subcouple Y such 
that for some e l ,  C2<oo, 

(2.5) E(Clt, y;Y)<_C2E(t,y;X), t > 0 ,  yEYo+Y1. 

In fact, the definitions are equivalent. 

P r o p o s i t i o n  2.1. Y is a K-subcouple of X if and only if it is an E-subcouple. 

Proof. Suppose that  Y is a K-subcouple of X and let yEYo+Y1 and t>0.  Let 
s> E(t, y; X). By definition there exists xoeXo with IlXo]lXo <_t and Ily-xollzl <s. 
Hence 

K(t /s ,y;X)  < IIx011x0 +  lLy-x011xl < 2t 

and thus K(t / s , y ;Y)<2Ct .  Consequently Y=Yo+Yz with IlYollyo+~llYlllY~ <2Ct, 
which implies E(2Ct, y; Y) <_ liYl II Yz < 2Vs. Thus E(2Ct, y; Y) < 2CE(t, y; X). 

Conversely, suppose that  Y is an E-subcouple, yEYo+Y1 and t>0.  If s>  
K(t, y; X),  then y--xo +xl with lix0 Ilxo +t]lxl IIz~ <s and thus E(s, y; X) < Ilxl Ilxz < 
sit. Hence E(Cls, y;Y)<C2s/t ,  and Y--Yo+Yl with Ilyollyo<ClS and IlYl]IYI< 
C2s/t, which yields K(t ,y ;Y)<Cls+C2s .  Consequently K(t,y;Y)_<(CI+C2)• 
K(t ,y;x) .  [] 

Remark 2.4. If we use K ~  in (2.2), the best constant there equals the infinum 
of max(C1, C2) for (2.5). In particular, Y is an exact K~-subcouple if and only 
if C1 may be chosen arbitrarily close to 1, and Cz equal to 1. We do not know 
whether this is equivalent to having C~ =C2--1 in (2.5), i.e. E(t, y; Y) = E( t ,  y; X) 
(such couples are called exact E-subcouples). 

Examples of K-subcouples (and thus E-subcouples) are given in Section 7, as 
well as some counterexamples. 

We begin with some easy consequences of the definition. 
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Proposition 2.2. 
(i) (Yo,Y1) is a K-subcouple of (Xo,X1)c*(Y1,Yo) is a K-subcouple of 

(x1, Xo) 
(ii) If F is a K-subcouple of X and Z is a K-subcouple of Y ,  then 2 is a 

K-subcouple of X .  
(iii) If  Z is a subcouple of Y ,  Y is a subcouple of X and Z is a K-subcouple 

of X ,  then Z is a K-subcouple of Y.  
(iv) If (Xo,X1) is a quasi-normed couple, then (Xo~ (Xo, X ~ and 

( x  ~ x ~ are K-subcouples of it. 
(v) If  Y is a K-subcouple of V~, then (yO, Y1) is a K-subcouple of R and of 

(X ~ X1), and similarly for (Yo, yO) and (yo, yO). 
(vi) If  F is a K-subcouple of X ,  then (Yo, Y1) is too. Here Y j  is the closure 

of Yj in Xj, j=o, 1. 
(vii) I f Y  is a K-subcouple o f f ,  then Y f  is a subspace of X~ with an equivalent 

norm, j =0, 1, and (Yo ~, Y~) is a K-subcouple of (X~, X~). 
(viii) If  (Yo,Y1) is a K-subcouple of (Xo,X1) and po,Pl>O, then 

((Yo) p~ (Y1) m) is a K-subcouple of ((Xo) p~ , (X1)Pl). 
Proof. (i), (ii) and (iii) follow directly from the definition�9 
(iv) follows because, for example, if x E X ~  then any splitting X=Xo+Xl 

with xj EXj has xoEX ~ 
(v) follows from (ii), (iii) and (iv). 
(vi) is easy. 
For (vii), the definition yields IlYIIYf =suPt K(t,  y; Y)• K(t,  y;.~)= IlYllx~ 

for yEYf ,  and similarly for Y{. This proves the first statement�9 Hence, if Yf' 
denotes Yf with the quasi-norm of X], 

K(t,  y; Y~', Y~') • K(t,  y; Y~, Y~) = K(t ,  y; Yo, Y1) • K(t,  y; Xo, Xl)  
�9 C C = K(t,  y, Xo, X 1) 

for yEYf+Y~=Yo+Y1 and t>0 (assuming, as we may, that the quasi-norms are 
p-norms). 

(viii) follows from Proposition 2.1 and the definition of E-subcouple. [] 

One important, immediate consequence of the definition is an interpolation 
formula. 

Theo rem 2.1. If  Y is a K-subcouple of a quasi-nomned couple V~, then 

K . ( ? )  = Kr  N(Yo+ Y1) 
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for every ~. The quasi-norm in Kr is equivalent to the quasi-norm inherited 
from Kr (X). In particular, 

(Y)oq=(X)oqN(Yo+Yz), 0 < 0 < 1 ,  O<q<_oc. 

We can also use reiteration. Recall that a couple Y is said to be complete when 
both Y0 and Y1 are. 

T h e o r e m  2.2. Suppose that Y is a complete K-subcouple of a quasi-normed 
couple X. 

(i) (Kr o (Y), Kr (Y)) is a K-subcouple of (Kr (X), gr (X)) for any two pa- 
rameters ~o and ~1. 

(ii) (Y0,Ko(Y)) is a K-subcouple of (Xo, Kr for any parameter ~ that 
contains an unbounded positive concave function. 

(iii) In particular, if 0<00<01<1 and 0<q0,ql<co, then ((F)0oqo,(F)0~q~) 
is a K-subcouple of ((X)ooqo, (-~)Olql), and similarly for (Y0, (Y)oq), ((Y)oq, Y1), 
0<0<1,  0<q<oc.  

Proof. We observe first that, by Theorem 2.1, the couples constructed from 
are subcouples of the couples constructed from X (up to equivalent norms). 

(i). The generalized Holmstedt formula 

(2.6) K(t,y; Kr (?)) • K(t,K(.,y; Y); OO, ~l), 

where Sj =K,j  (Loo, L~(1/s)), holds for every complete quasi-normed couple ? by 
K-divisibility, cf. [4, proof of 3.3.24 and (3.9.9)]. Part (i) now follows by applying 
this formula to both X and Y (provided also X is complete; in general we obtain 
at least an inequality which suffices). 

(ii). Choosing O0--L ~,  it follows in particular that (Y~,Kr is a K- 
subcouple of (X~, Kr which gives the estimate, for y6Y~+Kr and t>0, 

(2.7) K(t ,y;Y~,K.(Y))  <C1K(t,y;X~,Kr <C1K(t,y;Xo,Kv(X)).  

We claim that 

(2.8) K(t,y;Yo,Kr <-C2iBYBOYd, t>O, y6Y~ 

for some C2 < oo, which implies that if Y=Yo +Yl then 

K(t, y; Yo, Ko(?)) <_ C3K(t, Yo; Yo, Kr +C3K(t, Yl; Yo, Ko(?)) 
< c4(ily0 ilY0 ~ +t l iy l  IIm(~))  
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and thus 

K(t ,y;  Yo,K~(Y))  < C4K(t,y; Y~ ,K~(?) ) ,  t > 0 ,  y e Y~ + K~(Y),  

which together with (2.7) gives the sought estimate. 
In order to prove (2.8), we assume for simplicity that Y is normed and that  

HyHyo~=l; the general case is similar. Then there exists a sequence y~EYo with 
]lYnllYo~2 and ]]Y-YnIIY1 <_l/n. Let w be a fixed unbounded positive concave func- 
tion in O. Then, if n, m > N ,  

g ( t ,  y -ym; ? )  ___ ]]y -Ymll0AtllY -yml]l< 4 1A 

and thus 
4 

]IYn-YmIIK~(~) < ~--~11~11~-~0 as N - - ~ .  

Hence (Yn) is a Cauchy sequence in K~(Y).  Since K , ( Y )  is complete and Yn 
converges to y in Z(Y), yn---*y in K~(Y) too, which yields 

K (t, y; Yo, K~(? ) )  < sup IlYn Iio -< 2, 
n 

thus proving (2.8). 
Part (iii) follows from (i) and (ii). [] 

Remark 2.5. The condition in (ii) that  �9 contains an unbounded positive con- 
cave function fails if and only if K r  for every couple X. The result is not 
true without this condition, see Example 7.8. 

