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1. Introduction 

Let xE R ~ P(x) be a real-valued polynomial, and K(x) be a Calder6n--Zygmund 
kernel. Define T: 

(1.1) Tf(x) = p.v. fR* eie(x - ' )  K(x-- y)fly) dy. 

In this paper we prove the boundedness of such operators on the Hardy space 
H 1. Our method is general enough to even allow us to treat the weighted Hardy 
space H i ,  when ws 

L p estimates for such operators were established by F. Ricci and E. M. Stein 
([11]). In fact, the operators they treated are more general, in the sense that they 
are not necessarily of convolution type. Later S. Chanillo and M. Christ proved 
that these operators are also of weak-type (1, 1) ([2]). 

The study of oscillatory singular integral operators on Hardy spaces began 
with the investigation on operators with bilinear phase functions by D. H. Phong 
and E. M. Stein ([10]). They introduced some variants of the standard H 1 space, 
H~ (which is closely related to the given bilinear form), and proved that such oper- 
ators are bounded from H~ to L x. This result was used to prove the L p bounded- 
ness by interpolating between L ~ and L**. Results of this form, but for operators 
with polynomial phase functions, were obtained by the second author in [9]. 

Weighted norm estimates (L p, weak (1, 1)) for convolution operators with 
oscillating kernels were obtained by S. Chanillo, D. Kurtz and G. Sampson in [1], 
[3] and [4], where the phase function in the oscillatory factor is of the form ilxr'. 
More recently, Y. Hu ([6], [7]) proved some weighted norm estimates for oper- 
ators with polynomial phase functions. In particular, it was proved in [7] that, 
when the dimension is 1, the operator given in (1.I) is bounded on H~ x, for wEAl. 
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The main part of  this paper is to show that this is true in all dimensions. We 
state our theorem as follows. 

Theorem 1. Let xCR ~, P(x) be a polynomial which satisfies VP(0)=0,  and 
T be defined as in (1.1), wEAr. Then there is a constant C, which depends only on 
the A~ constant of w and the degree of P(x) (not its coefficients), such that 

ItTfJ!.,,,. <= C tl.ftlIL, ~ , 
for all fE H~. 

Some relevant definitions will be given in Section 2. 
This theorem differs from Theorem 1 in [9] in two aspects: (1) The Hardy 

spaces in [9] do not involve A x weights; (2) More importantly, the H 1 spaces in this 
paper is different from those in [9], even when w ~ l .  In fact, when w~-l, the 
spaces here are exactly the usual H 1 spaces, while the spaces in [9], [10] are closely 
related to the phase functions of  the operators, even when one considers only con- 
volution operators. 

To prove our theorem, we further develop the techniques used in [9] and [10]. 
The method used in [7] relies heavily on knowledge of  roots of a polynomial, which 
makes it difficult to apply to a higher dimensional situation. 

We would like to thank the referee for his comments. 

2. Notations and definitions 

In this section we recall some definitions and results that are relevant to this 
article. 

Definition 2.1. A function K(x) in CI(R*N,{0}) is a Calder6n--Zygmund 
kernel if there is a constant A > 0  such that 

Ig(x)l ~_ A IxI-L IVK(x)l ~_ A Ixl-"-l, 
and 

f..<xt.~ K(x)dx  = o 
holds for b>a>O. 

Definition 2.2. Let w(x) be a nonnegative, locally integrable function in R*. 
We say that w(Ax if  

1 f w(x)dx  < (2.1) IQI _ Cess inf 

holds for  all cubes Q in R ~. Let C(w) denote the smallest constant for (2.1) to 
be true, which we call the Ax constant of  w. 



Boundedness of oscillatory singular integrals on Hardy spaces 313 

For a cube QcR*,  wCAI, let w(Q)=fe w(x)dx. If we let Q* be the cube 
which has the same center as Q, but twice the sidelength, we have 

(2.2) w (Q*) _~ 2" C(w) w(Q). 

It is well-known that the necessary and sufficient condition for the Hardy--  
Littlewood maximal function to be bounded from L,~,. to L~; *~ is that w~ A1 ([5], [8]). 

Now we give the definition of the weighted Hardy space H i .  Let ~, belong 
to the Schwartz class S~, fa,  ~k(x)dx~O. For each f~S~'(R*), set 

f*(x) = sup I(f*r x~R ~ 
t : - -0  

where ~k,(x) = t-" ~b (x/t). We have 

Definition 2.3. A locally integrable function f is in the space H i if 

Lt f*  itL  = f ro  f*  (x) w (x) dx < ~o, 

and we define [Ifll~,o [If []L,~. 