Remark 2.6. Theorem 2.2(iii) follows from the traditional Holmstedt formula, 
[10] or e.g. [2, Section 3.6]. One can easily check that the formula holds for all 
quasi-normed couples (and q0, ql > 0); hence the last part of the theorem holds also 
without assuming completeness of Y. (We do not know whether completeness really 
is required for the first, more general, parts.) 

P r o b l e m  2.2. Is there a converse to Theorem 2.2, similar to Wolff's theorem? 
More precisely, i f Y  is a subcouple o f f  such that (Y0, (Y)01ql) and ((Y)ooqo, ]/1) are 
g-subcouples of (Xo,(R)Olql) and ((X)ooqo,X1), where 0<00<01<1 and 
0<q0,ql_<C~, is Y a K-subcouple of ~V~ ? 

We end this section with some more technical results for K-subcouples. 
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Proposition 2.3. If Y is a K-subcouple o f f ,  and XonX1 is dense in Xo, 
then YoNY1 is dense in Yo. 

Proof. By the assumptions and (1.1), 

y E Yo ~ y C Yo a n d y E X 0 = X  ~ 

y E Y0 and lim K(t, y; Y) = 0 
t---*0 

y E Y0 and lim K(t, y; X)  = 0 
t--*0 

y e Y ~ [] 

Proposit ion 2.4. Suppose that Y is a K-subcouple of X,  with Xj  complete 
and Yj a closed subspace of Xj,  j = 0 ,  1. Then Yo§ Y1 is a closed subspaee of Xo+ X1 
(with an equivalent quasi-norm). 

Proof. The standard quasi-norms on X0+X1 and Yo+Y1 are K(1, .  ;X) and 
K(1, .  ;Y), respectively, which are assumed to be equivalent on Y0 + I/1. Since Y0 + Y1 
is complete in its own quasi-norm, and thus also in the one inherited from X0§ 
it is closed in Xo+X1. [] 

P r o p o s i t i o n  2.5. If  Y is a Gagliardo complete K-subcouple of X ,  then Yj = 
XjA(Yo+Y1), j = 0 ,  1. 

Proof. If yeXoA(Yo+Y1), then 

K(t, y; ?)  <_ CK(t,  y; X)  < CllylIxo 

and thus ycY~=Yo. Hence Yo=Xon(Yo+Y1), and similarly YI=X1N(Yo~-Y1). [] 

Remark 2.7. Conversely, if Yj=Xjn(Yo+Y1),  j=O, 1, and X is Gagliardo com- 
plete, then Y is Gagliardo complete. 

Remark 2.8. We will see in Example 7.8 that  Proposition 2.5 is not true without 
the hypothesis that  Y is Gagliardo complete, even for Banach couples. 

3. Definition of quotient couples 

Given a closed subcouple (Y0, Y1) of a quasi-normed couple (X0, X1) (i.e. Yj is 
a closed subspace of Xj), we can form the two quotient spaces Xo/Yo and X1/Y1. 
These are quasi-normed spaces, but in order to regard them as a quasi-normed 
couple, we also have to regard them as subspaces of a common containing space. 
(A simple example of the problem that  may arise is given by Xo=XI-=R 2, Yo = 
{(x, 0)}, Yl={(O,x)}, where natural definitions would give Xo/Yo+X1/YI={O}.) 
We, of course, require the quotient mappings Xj--*Xj /Yj  to define a mapping 
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(Xo, X1)--~(Xo/Yo, X1/Y1) of the couples, which means that  they are restrictions 
of a continuous map ~r:Zo+Zl--~(Xo/Yo)+(X1/Y1). This map is onto and thus it 
defines a continuous bijection (Xo+X1)/Z--~(Xo/Yo)+(X1/Y~), where Z=ker(~r) 
is a closed subspace of X0+X1.  Furthermore, the diagram 

X o e X l  , (Xo/ro)e(xl/r ) 

1 l 
X o + X l  , (Xo/ro)+(xdr ) 

commutes, all mappings in it are surjective, and all except 7r, by definition, induce 
the quasi-norms on their respective ranges as the corresponding quotient norm. 
Hence, if u E (X0 / IT0) + (X1 / Y1 ), 

Ilull = inf { Iluo IIXo/Yo + IlUl llXl/yl : u = no+u1 } 

= inf { NxollXo + Ilxl Ilxl :u = lr(x0 + x l ) }  = inf { IIxllxo+xl:u = 7r(x)}; 

that  is, the mapping (Xo+X1)/Z--*(Xo/Yo)+(X1/Y1) is an isometry. 
This shows that we may take the containing space for the quotient couple as 

(Xo+X1)/Z for some closed subspace Z of Xo+X1. Conversely, if ZCXo+X1 is 
closed and 7r:Xo+X1--+(Xo+X1)/Z is the quotient mapping, Tr induces continu- 
ous embeddings X j / ( Z N X j ) - - + ( X o - J v X 1 ) / Z ,  ( j=0 ,  1); if Yj=ZNXj, we thus have 
defined a compatible couple (Xo/Yo, X1/Y1). 

Given Xo,X1,Yo,Y1, the conditions ZNXj=Yj may be satisfied by several 
subspaces Z of Xo+X1. This happens already when Y0=YI={0}, where we may 
take any Z which intersects X0 and X1 in {0} only, and regard X0 and X1 as 
subspaces of (Xo+X1)/Z; this introduces new identifications of elements in X0 
and X1. This should be avoided, and returning to the general case, two elements 
in Xo/Yo and X1/Y1 should be identified only when we can choose a common 
representative in XoAX1 for them; in other words ~r should map XoAX1 onto 
(X0 / Y0) N (X1 / ]I1). The following (purely algebraic) lemma shows that  this requires 
Z to equal Yo+Y1. 

L e m m a  3.1. Suppose that (Yo, Y1) is a subcouple of (Xo, X1) and that Z is 
a subspace of XoJvX1  . Then Xo/Yo and X1/Y1 may be regarded as subspaces of 
(Xo+X1)/Z if and only ifYo=ZAXo and YI=ZNX1. Furthermore, in this case 7r 
(defined above) maps XoNX1 onto (Xo/Yo)N(X1/Y1) if and only if Z=Yo+ Y1. 

Proof. The first part is obvious. For the second part, assume first that 7r 
maps XoNX1 onto (Xo/Yo)N(X1/Y1). If zEZ, then z=xo-x l  with xjCXj. Since 
7c(xo-xl)=rr(z)=O, 7r(Xo)=TC(Xl)e(Xo/Yo)n(X1/Y~), we conclude that we have 
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7r(xo)----Tr(Xl)=Vr(x) for some xEXog3X,. This means that x j - x E Z N X j = Y j  and 
z=xo-xi=(Xo-X)-(Xl-X)EYo+Y1.  Conversely, if Z=Yo+Yi and 7r(x0)--~r(Xl) 
with xjEXj,  then xO-XlEZ and thus xo-xl=yO+Yl for some y jEYjcXj .  Thus 
x0-Y0=Xi +Yi EXoRXi and 7r(z0)=Tr(xo-Yo) ETr(X0 RX1). [] 

The subcouples that allow us to form nice quotient couples are thus those 
described in the following definition. 

Definit ion. A normal subcouple of a quasi-normed couple (Xo, X1) is a sub- 
couple (Yo, Y1) such that 

(i) Yo=XoN(Yo+Yi) and YI=XIN(YoTYi). 
(ii) Y0+Y1 is closed in X0+X1. 

(It follows that Yo is closed in Xo and Y1 in X1.) 

Propos i t ion  3.1. Suppose that (Yo, Yi) is a normal subcouple of (Xo, X1). 
Then the quotient spaces Qo=Xo/Yo and Q1--Xi/Y1 may be regarded as an in- 
terpolation couple 0=(Q0,  Q1) (also denoted by X /Y ) ,  with Qo+Ql=(Xo+X1)/ 
(Y0+Yi) isometrically and QoNQi --( XoNXi ) / (YoN Yi ) algebraically. 

Note that (ii) in the definition above only says that Y0+Yi is a closed subset 
of X0+X1; we do not require its intrinsic quasi-norm to be equivalent to the one 
induced by X0 + X1, although that is implied by the closed graph theorem whenever 
Xo and Xi are quasi-Banach spaces. 

Similarly, if X0 and X1 are quasi-Banach spaces in Proposition 3.1, it follows 
by the closed graph theorem that QoNQ1 and (XoNX1)/(YoNY1) have equivalent 
quasi-norms, but the quasi-norms are in general not equal. This is related to the 
notion of J-quotient couples discussed in the next section. 

The first condition in the definition of normal subcouples has several equivalent 
formulations. 

P ropos i t i on  3.2. Let (]So, Y1) be a subcouple of (Xo, Xi). Then the following 
are equivalent. 

(i) Yj----XjN(Yo+Y1), j=0 ,1 ,  
(ii) Yj=XyNZ, j=0 ,  1, for some ZCXo+Xi ,  
(iii) YoNXI = YoNYi= XoNY1, 
(iv) YoNXi CYi and Yi NXoEYo. 

Proof. ( i )~( i i )~( i i i )~( iv)  are obvious. 
Assume (iv) and suppose that xEXoN(Yo+Y1). Then x=yo+Yi with yj EYj. 

Since also yi=x-yoEXo,  yiEYiNXoCYo and thus x=yo+YlEYo. Hence X0N 
(Yo+Y1)CYo and since the converse inclusion is obvious, and XiN(Yo+Y1)=Y1 
follows by symmetry, (i) holds. [] 
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Corollary 3.1. Let (X0,X1) be a quasi-normed couple with XoCX1 (contin- 
uous inclusion). Then a subcouple (Yo, Y1) is a normal subcouple if  and only if 

(i) Yo=XoMY1, 
(ii) Y1 is a closed subspace of XI .  

4. I n t e r p o l a t i o n  of  q u o t i e n t  couples 

An important part of Pisier's work [21], is the equivalence between the K-  
subcouple condition for a subcouple and a 'dual' condition for quotient couples. 
We will in this section describe this equivalence; several of the results below are 
contained in [21], at least implicity, and are included here for completeness. 

L e m m a  4.1 (P i s ie r ) .  Let Y be a subcouple of a X .  Then the following are 
equivalent. 

(i) Y is a K-subcouple of X .  

(ii) There exists C < ce such that for every x E Xo M X1, Yo C Yo, Yl E Y1 and t > O, 
there exists yCYoMY1 such that 

(4.1) IIx-YlIxo Vtllx-Yllxl <_ C( Ix-yo IIxo v t l l x - y ,  Ilxl). 
(iii) Let X : X 0 x X 1 ,  Y : Y o x Y I C X  and A : { ( x , x ) : x E X o n X 1 } c - X .  Then 

there exist C<oo such that if t > 0  and-X is given the norm_ II(xj,xl)lit=iixolizoV 

t]ixll]x1, every ~ c Y + A  has a splitting 5 - - ~ + ~  with ~ E Y ,  -2cA and 

(4.2) II~ll~+ll~ll~-<CIl~II~. 
Proof. (i)r By the quasi-triangular inequality, (4.2) may be replaced by 

[[~llt <C[[x[[t (for a different C). Since (x0, Xl)=(y0, y l ) + z  with -2EA if and only if 
x o - x l = Y O - y l ,  (iii) can be restated as: 

If x 0 - x l  EY0 +Y1, then x 0 - x l  =Y0-Yl for some yj EYj with 

(4.3) IlYo IloVtllYl II1 ___ C(llxo Iio vt l lx l l l , ) .  
This is equivalent to (2.2) (or, more directly, the definition of Koo-subcouple, 
cf. Remark 2.3). 

(ii)r Similarly, (4.2) can be replaced by Iiziit_<CIIxiit. Since (x0 ,x l )=  
~+(x ,  x) with ~EY if and only if Xo-xCYo and x l - x G Y 1 ,  (iii) can be restated as: 

If xEXoMX1, YoGYo and ylEY1, there exists z with 

(4.4) ( x - y 0 ,  x - y , )  - (z, z) �9 

and II(z, z)iit < c l i ( x - y o ,  x - y l ) i i t .  
Since (4.4) is equivalent to x - z E Y o  and x - z E Y 1 ,  this gives (ii) by letting 

y = x - z  (and conversely). [] 
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Theo rem 4.1 (Pisier). Suppose that Y is a normal subcouple of X and let 
Q=(Xo/Yo,X1/Y1) .  The following are equivalent. 

(i) Y is a K-subcouple of X .  
(ii) There exists C<oo such that for every xEXoMX1 there exists yEYoMY1 

with 

(4.5) IIx-yllxj <__Cinf { l ix -u l lx  j : u e  Yj}, j = o ,  1. 

(iii) There exists C < oe such that for every x C Xo + X1, there exists y E Yo + Y1 
with 

(4.6) IIx-y{Ix~ <_Cinf {[Ix-u{Ix ~ :ueY0+Y1}, j = 0 , 1 .  

(iv) There exists C<c~ such that for every zEQoMQ1 and t>0, there exists 
xCXoMX1 with ~r(x)=z and 

(4.7) J(t, x; X )  < CJ(t,  z; Q). 

(v) There exists C < c~ such that if z E Qo MQ1 then there exists x C Xo MX1 with 
7r(x)=z and 

(4.8) Itxllx~ < C]lz}t#~, j =0, 1. 

(vi) There exists C<oc such that if zEQo+Q1 then there exists xEXo+X1 
with 7r(x)=z and 

(4.9) Ilx]ixj<CIIz]lQ~ , j = 0 , 1 .  

(The norms in (iii) and (vi) may be infinite.) 

Proof. (i)~(ii). If xEYo or xeY1, then xEYoMY1 because F is a normal sub- 
couple, and we may take y=x. Otherwise, the infima in the right hand side of (4.5) 
are positive, because Yj is closed in Xj,  and we may choose yj e Yj with I I x - y j  I Ixr <- 
2inf{ilx-uliz~ :ueYj}. We apply Lamina 4.1 (ii) with t=lIx-yoIlyo/l ix-yl]ly 1 and 
obtain yeYoMY1 satisfying (4.1), which easily yields (4.5). 

(ii)~(i). By Lemma 4.1, since (4.5)~(4.1). 
(ii)r Writing x ' = x - y ,  (ii) may be restated as: 
For every xEXoNX1,  there exists x'eXoMX1 with 7r(x')=rr(x) and Iix'lix~ < 

C[17c(x)lIQ j, j--0,1. Replacing 7r(x) by zeQoAQ1 (recalling that 7r(XoMX1)= 
QoMQ1 by Proposition 3.1), this is (v) (with x' instead of x). 

(iii)r Similar. 
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(v)~(vi ) .  Clear if zEQoNQ1, and otherwise trivial. 
(v i )~(v) .  Trivial. 
(v)~( iv) .  Trivial. 
( iv)~(v) .  If z~0 ,  let t=[[Z[[Qo/[Iz[iQ1; (4.7) then implies (4.8). [] 

We say that Q = X / Y  is a J-quotient couple of X if (iv) holds. (Pisier [21] uses 
the term J-closed.) Hence, if Y is a normal subcouple of X, Y is a K-subcouple if 
and only if X / Y  is a J-quotient couple of X. 

Remark 4.1. Although x in Theorem 4.1 (iv) a priori may depend on t, it can, 
in fact, be chosen independently of t by (v). 

Remark 4.2. The condition (iv) for a fixed t says that  (Xo/Yo)N(X1/Y1)= 
(XoNX1)/(YoNY1) with equivalent quasi-norms. Again, the main point of the con- 
dition is that  C does not depend on t, cf. Remark 2.2. 

We obtain easily an interpolation theorem for quotient couples using the J-  
method. 

T h e o r e m  4.2. Suppose that Y is a normal K-subcouple of a complete quasi- 
normed couple X.  Then 

(4.10) (X/Y)oq = (.X)Ov/(Y)oq, 0 < 0 < 1, 0 < q_< oo. 

More precisely, the quotient mapping 7r:X--~X/Y maps (X)oq onto (X /Y)oq, and 
induces an isomorphism (X)oq/(Y)oq ~-(z  /Y)oq with equivalence of quasi-norms. 

More generally, if X is a Banach couple, 

(4.11) J ~ ( X / Y )  = J ~ ( X ) /  (J~(X)N(Yo+ YI)) 

for every parameter ~. 

Proof. Use the discrete definition of the J -method [2], [4] and Theorem 4.1 
(iv); for (4.10) we also use Theorem 2.1. We leave the details to the reader. [] 

We can also consider several interpolation methods simultaneously. 

T h e o r e m  4.3. Let Y be a normal K-subcouple of a Banach couple X .  Then 
there exists C<ce such that if {~a}aCA is a finite set of parameters for the J- 
method and z E E( X /Y) ,  there exists x e E(.~) with zr(x)=z and 

(4.12) [[x[lj..(x ) _< Cl[z[[j..(z/v), a E A. 