We shall need the atomic decomposition for functions in H i .  First we recall 
the definition of a H i atom ([14]). 

Definition 2.4. Let wEAx. A real valued function a(x) is a H,~ atom if 
(1) a(x) is supported in a cube QcR*,  
(2) f e a(x)dx=O, 
(3) Ilblt ~ x f ~ -  w(Q) , where w(Q)= o w(x)dx. 

The following theorem is from [14]. 

Theorem 2.1. For each f~ H~, there exist atoms {a j} and coefficients {2j} 
such that 

(2.3) f(x) = Z j  ).j aj(x), 

and ~ j  12jl~_Cllfllnk, where C depends only on C(w). The sum in (2.3) is both in 
the sense of distributions and in the H~ norm. 

We would like to point out that the restriction VP(0)=0 in Theorem 1 is 
essential. For example, we take n = l ,  w - I ,  a(x) a nonzero atom which is sup- 

I 1 1 K(x)=~- If  Theorem 1 were true for P(x)=kx, ported in = ( - T ,  ~), and 
k ~0,  it would imply that 

f e~a(x)dx  = O, 

for all k, which cannot be true. See also [7]. 
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3. Some reductions 

Let wCA~, and a(x) be a H~ atom, which is supported in a cube Q c R "  and 
satisfies 

(1) supp (a)ca,  
(2) foa(x)dx=O, 
(3) Ilall**-< w(a)-x. 

Let x0 be the center of Q, and 6 be its sidelength, Qo be the cube which is centered 
at the origin, with sidelength 1, and Wo=W(Xo+6X). It is easy to see that woEAx, 
and C(wo)=C(w ). Set 

b(x) = 6"a(xo +hX). 

We see that b(x) is a H~~ atom, and it satisfies 

(3.1) supp (b) c Qo, 

(3.2) f Q. b(x) dx = O, 

1 
(3.3) IIb(x)ll.. 

wo(Qo)" 

We also have 

where Tx is given by 

(Ta) (x o + 6x) = 6-"Tx (b)(x), 

Tlf(x) = p.v. fRae'e(6x-6Y)K(x--y)f(y) dy 

which leads to II TalIL~= IITxbllL~o. 
To prove Theorem 1, we first prove the following: 

Proposition 3.1. Let P(x) be a polynomial with VP(O)=O, w6 A1. 
H~ atom a(x) we have 

(3.4) IIT(a)IILL ~- C, 

Then for any 

where C is a constant, depending only on the degree of P(x) and the Ax constant of w. 

The preceding argument shows that it is sufficient to prove Proposition 3.1 
for H i atoms which satisfy (3.1)--(3.3) (with w(x) replaced by Wo(X)). 
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4. Proof of Proposition 3.1 

We list a few lemmas that are needed in the proof. 

Lemma 4.1 (Ricci---Stein, II11). Let a(x)=~l~l~_aq~x ~ be a polynomial in x, 
x~ R", with degree d. Suppose e < 1/d, then 

f l x t~ l la (x ) l -~dx  ~_ A~(~tot~a Iq, I) -~- 

The bound A~ depends on n and e, but not on the coefficients {q,}. 

The second lemma is of  van der Corput type. 

Lemma 4.2. Suppose ~b(x)=~l,l~_k a~x ~ is a real-valued polynomial in R* o f  
degree k, and (/~C o. Then for  any c~, I~1 =k, a ~ O ,  we have 

If. e'*'x'O(x)dxl ~ C(~I)[aet[ -ilk. 

Proof o f  Lemma4.2.  Since O~b/Ox~(x)=~!a~, there exists a unit vector 
such that 

I(r "v)kqS(x)l => cla~!. 

By making a rotation, if necessary, we may assume that r = (1, 0, ..., 0). Therefore 
we have 

O k ~b (y) _->_ c la~l. 

The lemma follows by invoking the one-dimensional van der Corput's lemma. See 
also [12]. 

Lemma 4.3. Suppose that P(x)  is a polynomial o f  degree m, m~_2, and P(x )=  
zal~l<=m a~X . Let (o and ~ be two functions in Co(R* ). Define Tj by 

(T~f)(x) = ~, (2- ix)  fR" elF(x-r) q~ (Y ) f (Y )  dy. 

Then we have 

[ITjfI[L~<R.,a~) <= C2J"/2(la=l 2J(m-1)) -(1/4(rn-1)) IlfllL,<a*,a~), 

for  any ~ with I~1 =m. 