Proof. We only have to consider a with O< [[z[[j~(~/v ) <cx~, and changing the 
norm in ~ by a constant factor we may assume that  [[z[[j.~(x/v)=l. We may 
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also assume that (I)a is an interpolation space for (L 1 (dt/t), L 1 (dt/t 2)) [4, Corollary 
3.4.6]. We now apply Theorem 4.2 to the parameter O- - -A(O~)=[~  O~, using 
JA(r162 [4, Theorem 3.4.9], observing that the equivalence constants in 
these theorems do not depend on the set {O~}, which gives ]lziIj~(F./F)<_C~ and 
the existence of an xCTr-l(z) with ]]xiIJa(x)<_C2. [] 

We next consider the K-method. 

Def in i t ion .  Let Y be a normal subcouple of X .  Then X / Y  is a K-quotient 
couple of X if there exists C<~c such that for every z E E ( X / Y )  there exists 
x E E ( X )  with 7r(x)=z and 

(4.13) K ( t , x ; X ) < _ C K ( t , z ; X / Y ) ,  t > 0 .  

w 

Remark 4.3. If w(x)=z then K(t,  x; X)  >K(t ,  z; X / Y ) .  Hence (4.13) says that 
the K-functionals are equivalent (uniformly in z). 

Remark 4.4. We may similarly define E-quotient couples, cf. (2.5), and prove 
as in Proposition 2.1 that E-quotient couples are the same as K-quotient couples. 

T h e o r e m  4.4. Let Y be a normal subcouple of a complete and Gagliardo com- 
plete couple X .  Then the following are equivalent, 

(i) X / Y  is a K-quotient couple of X .  
(ii) X / Y  is a Gagliardo complete J-quotient couple of X .  
(iii) Y is a K-subcouple of R and X / Y  is Gagliardo complete. 

The implications ( i i ) ~  ( i i i ) ~  (i) hold also if X is not Gagliardo complete. 

Proof. (ii)r holds by Theorem 4.1. 
(i)~(ii) .  Let Q j = X j / Y j  and assume that zcQoMQ1. By assumption there 

exists xE~- l ( z )  such that 

K(t, x; X) < CK(t, z; Q) <_ c(lIZlIQo AtllzlIQ1). 

Hence xcX~MX~ and Ilxlix; CllzllQj, j = 0 , 1 .  Since X~=Xj ,  this shows that 
(4.8) holds, and thus ~) is a J-quotient couple. Similarly, if zeQ~, z=~(x)  with 
]Ixi]x; <C]]ziIq~ , and since Xj is Gagliardo complete, Qj is too. 

(i i)~(i) .  By first replacing the quasi-norms on X0, X1 by equivalent p-norms, 
for some small p>0 ,  and then raising all quasi-norms to power p, we may assume 
that the spaces are normed groups. We use K-divisibility in the form of Cwikel's 
lemma [5, Theorem V.3.4] (which holds for Gagliardo complete normed couples by 
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the same proof) and obtain that  z--)-~_~ Zk (in Qo+Q,) for some sequence {zk} 
such that 

(4.14) E IlzkllQoAtllzkllQ1 -< CiK(t,z;Q,). 
k 

By Theorem 4.1 (vi) there exist Xk EXo+X1 with ~(Xk)=Zk and Ilxkllzj <_C211zkllQj, 
and thus 

(4.15) 

E K(t 'xk;%) <- E IlxkllxoAtllxkllx, 
k k 

< c2 ~ II~k IIQo Atllzk I]Qi <- C3K(t, z; Q). 
k 

In particular, ~ k  11 xk [IXo+X~ = ~ k  K(1, xk; X)  <c~, and thus (since Xo+X1 is 
complete), x - - ~  xk exists in Xo+X1. Clearly, ~r(x)--~ 7r(xk)=z and, by (4.15), 

K(t, x; X)  <_ E K(t, xk; X)  <_ C3K(t, z; Q). [] 
k 

Interpolation results for K-quotient couples follow directly from the definition. 
In particular, Theorem 4.4 yields, with Theorem 2.1, the following theorems. 

T h e o r e m  4.5. Let Y be a normal K-subcouple of a complete quasi-normed 
couple X such that the couple X / Y  is Gagliardo complete. Then, for any para- 
meter ~ , 

(4.16) K ~ ( X / Y ) = K ~ ( X ) / ( K ~ ( Y ~ ) N ( Y o + Y 1 ) ) = K ~ ( X ) / K ~ ( ? ) .  [] 

T h e o r e m  4.6. Let Y and X be as in Theorem 4.5. Then there exists C < oo 
such that if z cY~(X /Y ) ,  there exists xEXo+Xl  such that 7r(x)--z and 

(4.17) [IxlIK~<X> S CllzllK~cX/Y> 

for any parameter q~ of the K-method. [] 

The condition that X / Y  be Gagliardo complete in the last theorems is annoying 
for several reasons: it is often difficult to check in applications; we do not know 
whether it really is required for the results; we do not know whether it can fail to 
hold in Theorem 4.4. 
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P r o b l e m  4.1. If Y is a normal K-subcouple of a complete, Gagliardo complete 
couple X ,  is X / Y  necessarily Gagliardo complete? 

We give some results that  may help to show Gagliardo completeness in appli- 
cations. 

L e m m a  4.2. Let X be a quasi-normed couple and let 0 < 0 < 1 ,  0<q<or  Then 
Xo is Gagliardo complete in (Xo,X1) if and only if Xo is Gagliardo complete in 
(Xo, ( x M ) .  

Proof. By Holmstedt's formula [10], for xEXo+(X)oq, 

x t  

(with the modification if q--oo), and it follows directly that K( . ,x ;  Xo, (X)oq) is 
bounded if and only if K(.,  x; X0, Xl)  is. Since Z~=Xo+(XoNX1)CCXo+(X)Oq, 
this completes the proof. [] 

P r o p o s i t i o n  4.1. Suppose that Y is a normal K-subcouple of a complete 
quasi-normed couple X .  

(i) ffO<Oo,01<l and O<qo,ql<oo, then ((X)ooqo/(Y)ooqo,(X)Olql/(Y)Olql) is 
a Gagliardo complete K-quotient couple of ((X)ooqo, (X)Olql)" 

(ii) g (Xo/Vo, (XM/(?)eq) is Vagliardo complete for some O, q with 0<0<1, 
0 < q < e o ,  then (Xo/Yo, (X)oq/(Y)oq) is Gagliardo complete for all such 0, q, and it 
is a K-quotient couple of (X0, (X)oq). 

Proof. (i). For any couple Z, (Z)ojqj is Gagliardo complete in (Z0, Z1), and 
thus also in ((Z)ooqo, (Z)olqx). Taking Z = X / Y ,  the result follows by Theorems 4.2 
and 4.4. 

(ii). By Lemma 4.2 and Theorem 4.2, Xo/Yo is Gagliardo complete in 
(Xo/Yo,X1/Y1) and thus in (Xo/Yo,(X)oq/(Y)oq) for any O,q. The result now 
follows as for (i). [] 

We can obtain partial results even without Gagliardo completeness of X / Y .  

T h e o r e m  4.7. Let Y be a normal K-subcouple of a complete quasi-normed 
couple X .  

(i) There exists C<oo such that if z E E ( X / Y  ) and w(t) is any positive func- 
tion on (0, oo) with 

(4.18) w(t) --+ oo as t ---+ oo and w(t) --+ oo as t --+ O, 
t 
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then there exist x E X o ~ - X  1 with 7r(x)=z and 

(4.19) K(t, x; X )  <_ CK(t ,  z; X / Y ) + w ( t ) ,  t > O. 

(ii) For any parameter �9 that contains a function w as in (4.18), 

(4.20) K~ ( X / Y )  = K .  ( X ) / K r  (Y). 

(iii) If (O,)~cA is a set of parameters of the K-method such that ~ ,  O~ con- 
tains a function w as in (4.18), there exist C~<cc such that if z c E ( x / Y ) ,  there 
exists xEXo+X1 such that 7r(x)--z and 

(4.21) I[X[IK  <x>  C llz[IK  <x/y>, a e  A. 

Proof. (i). The Gagliardo completeness of X / Y  is used in the proof of Theo- 
rem 4.4 only through Cwikel's lemma, where it is needed when K(t,  z; ~))/(1At)--*0 
as t--~oc or as t-*0; however, a weaker version with the right hand side of (4.14) 
replaced by C1K(t, z; Q)+w(t)  holds in any case. (Check the proof in [5], first re- 
placing w(t) by a smaller positive increasing concave function.) The same argument 
as for Theorem 4.4 now yields (4.19) (with w replaced by Cw). 