Proof of  Lemma 4.3. We fix ~0 with I~01 = m  and a,o~0. Consider the operator 
Tj* Tj, which is given by 

Tj* T j f ( x )  = fR" Lj(X, y ) f ( y )  dy, 
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where 

L,(x, y) = (x) q, (y) f i,. ~-(2- jz )  dz. 

-- 2 j" ~p (x) cp (y ) fR .  e iu'~2j'-y)- e~2j~-x)) ~2(z) dz. 

Now we can write 
P(2J z - y )  - P(2 l z -  x) 

: ~'[~1 =rn a~ Za+~, =~, lal =rn- x Car 2i(m-~)za(XT-yy) 4- R(x, y, z) 

= 2J(m-~) Zlal=m-~ za ~Vl~t =~ Carap+~(x~-Y~)+ R(x, y, z), 

where Car are nonzero constants and R(x, y, z) is a polynomial whose degree in z 
is strictly less than m - 1 .  Take ]~0, ~0 such that I/~01=m-l, Ir01=l and P0+ 
Yo=~o. We note that 

"-~zJ (P(2'z--y)-- P(2Jz--x)) = 2 -/~m-') ZI~I =x (/~o!) Cao,a#o+r(x'-y'). 

By Lemma 4.2, we have 

(4.1) IG(x,y)l  ~_ C2J"2 - j  [Zl~l=xCao~aao+~(x'~-y,)l-c~/cm-X))lq~(x)q~(y)l. 

On the other hand, we have the following trivial estimate: 

(4.2) [Lj(x, Y)I ~- JR, ~b2(2-Jz) dz ~- C2J". 

Combining (4.1) and (4.2) we get 

ILj(x, Y)I =< C2J" 2-J/~ [.~lrl = 1  C#oraao+,(x'~-Yr)[ -u/~~ le(x) e(y)I1/L 

Applying Lemma 4.1, we obtain 

(4.3) sup JR. [L~ (x, y)] dx ~_ C21" 2-J12 [a~o I -o/~(--  a)), 

x where we used the fact that ~ <  1. Similarly we have 

(4.4) sup f a*  IL~(x, Y)I dy ~_ C2~" 2 -j/~ la,ol-t~/~('-a))- 

Inequalities (4.3) and (4.4) imply that 

IITAL,_.~, ~_ C2J,/~(2~o ~-a) la,ol)-~/4~m-a)), 

where the L ~ norm is the usual L ~ norm with Lebesgue measure. This proves the 
lemma. 

Remark. Estimates that are similar to Lemma 4.3 were used in [9], where T~ T~* 
was considered. The approach taken here is to consider T/* Tj instead, thus producing 
the sharp bound needed in our problem. 
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I.emma 4.4 ([5]). Let w~Ax. Then there exists an e>0,  such that wX+'CAx. 
e and the A1 constant o fw T M  depend only on the A1 constant of w, not w itself. 

We now begin our proof  of  Proposition 3.1. Assume that a is a H~ atom that 
satisfies (3.1)--(3.3). We shall prove (3.4) by using induction on m, the degree of  P(x). 

When rn=0,  the phase function in T is identically zero. So T is the usual 
Calder6n--Zygmund singular integral and (3.4) holds ([14]). We now assume that 
(3.4) is true for deg (P)~_rn- 1. 

To prove that (3.4) is true when the degree of P is m (m_->2), we write 

(4.5) e ( x -  y) = ZI~I =,~a~(x -y)~ + Pro-1 (x - y ) ,  

where deg (Pm_l)~_rn-1. Take ~0 with I~01--m such that 

[a,ol = max la, I. 

Let b = m a x  {[a~,l -l/(m-1), 2}. We break the integral into two parts: 

(4.6) I[T(o)IILL <-If~x>br(a)(x)w(x)dxl+lf~x~T(a)(x)w(x)dx[---11 + Is. 

The first step is to show that 11~_C. If b = 2 ,  the estimate follows from a stan- 
dard argument: 

(4.7) / 1  = lf, i r(a)(x)w(x)dxl ~_ ]IT(a)IILL (flxl~w(x)dx)l/~ 

~_ C IlallLL w(Qo) 1/~ ~_ C, 

where we used (2.2), (3.3) and the weighted L v estimate for T ([6]). 
Now assuming that b =  I~o I-1/(~-x), we have 

1111 ~- C + T(a)(x) w(x) dx 

<_ c +L~,x1~b [fa* e 'P*- ' 'x - 'K(x-y)a(y)  dy w(x)dx 

+ [e'Cec~-')-P'-~c~-')-'r'*' "~" "'~')- II Ig(x--y)a(y)l dyw(x)dx. 