Parts (ii) and (iii) follow from (i) by replacing w by e.g. K(1, z; X / Y ) w ( t )  in 
(4.19). [] 

Remark 4.5. The parameters (b that  are excluded in Theorem 4.7 (ii) are the 
degenerate ones for which K ~ ( X ) c X ~  or X~ for every couple X. In particular, 
part (ii) applies to the usual methods ( )0q, which also was proved in Theorem 4.2 
using the J-method. Part  (iii) applies, for example, to any finite or countable set of 
parameters that  satisfy the condition in (ii), and to the whole scale ( )e~, 0 < 0 <  1, 
O<q<c<). 

Remark 4.6. If, say, Xo/Yo is Gagliardo complete in X / Y ,  (4.18) may be weak- 
ened to o~(t)/t--*oc as t--*0. In particular, we may then take ~ = L  ~ in Theorem 4.7 
(ii) and (iii). 

5. Simultaneous approximation 

In this section we consider the problem of approximating an element x in a 
quasi-normed space by an element y in a subspace Y such that the error IIx-yll is 
small. We do not look for best approximations, where the error attains its infinum, 
but we require the error to be at most a constant times this. 
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Def in i t ion .  Let Y be a subspace of some vector space (or Abelian group) V 
and let ]1 I] be a quasi-norm defined on another subspace of Y .  An element y e Y  is 
a good approximation in Y with respect to I] I], of an element x e Y ,  if 

(5.1) IIx-yll < c inf IIx-ull 
- -  u C Y  

for some constant C<c~.  (We include the case when the right hand side of (5.1) 
is infinite; then every y c Y  is a good approximation of x.) When ]] ]]=]] Iix for a 
quasi-normed space X ,  we also say good approximation with respect to X .  

The definition is stated somewhat informally. It is meaningless as it stands for 
a single pair y and x (unless x c Y ) ,  but we will use it for a set of approximations, 
meaning that  the same error constant C can be chosen for the whole set. 

As long as we consider only a single quasi-normed space X and a closed sub- 
space Y, every element in X has trivially a good approximation in Y (for any C >  1 
in (5.1)). The situation becomes more complicated if we consider two or more 
different quasi-norms; in general, the sets of good approximation in the different 
quasi-norms may be very different, and there is no guarantee that  there exists a 
simultaneous good approximation with respect to the different quasi-norms. The 
following result for two quasi-norms is a reformulation of Theorem 4.1 (i) (iii). 

T h e o r e m  5.1 (Pisier). Suppose that Y is a normal subcouple of a quasi- 
normed couple X .  The following are equivalent. 

(i) F is a K-subcouple of X .  
(ii) Every xCXoMX1 has a simultaneous good approximation yEYoMY1, which 

is a good approximation in Yj with respect to I] [Ixj, j = 0 ,  1. 
(iii) Every x E X o + X 1  has a simultaneous good approximation yEYo+Y1 with 

respect to both II IiXo and [[ Iixl. [] 

We next consider simultaneous approximations with respect to more than two 
quasi-norms, assuming that  these quasi-norms come from an interpolation family. 
Note that  if y is a good approximation of x with respect to both X0 and X1, we 
have, for example, the estimate 

(5.2) 
Iix- yli(x)oq <_ Cl iix-ylil-o~ yil~ < C2dxo (x, Yo + Y1)l-O dxl (x, Yo + Y1) ~ 

E 

for the error in (X)oq. Nevertheless, y does not have to be a good approximation 
with respect to this quasi-norm, because much bet ter  approximations may exist, 

see Example 7.10. 
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T h e o r e m  5.2. Let Y be a normal K-subcouple of a complete quasi-normed 
couple X such that the couple X / Y  is Gagliardo complete. Then every xE Xo+ X1 
has a simultaneous good approximation yEYo+Y1 with respect to the quasi-norms 
II IIK~(X), where �9 ranges over all parameters for the K-method. (The error con- 
stant in (5.1) may be chosen the same for all q).) Furthermore, y a K s ( Y )  for all 
parameters �9 such that x E Ko (X).  

Remark 5.1. If R is Gagliardo complete, the original quasi-norms II II0 and II Ill 
are included among I[ lIKe(X)" 

Proof. Let z=Tr(x), where 7r:X--*X/Y is the quotient mapping. By Theo- 
rem 4.6 there exists x 'EXo+X1 with 7r(x')=z=Tr(x) and 

(5.3) IIx'IIKo(X) --< CIIzllKo( / ) _< CIIx--ulIKo( ), 
for every ucYo+Y~. Then y=x-x ' e~r - l {o}=Yo+Y1 ,  and (5.3) shows that  y is a 
good approximation with respect to every K<~(X). 

If xEK~(X) ,  we may choose u = 0  in (5.3) and obtain a finite right hand side. 
Hence x 'eKr and yEK~(~V~)N(YorGY1)=K~(Y) by Theorem 2.1. [] 

As remarked in the preceding section, we do not know whether the condition 
that  X / Y  be Gagliardo complete really is needed here. We can give some partial 
results without this condition, proved in the same way using Theorems 4.7 and 4.3. 

T h e o r e m  5.3. Let Y be a normal K-subcouple of a complete quasi-normed 
couple X .  

(i) If (~ , ) , c A  is a set of parameters of the K-method such that there exists a 
positive function ~ as in (4.18) with wEN~ ~ ,  then every xEXo+ X1 has a simul- 
taneous good approximation yEYo+Y1 with respect to the quasi-norms ]] ]]K~.(X), 
a c A .  (The error constant in (5.1) may depend on a.) In particular, this applies to 
the quasi-norms ]l ]](X)eq, 0<0<1 ,  0<l_<c~. 

(ii) If  X is a Banach couple, the same conclusion holds for the J-method and 
any finite set of parameters. 

Remark 5.2. If Xo/Yo is Gagliardo complete in X / Y ,  we may weaken (4.18) as 
in Remark 4.6. In particular, if furthermore X0 is Gagliardo complete in X, we may 
also require that  y be a good approximation with respect to X0. (By symmetry, 
the same thing is true for X1 if X1 and XI/Y1 are Gagliardo complete.) 

6. D u a l i t y  

In this section we exclusively consider Banach couples. The dual of a Banach 
couple X was defined in Section 1. If furthermore X is regular and Y is a regular 
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closed subcouple of .~, we define 

(6.1) (YoMY1) • = {x* C (XoMX1)* : (x*, y) = 0 for y C YoNY1} 

and 

(6.2) Yj•177 j =0 ,  1. 

Then (YoMY1) • is a closed subspace of ( X 0 ~ X 1 ) * - -  ! ! - X 0 + X  1 and Yj• is a closed 
subspace of X~; thus ? •  ~, Y1 • is a closed subcouple of -~'. Moreover, there 
are natural isometrics 

(YonY1)• o ~ X x  /YoNY1)* 

and 
Yj •  , j =0 ,  1. 

Note that, although not shown in our notation, the spaces Y~, Y~ and (YoMY1) • 
depend on X as well as on Y. 

P r o p o s i t i o n  6.1. Suppose that Y is a normal regular subcouple of a regular 
Banach couple X .  Then the isomorphism 

(A(_~/?))* ( /Yo I I1)~(Yo Y~)• = XoMX1 M * = M 

yields an isometry between the couples ( X /Y) '  and Y • 

Proof. By definition, identifying (A(X/Y))*  with (YoMY1)• * by 
the isomorphism above, for x* E (]I0 n Y1) • 

Ilx*ll(xj/yj)' = sup{l(x*, x)i : x E X o N X l  , 117cCx)llxj/gj ~_ 1} 
and 

IIx*llg/= IIx*llx  =snp{l(x*,x)l:x c XonX1, IIxIIxj ~ 1}. 
* ~ * Hence II x II~• x II(x~/~),. On the other hand, let x*eYj • and xEXoMX1 

with I[Tr(x)ilxj/gj < 1; then X=Xl+Yl with Ilxl Ilxj < 1 and ylEYj.  Since Y is regular, 
there exists y2CYoNY1 with Ilyl -y2llY5 <1- I lx l l [x j ,  and thus IIx-y21lxj <_ [Ixlllxj + 
Ilyl - y 2  LIx~ < 1. Since x -y2  CXonX~, this yields 

I(x*, x)l = I(x*,x-y2)l <_ IIx* I[~• 

which implies IIx*ll(x~/~), <_llx*ll~• [] 

Suppose that Y and X are as in Proposition 6.1. It is then easy to see that 
Y•  is a K-subcouple of X '  if and only if X / Y  is a J-quotient couple of 
X,  which, by Theorem 4.1, holds if and only if Y is a K-subcouple of X. 

We give a different proof that works also when Y is not a normal subcouple. 
We begin with a preliminary result. 
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P r o p o s i t i o n  6.2. Suppose that Y is a regular closed subcouple of a regular 
Banach couple X .  Then the following are equivalent. 

(i) Yo+Y1 is a closed subspace of Xo+X1.  
(ii) YoZ + Y ~  is a closed subspace of ( XoNX1)*=X~ + X~. 
(iii) Yol + Y ~  is a closed subspace of (YoAY1) • 
(iv) Y~  +Y~=(YoAY1) • 
(v) F • is a normal subcouple of X' .  

Proof. (i)<=~(iv). We apply Lemma 3.1 to the subcouple F -L of X '  with 
Z=(YoNY1) • We identify (X~+X~)/Z=(XoAX1)*/(YoNYO • with (YoNY1)*. 
Then the quotient map ' ' ' ' 1r:Xo+Xl-+(Zo+X1)/Z is the natural (restriction) map 

] ! 
X 0 + X 1 = (Xo N X1)* --~ Yg + Y~ = (Yo rq Y1)*, and it induces the natural identifications 

I •  I~.J * By Lemma 3.1, 0v) holds if and only if maps Xo' nXi'~= 
(Xo+Xl)* onto YgNY~-(Yo+Y1) *. Since 7r:(Xo+Xl)*-+(Yo+Vl)* is the adjoint 
of the embedding Yo+YI-+Xo+X1, this happens if and only if Y0+Y1 is a closed 
subspace of Xo+X1. 

(iv):=>(iii) is trivial. 
(iii)~(iv). Let T:(XoNX1)/(YoAY1)-+(Xo/Yo)|  be the natural map- 

ping. Then T is injective; furthermore 

T*: (Xo/Yo)* |  -~ Y ~  |  ~ ((XonX,)/(YonY1))* TM (YonY1) • 

may be identified with the mapping (X'o,X'l)-+X'o+X' 1 of Y ~ |  into (YoNY1) • 
Hence (iii) J i m ( T * )  is closed J i m ( T )  is closed ~ T  is an isomorphism into ~ T *  
is onto ~ (iv). 

(iii)r is trivial. 
(ii)r follows by the definitions. [] 

T h e o r e m  6.1 (Pisier). Suppose that Y is a closed subcouple of a regular Ba- 
nach couple X .  Then Y is a K-subcouple of R if and only if Y is regular and 
(Y0 ~, Y?)  is a K-subcouple of (X~,X~). 

Proof. We may assume that Y is regular, because Proposition 2.3 implies that  
? is regular if it is a K-subcouple of -~. Similarly, by Proposition 6.2 ( i )~(v)  
( ?  is a K-subcouple) or (ii)=>(v) ( ? •  is a K-subcouple), we may assume that Y• 
is a normal subcouple of X' .  It is easily seen (cf. the proof of Proposition 6.2) that  
the quotient couple X ' / Y  • is isometric to Y', and that  the quotient map 

7T:XonXI=(Xo+X1)*___+ ' • , Z ~ , ,,~ �9 (Xo/Yo )n(X1/Y1 )= YOnZi =(Yo+Y1) 

is the adjoint of the embedding Yo+Y1--~Xo+X1. Since the dual of the norm 
K(t,-;  X) on Xo+X~ is J(t -1, .; X"), and similarly for Y, it follows that,  for each t 
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and C, K ( t , y ; Y ) < C K ( t , y ; X )  for all yCYo+Y1, if and only if each y ~ 0 "  1 can 
! ! ! 

be lifted to an x EXoMX ~ with J(t -~, x'; X ' ) < C J ( t  -~, y'; Y'). Consequently, F is 
a K-subcouple of .~ if and only if Y ' ~ - X ' / Y  • is a J-quotient couple of X' ,  and the 
result follows by Theorem 4.1. [] 

We collect some further consequences of the argument above. 

T h e o r e m  6.2. Suppose that Y is a closed K-subcouple of a regular Banach 
couple X.  Then Y •  is a normal K-subcouple of XP and there is a natural isometry 
between the couples Y '  and XP/Y  • which allows us to regard ~1 as a J-quotient 
couple and K-quotient couple of X ~. 

Proof. All assertions follow by Theorem 6.1 and its proof except that  Y~ is a 
K-quotient couple. For this we use Theorem 4.4 and the fact that  dual couples are 
Gagliardo complete. [] 

Remark 6.1. It does not follow from the assumptions in Theorem 6.2 that  Y is 
a normal subcouple of X, see Example 7.8. 

7. Examples 

Example 7.1. A complemented subcouple, i.e. a subcouple Y of X such that  
there is a bounded projection X - * Y ,  is a K-subcouple. Y is normal and I - P  in- 
duces a linear lifting X/Y- -+X that yields liftings as in the definitions of J-quotient 
couple and K-quotient  couple. P gives a linear good approximation. Conversely, 
if, for example, .~ and Y are regular and there is a linear lifting satisfying the 
J-quotient condition, or a linear good approximation, then Y is a complemented 
subcouple of X. 

Example 7.2. Regard the Hardy space H p on the unit disc as a closed subspace 
of L p on the circle. Then (HP, H q) is a K-subcouple of (LP, Lq), 0 < p , q ~ c c ,  see 
Pisier [21] and (for p - - l )  Bennett  and Sharpley [5]. (See also [22], [23], [3] for 
generalizations and applications.) The subcouple is normal, e.g. by Corollary 3.1. 

By Theorem 4.1, in particular, (LB/HP, L ~ / H ~ )  is a J-quotient couple of 
(L p, L~).  If p>  1, this is a dual couple and hence Gagliardo complete. By Proposi- 
tion 4.1 applied to ( L ~ / H ~ , L P ~  p~ for some P0<P, it follows that  
(LB/H p, L ~ / H  ~)  is Gagliardo complete for each p>0 ,  and thus a K-quotient  cou- 
ple of (L p, L~) .  

Theorem 5.2 yields, for example, that  for each p0<0,  every f E L  po has a si- 
multaneous good analytic approximation with respect to all L p, po<p<oc. The 
error constants may depend on p here, since the equalities (L p~ L~)ep=L p are not 
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isometric; it seems likely that they can be taken to depend on P0 only, but we have 
not made any detailed analysis. We do not know whether the result corresponding 
to the limit p0-~0 also holds, i.e., whether every fc [ . J ;>  0 L p has a simultaneous 
good analytic approximation with respect to all L p, 0<p<c~ .  

Example 7.3. Let O be an inner function in the unit disc. Since multiplication 
by O is an isometry in each L p, it follows from the preceding example that,  if 0 < p <  
q<(x~, (OH p, OH q) is a K-subcouple of (OL p, OL q) =(L p, Lq); hence (OH p, OH q) 
is a K-subcouple of (H p, H q) by Proposition 2.2 (iii), and (HP/OH p, Hq/OH q) is 
a J-quotient couple of (H p, Hq) by Theorem 4.1. 

Suppose now that  O is a Blaschke product with simple zeros (z~)~. Then 
HP/OH p may be identified with the sequence space Zp={(f(Zn))7:fEHP}. It 
follows, for example, that (Zpo,Zp:)Op----Z p when 1/p=(1-O)/po+O/p:, 0 < 0 < 1 ,  
0<p0,p:_<ec (Theorem 4.2), and that  if (an)~  EZpo NZp:, then an=f(zn) for some 

analytic f with UIIHPJ <_CIl(a,dllz,j (Theorem 4.1(v)). 
If furthermore O is an interpolating Blaschke product, i.e. (z~) is an interpo- 

lating sequence, then Zp=IP(d#), 0<p_<oc, where ~(n)--1-1z~[  2, see e.g. [8], [241. 
Thus (Zp, Zq) is Gagliardo complete, and is thus a K-quotient couple of (H p, Hq), 
O<p<_q<_cc. In fact, in this case there is a linear lifting that  maps Zp=IP(d#) 
boundedly into H p for all p, 0<p<_co, for example 

1- kz 
(7.1) (an)7 ~ E anf~(z)exp 1- ~1/2~ 

1 1-lzkl2"] "]' 

where f~EH ~ are as in the P. Beurling interpolation theorem [8, Theorem VII.2.1] 
(this is easily verified for p = o e  or p < l ;  for l < p < c ~  we use interpolation). Hence 
(OH p, OHq) is a complemented subcouple of (H p, Hq). We do not know whether 
this extends to O that  are not interpolating Blaschke products. (Note that this 
example combines two different meanings of 'interpolation'.) 

Example 7.4. Consider functions in R ~ and let k > l .  Define Tf=(D~ , 
where a ranges over the N=(~+k)  multi-indices with lal<k. Then T yields an 
isomorphism of the Sobolev space W~ into (LP)N; in particular, we may regard 
(W~, W ~ )  as a closed subcouple of ((L:) N, (n~ By a result by DeVore and 

Scherer [7], [5], it is a K-subcouple. 