The first integral is bounded, by our inductive hypothesis, while the second 
integral is bounded by 

(4.8) C z~l~l=,.laA f~_t~l~_bfe ~ [(x--Y)=--x~[ Ix-yl"  la(y)l dyw (x) dx 

C ZI,I=,. la,[ Ix l  . . . .  lw(x)dxl(fQla(y)iay} 
C ,~l~l=m la~l ~'s~_~,~_~ 2J(m-1)w(Qo)w(Qo) -x ~- C la~01 b "-1 = C. 
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Now we prove that I2<=C. Assume that 2Jo=<b_<-2 ~0+~. 
~o=1 on Q0. We also choose r  ~ such that 

and 

We have 

(4.9) 

Let ~0ECo(R* ), and 

supp(~b) c { x <  Ix[ < 4 } ,  ~ ~ 0 ,  

4 , ( x ) = l ,  tbr l~_lxl=~2.  

z~ ~ f ~j~_~ JR. IK(x-y) - K(x)[ [a(y)[ dyw(x)dx 
w ( x )  . C w ( x )  

+ f,x,~_b If.. eiP'x-')a(y)dy - ~  ax ~ W-~o i f t ~ _ ,  Ixl.+l dx 

f w(~ 2J~-t~l-~+' Ix--i- ~(2-Jx) , jae 'P(~- ')q~(y)a(y)dydxlf]  + ZJ~--Joj 

~x/(l+O 
<-C+Z,~joIITAa)HL,,....,,,,(f,,<,,,I~2,+, w'+'(x) dx~ , 
- = _ I x l " O + ' )  

where Tj are given as in Lemma 4.3 and p =  1 ++_~2. Invoking Lemma 4.4, we 
obtain 

wl+~(x) dx ~ C2 -jn(l+e)+jn 1 
f~,-~l~I-~,+, Ixl "(a+*) - 2J" f,'aIxt~-, '"wl+'(x)dx 

C2 -jn~ ess inf wl+~(x) -< C2 -j'~ w(Qo) TM. 
Ixl<2J+t 

Note that 

]ITj]IL-..,L" ~ Co 

Using Lemma 4.3 (taking ~=~o) and interpolation we get 

I[T~(a)llL~(n,, a:o ~- C2Jn/v ([a~ol 2J(m-1)) -(1/2p(m-x)) w(Oo) -1, 
and 

(4.1 O) I2 < C + C  x" ~ 2j,/ptla , 2J(m-1))-(1/2p(,,-a))w(Qo)-12-~,~l(1+O.wo(Qo) -~- ~ J - J o  L ~ol 

C -l-J C laaJ -(1]2p(m-1)) 2 j ~ j o  2 -J/2p ~__ C"}-]aaol-(l/2p(m-1))b "ll2p ~ C. 

Combining (4.7), (4.8) and (4.10), we see that Proposition 3.1 is proved. 

5. Proof of the main theorem 

We shall need the following theorem ([14], [15]): 

Theorem 5.1. Let u'EA1, Rj be the Riesz transforms, i.e. 

i~j ~ ,  ~., 
( R y f f (  0 = - ~ j ( Q  j = 1 . . . .  ,n. 
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Then for  H 1 fC w, u,e have 

(5.t) t(RsfIi~L <= C [If][H~, and 

(5.2) tlfl[u~ " ItfitL~,,+ z ~ = l  tt Rjftlz~,v. 

Now we are ready to prove Theorem 1. Let f~  H i ,  {a j} be a colIection of  H~ x 
atoms and {25} a sequence o f  numbers such that 

f ( x )  = Z ~  2~ a s (x), 
and 

ZT= ~ 12jI ~ C llflIm'~ �9 

By Proposition 3.1, we have 

(5.3) [lTfl[zL <= Xj I),sl IIT(as)I[LL 

_~ C Z j  [2j[ =< C Ilf[ln~ �9 

Since T commutes with Ry, we also have 

(5.4) I}RjTfIIL5 = IIT(Rjf)IILL ~- C IIRyfIluL, J = 1 . . . . .  n, 

where we applied (5.3) on R j ( f ) .  By (5.1) we obtain 

(5.5) IITflILL + ~-=~ [1Rj (Tf)]] L',~ <= C }l f })HL" 

Now invoking (5.2), we get 

}lTfllnL <= C I l f l ln . .  

This completes the proof  of  Theorem 1. One may check to see that all the constants 
that appeared above depend only on the degree of  the polynomial and the Ax con- 
stant of the weight. 
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