Example 7.5. Consider again functions on R ~ and let T(go,...,gn)= 
go + ~ ~ :  R~ g~, where R~ are t he Rie s z transforms. The n T: ( L p) ~ + ~ ~ L p , 1 < p < oc, 
and T:(L~)n+:--+BMO. Miyachi [15] proved (somewhat more generally) that if 
l < p < o c  and fELPNBMO, then f = T g  for some ge(LPNLCC) n+l with I[gll(np)~+: _< 
Cl[fllL, and I[gll(L~)~+: _<Cllfl[BMO (C depends on p but not on f) .  In other words, 
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(L p, BMO) may be regarded as a J-quotient couple of ((LP) n+l , (Lcc)n+l), 1 < p <  c~. 
(L p, BMO) is Gagliardo complete, so by Theorem 4.4 it is a K-quotient couple as 
well. By Theorem 4.1, F=(kerTn(LP)n+l,kerTN(L~)~+l) is a K-subcouple of 
((LP) n+l, (L~176 l<p<oo. 

Note also that  T* :f--*(f,-Rlf, ...,-Rnf) yields isomorphisms HI-+(L1) n+l 
and LP--+(LP) ~+~, l < p < c ~ .  (Here H 1 is the real variable Hardy space.) Hence 
we can regard (H 1, L p) as a closed subcouple of ((L1) n+l, (Lp)n+I). It is easily 
seen that  (HI•177 n+l, kerTN(LV')~+l), which by the above is a 
K-subcouple of ( (L~)  n+l, (LP')n+I); Theorem 6.1 now yields that  (H1,L p) is a 
K-subcouple of ((nl)  '~+1, (LP)n+I). 

Example 7.6. Consider the space of all bounded linear operators on 12, regarded 
as matrices (aij)i,~=l. We let S~  be the space of all bounded linear operators, So 
the space of finite rank operators with []T][so=rank(T), and Sp, for 0<p<oc ,  the 
Schatten p-class. Sp can be defined by interpolation (the E-method): 

Sp-- {T: (~ooCCE(t,T; So, S~)P dt)UP< co} 
(7.2) 

o / ~1+1/p 
= ((So, ooo}p/(p+l),p+l) , 0 <p < oo, 

see [2, Section 7.3]. (E(t,T; So, Soo) is known as the singular number s[t](T).) Sp 
is a quasi-Banach space for 0 < p <  oc and a Banach space for p_> 1. 

Let Tp denote the subspaee of Sp consisting of (upper) triangular matrices, i.e. 
matrices (aij) with aij =0 when i>j. It is well known that  the natural projection T 
maps Sp onto Tp if and only if l < p < o c .  In particular, (Tp,Tq) is a complemented 
subcouple Of (Sp, Sq) for l<p ,  q<cc.  

Pisier [21] proved that  (Tp,Tq) is a K-subcouple of (SB, Sq) whenever 0 < p <  
q<co. Let Qp=Sp/Tp. Ifp'<p<q, then Qp--(Qp,, Qq)oq for some 8 by Theorem 4.2. 
Hence Qp= Qp in QB, + Qq and thus in Qp + Qq. Yhrthermore, Qp + Qq = Qq, so 
Qq=Qq (in Qp+Qq) is trivial. Consequently, (Qp, Qq) is Gagliardo complete for 
0 < p < q < c c .  By Theorem 4.4 it is a K-quotient couple of (Sp, Sq) and by Theorem 
5.2, for every p0>0, every bounded operator has a simultaneous good triangular 
approximation with respect to (for example) all Sp, Po <P<_ oc. (This extends results 
by Pisier [21] and Kaftal, Larson and Weiss [13].) 

We do not know whether there exists a simultaneous good triangular approxi- 
mation with respect to SB for all p>0.  

Example 7.7. In the preceding example we only considered p>0.  We will here 
show that  (To,T~) is not a K-subcouple of (So, S~).  (The same argument shows 
that  (To,Tp) is not a K-subcouple of (So, Sp) for any p>0.)  
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Let n > l  and define A=(aij)~.i-1 with 

n (j-i) l < i , j < n + l  
( 7 . 3 )  a ~  = - - 

O, otherwise. 

Let B be the triangular projection of A. Since A - B  has n(n-1)/2 non-zero entries, 
each of them at most n -3, and rank(A)=1,  

E(1, B; So, S~ ) <<_ [IB- A[Is~ N n2n- a = n -1. 

On the other hand, any triangular matrix of r a n k < n  has at most n non-zero entries 
on the diagonal. Hence, if CCTo with r ank (C)<n ,  B - C  has at least one diagonal 
entry equal to 1, so lIB- C[Iso -> 1. Consequently, 

( 7 . 4 )  E(n, B; To, T~)  > 1 > nE(1,  B; So, S~) .  

Since n is arbitrary, (To, Too) is not an E-subcouple of (So, S~) ;  by Proposition 2.1 
it is not a K-subcouple. 

Example 7.8. This example shows that  the conditions in Theorem 2.2 (ii) and 
Proposition 2.5 can not be omitted. Let X0= l  ~ ,  Y0=c0 and Xl=Yl=co(w)= 
{(an)~ :w(n)an--+O as n--.cc}, where w(n) is a sequence of positive numbers such 
that  w(n)--+O as n--+oc. Then Xo=Yf,  and Y is an exact K-subcouple of X. 
Let (I)=L ~ .  Then K r  for every couple Z, and it is easy to check that  

(Y0, Ke(Y))=(Y0,  Y0~)= (c0, l~)  is not a K-subcouple of (X0, g~(x ) )=( l~ ,  l~). 
Note also that  YoT~XoN(Yo+Y1), cf. Proposition 2.5, so Y is not a normal 

subcouple of X. Note that  Xo/Yo=l~/co and X1/Y1 ={0} do not form a couple in 
a natural way, while their duals Y0 i -~c~  and Y~ ={0} form a normal K-subcouple 
of X ' = ( ( I ~ )  * , /1(w-l ) )  by Theorem 6.2. 

Example 7.9. Let Xo=XI=R 2 with the norms II(xl,x2)llo=l[(xl,-x2)[[1 = 
I(xl 7 s o) + I(xl 7 ~ x2), where I is the indicator function. Let Y0 = Y1 = { (xl, 0) }. Thus 
[[(Xl,O)[l~=2I(xlT~O ). It is easily seen that  for any y=(xl ,0)7~0,  g( t , y ;Y)= 
K~(t ,y;Y)=K(t,y;X.)=2A2t,  while K~(t,y;X)=min(2,2t,  1Vt). Hence Y is an 
exact K-subcouple of X but not an exact K~-subcouple.  Similarly, Y is not an 
exact E-subcouple. 

Example 7.10. This example shows that  a simultaneous good approximation 
with respect to two norms, may be a bad approximation with respect to an inter- 
mediate norm. 

Let Y be a normal K-subcouple of a Banach couple X and assume that  Yo ~ ~ Y1 
and Q~ where Q=X/Y;  for example ?=(HP~ pl) and X=(LP~ 



Interpolat ion of subcouples and quotient  couples 333 

l < p o < p l < e c ,  as in Example 7.2. Fix 0e(0,1)  and q<co. Then Ilyll<~>o~/llyllYo 
can be arbitrarily large for y E Yo N ]I1, because otherwise K(t, y; VZ) < Clt~ y ll(v)o~ --- 
c2t~ <- lllyllYo if t is small enough, and this would, as is easily seen, imply 
Y~ Consequently there exist y,~CYoNY1 with IlY~llYo=l and Ily~ll(~)o>_n. 
Similarly there exist z~EQof'IQ1 with IIz~llQo=X and IlznllQ~=~--*oc; we may 

further as sume  tha t  ~_> I lY~ II ~ ( x - o ) ,  
By Theorem 4.1 there exist unC:XonXx with Zn=lr(un) and Ilu~llx~ • IIznllQ~ = 

A{, j = 0 , 1 .  Define x~=A~~ Then (if n is large enough) 

and 

IlXnllxo X 1 ~ II~(Xn)llQo = dxo(X~, Yo) 

1--0 v IIx~llxl ~ ~ - II~(xn)llQ1 = dxl (Xn, ]71). 

Sincealso I[xn-Ynllxo < C  and Ilxn--Ynl[Xl<_ X--O _ CAn , Yn is a good approximation of 
x~ with respect to both Xo and X1. On the other hand, 

Ilxnll(~)0~<--C'Xn011U~ ~ - O  u e + U Ilxo II ~llx~ II ~ll(x)o~<c 
and thus 

Ilxn-- Ynll(X)o~ >-- IlYnll(X)o~ - C  >_ cllYnll(~)oq - C  >_ c n - C  --* co, 

while 

d(x)o q (xn, (Y)oq) <_ IIx~ll(x)0q ~ c.  

Hence Yn is not a good approximation of xn with respect to (X)oq. 

8. The Adamyan-Arov-Kre in  theorem 

Consider again the spaces Sp of matrices acting on 12 defined in Example 7.6, 
0<_p<oc, and let Fp be the subspaces of Hankel matrices, i.e. matrices of the form 
(ai+j)i,~=l. By a well-known unitary equivalence, we may equivalently let Sp be the 
Schatten classes of operators from H 2 to H2__ = L  2 O H  2, where H2C L 2 = L  2 (T) is the 
Hardy space as in Example 7.2, and FB=Fo~NSp consists of the Hankel operators 

(8.1) F ~  ---- {T: T f  = P_(qof) for some ~ e L~} .  

The Adamyan-Arov-Krein theorem (or AAK for short), see e.g. [16], says that  
if T is a Hankel operator, then 

(8.2) inf{][T-KI]s ~ : rank (K)<n}: in f { l [T-K]]s  ~ : rank(K) < n ,  K e r 0 } ,  

i.e., in our notation, 

(8.3) E(t,T;So, S ~ ) = E ( t , T ; r o , r ~ ) ,  t > 0  

(and furthermore, the iufima are attained). In other words, (F0,F~)  is an exact 
E-subcouple of (So, So~). Proposition 2.1 yields the following. 

6-935212 Arkiv f'6r matematik 
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T h e o r e m  8.1. (F0, F ~ )  is a K-subcouple of (So, S~). 

Conversely, Theorem 8.1 yields the AAK theorem up to constants and may 
thus be regarded as a weak AAK theorem. 

By reiteration (Theorems 2.1 and 2.2 and Proposition 2.2 (viii)) we easily 
obtain a generalization. This result is due to Peller [18], [19] (at least for q=cc),  
where also applications to interpolation of Besov spaces are given. 

T h e o r e m  8 .2 .  (rp, rq) is a K-s beouple o/(Sp, Sq), O<<p<q<oe. 

Theorem 8.2 implies in particular, using the equivalence of K-subcouples and 
E-subcouples again, that  (8.3) and (8.2) hold within constants (in the norm and the 
rank) also if S~o is replaced by Sp for any p>0,  which can be regarded as a weak 
AAK theorem for Sp. In this case the constants are really needed; the (strong) 
AAK theorem, with equalities in (8.2) and (8.3), does not hold for Sv, p<oe, as 
the following example shows. 

Example 8.1. Let A be the Hankel m a t r i x  (aij) with a l l = l ,  a 1 2 = a 2 1 = ~ > 0  

(small) and aij=O, i + j > 3 ,  and let B=(bij) with b l l = l ,  b12=b21=c,  b22=e 2 and 
bij =0, iV j > 2 .  Then B has rank 1 so E(1, A; So, Sp)<<_ [[A-B[[sp=e 2. 

Conversely, suppose that  C =  (cij) is any rank 1 Hankel matrix with I[ A - C  [1 sp _< 
2~ 2. Then Cll=all+O(e2)=l+O(e2), c12=~+0(e2), and 512=c--~0(E2). Hence, 
since C has rank 1, c22 =c12c21/cll =c2+O(e3). Since A and C are Hankel, this gives 
a13-c13-~a22-c22=a31-c31-=-e2-~-O(e3), and, for example, [[A-Clls2> 
x/~la22-c22]=v~e2+O(e3). Consequently E(1, A; F0, F2)_>v/ge2+O(e3), which 
shows that  (F0, F2) is not an exact E-subcouple of (So, $2). In fact, it is not diffi- 
cult to show that  [IA-C][s>31/(pvl)e2+O(e3), and thus (r0,rp) is not an exact 
E-subcouple of (So, Sp) for any p<cc.  

We do not know whether the AAK theorem for Sp holds in the form 

? 
(8.4) E(n, T; r0, Fp) _< C E(n, T; So, SB), 

i.e., if we may take C1=1 in (2.5) in this case. 
It follows as in Example 7.6 that (Sp/Fp, S~/F~) is Gagliardo complete for 

every p > 0. 

Remark 8.1. Christian Le Merdy (personal communication) has shown that 
S0/F0 is Gagliardo complete in S~/F~, which answers a question that was asked 
in a draft of this paper. More precisely he showed that  if Rn = {TE So :rank(T)< n}, 
then F ~ + R n C F ~ + R 2 n ,  which implies that  for any TC(S0/F0) c, I[T]lSo/ro< 
2llTll(so/r0)c. He also showed that the constant 2 is necessary; in fact, the matrix 
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A = (a~j) with a23 = a32 -- 1 and all other aij = 0, belongs to F ~  + R1 \ (Fcc -~ R1 ), and 
the corresponding element f i E S ~ / F ~  satisfies IIAl[so/r0=2 and ]]~]](s0/ro)o=l. 

Theorem 5.3 (with Remark 5.2 for p=c~)  yields the following approximation 
result. 

T h e o r e m  8.3. Every bounded operator on 12 has a simultaneous good Hankel 
approximation with respect to all Sp, 0<p_<c~. (The error constants may depend 
on p.) [] 

Remark 8.2. There are several similarities between the scales (Fp) and (Tp); 
for example, the natural projection is bounded Sp--*FB when 1 < p < c ~  [18]. Note 
however one difference: The AAK theorem does not hold for (Tp) (not even weakly), 
as was shown in Example 7.7. 

We have so far dealt with the classical Hankel operators or, equivalently, Hankel 
matrices. There are several generalizations of Hankel operators where the AAK 
theorem remains valid, and the considerations above hold for them as well. 

One such generalization, due to Ball and Helton [1] and Treil [25], is to vector- 
valued spaces, where we consider operators from H2(E1) to H2_(E2) for two sepa- 
rable ni lbert  spaces E1 and E2, taking ~oeL~(B(E1,  E2) ) in  (8.1); cf. Peller [20]. 

Other generalizations are given by Cotlar and Sadosky [6], in particular they 
prove the AAK theorem for weighted spaces H2(p)CL2(#) ,  where # is a (finite) 

measure on the circle. 
There are other generalizations of Hankel operators for which it is not known 

whether the AAK theorem holds (even in its weak version). We do not know of 
any case where the weak AAK theorem (Theorem 8.1) is proved but not the strong 
form. 

9. F ina l  r e m a r k s  

Remark 9.1. This paper is in the usual framework of (compatible) couples of 
spaces. It seems plausible, however, that  the notions in this paper could be defined 
and studied more generally for Doolittle diagrams [14], [4, Section 2.7.2], which 
might simplify the treatment of quotients and duals. 

Remark 9.2. We do not know if it is possible to develop analoguous results for 
the complex method or other interpolation methods. From an abstract point of 
view, the following at tempt  seems reasonable. 

Def in i t i on .  Let fi  be a Banach couple and let Y be a closed subcouple of a 
Banach couple X .  Then Y is an A-subcouple of R if every linear mapping Y--*A 
may be extended to a mapping X--~ A, and ( if  Y is a normal subcouple) X / Y  is an 
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A-quotient couple of X if every linear mapping A---~ X / Y  may be lifted to a mapping 
A--~X. (By the closed graph theorem, we automatically have norm estimates.) 

The definition is motivated by the following simple result, whose proof we leave 
to the reader. Here [P denotes the couple (l p, lP(2n)) of weighted spaces of two-sided 
sequences. 

P r o p o s i t i o n  9.1. Let Y be a closed subcouple of a Banach couple X .  Then 
is a K-subcouple of X if and only if it is an [~-subcouple, and (i f  F is normal) 

X / Y  is a J-quotient couple of X if and only if it is an [1_quotient couple. [] 

Recalling that  the K-method can be defined as a coorbit functor using the 
couple [~, and that  the J-method can be defined as an orbit functor using/1 [4], 
it looks promising to consider fi.-subcouples or fi~-quotient couples for other coorbit 
or orbit functors, for example FL~-subcouples and FLl-quotient  couples for the 
complex method, where FLP is a weighted couple of Fourier sequence spaces, cf. [12]. 

Remark 9.3. Interpolation of subspaces and quotient spaces by the complex 
method for infinite families of spaces have been considered by Hernandez, Rochberg 
and Weiss [9], who in particular give a duality theorem. We do not know whether 
the methods of this paper can he extended to families of spaces. 
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