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Abstract. We define a partition of Z into intervals {1j} and prove the Littlewood--Paley in- 
equality Ilfl[p~_CpLlSf[lp, 2~p<**. Here f is a function on [0, 2n) and Sf=(~IAjl2) xt2, 
A~ =fZ1j. This is a new example of a partition having the Littlewood--Paley property since the 
{Ij} are not of the type obtained by iterating lacunary partitions finitely many times. 

Introduction. In this paper we define a certain partition of  the integers into 
intervals, and prove that it has the Lit t lewood--Paley properly (1.1). The other 
inequality ( ~ )  in (1.1) was proved by Rubio de Francia [4] for arbitrary intervals. 

All previously known interval partitions satisfying (1.1) were obtained by 
iterating lacunary partitions, as far as we are aware [1], [2], [3], [5]. The present 
partition cannot be obtained in this way, as was shown in [3]. Briefly, the argu- 
ment there was that (finitely) iterated lacunary partitions do not contain arbitrarily 
large "trees" of  intervals, whereas the present partition is itself an infinite "tree". 

There is, however, a different relationship between lacunarity and the present 
partition. This is that the set of  lengths of  its intervals is a finite union of  lacunary 
sequences. This fact is not used in our proofs directly, but it suggests a way to gen- 
eralize our partition. We discuss this at the end of  the paper. 
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Definitions and statement of result. Let E and F be finite nonempty subsets of  
Z. Define 

I(E) = max I x - y l ,  
x, yEE 

6(E) = min Ix-yl, 
x, y E s  
x ~ y  

d(E,F)= min [x-yl. 
x~E,  yEF 
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Fix 2>0 and a sequence 2k_~2, k = l ,  2 . . . .  , and define sets Ek by 

El = {o, 1}, 

E~ = mk Ek + tk, 

t ;k  + l = { a k ,  u u E :  , 

using sequences ink, tkEN, a~, bk(Z,  such that 

1. 6(Eft) >= 2k l(Ek), 

2. d(Ek, E~) ~_ 2k[I(ED+I(E~)], 

3. ak < Ek < E~ < bk, and 

d(ak, Ek), d(E~, bk) >-- 2k l(Ek w E~). 

(A glance at Fig. 1 shows that all of these conditions can be satisfied very easily.) 

i I 

Fig. 1. Construction of Ek + 1. 

Define E~=  [-Jk=l Ek. Clearly EkIE.., and each Ek has a natural binary tree struc- 
ture. We can represent this as in Fig. 2, which shows a subtree E of E~, its first 
node A, and its left and right subtrees F and G. 

In Fig. 2 and later, we make the convention that names of subsets of E.. such 
as E, F, G also denote the collections of intervals between their points. So we think 
of A as the difference: 

,4 = E \ ( F u  G) = {A1, As, As}, 

consisting of the 3 intervals shown in Fig. 2. 
Clearly the following properties hold at each node A : 

(El) ,~(G)>-2t(F), 
(E2) I(As)=--d(F, G)~_2tl(F)+I(G)], 
(E3) l(dl), I(A~)~_21(FuG). 

For consistency, the intervals Aj should be thought of as real intervals [x, y) 
with length l ( A j ) = y - x .  If a trigonometric polynomial ~" is given, A, F, G, etc. 
will also denote partial sums of ~" in the natural sense (we refer the reader to Fig- 
ure 2 again): 

d = A x + A s + A s ,  
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Fig. 2. Tree structure. We define A= {Aa, At, ds}. 

We also have 

since in fact the intervals of E., cover Z, as seen from step 3 of  the construction. 
For a set of integers A = {ns} (where n i < nj+O and trigonometric polynomial f  

define fs=fzt,~,.~+l~ and 
Sa(f)  = (z~ [fits) x/2- 

We will simply write S for S E ,  so with the notation above we have 

S ( ~ )  = ( Z ~  E. IAjI') x/~. 

Theorem 1. I f  2k~ ~o, then there exist Cp>0 such that for all ~r, 

(1.1) Ilarll~ ___ Cp IIS(:)llo, 2 ~_ p < oo. 

We prove this by taking p=2n, n = l , 2  . . . . .  For n fixed, we prove (1.1) for 
any tree satisfying (E1)--(E3) with a sufficiently large 2 (depending on n). Then, 
a routine diagonal argument followed by norm interpolation proves the theorem. 



300 Kathryn E. Hare and Ivo Klemes 

The p=2n proof uses induction on n, with an induction hypothesis involving 
weighted norms which is stronger than (I. 1). 

We also need finite refinements of the given partitions of the integers. For 
A={nj}, call $1 an m-refinement of Sa if each interval [nj, nj+l) is partitioned 
into at most m subintervals, A' consists of the endpoints of these intervals, and 
SI=Sa, .  Clearly 

(1.2) sA( ) 

and it is well-known [1] that also 

(1.3) IlSx(~-)[l~ ~ C(p, m)Ilaa(~-)llp, I < p < ~o. 

Define the degree of a trigonometric polynomial w, denoted deg w, to be the 
least integer l such that 

supp ff c [ -  l, l]. 

The notation f f  denotes the integral over the circle [0, 2n) with respect to 
standard Lebesgue measure. Our induction on n occurs in the proof of the following 
theorem. 

Theorem 2. For each integer n>=l, there exist C > 0  and mEN such that, i f  
2~3n in (E1)~(E3), then for some m-refinement $1 o f  S we have: 

(2.1) fw I l 
whenever w~_O and ~ are trigonometric polynomials satisfying 

Y =  ~ajEnAj and degw < 6(E) =_ rain I(Aj) 
A j E E  

for some subtree E of  E~ O.e. supp.~c: [-)nj<n A j). 

Lemma 1. Let 6 ,  J1, I~, J2, Is . . . .  , Js ,  Iu+l be adjacent intervals in Z (see 
Fig. 3). Let f be a trigonometric polynomial with suppf~IxuJxwI2w...wJN~;IN+x, 
and write f=FI+ AI +F,+... + aN+FN+I, where Fk=fgt~, 3~=fXs . 

Let v>=O be a trigonometric polynomial with 

deg v < rain l(Jk). 
k 

Then 

(*) f v. ~ + ~  IFkl' ~ 2 f v [fl" + 70 f v. ~ 'Lx  IAd'- 

: ~ i ~ , I " - I  

Fig, 3. The case N =  4. 
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/'roof. 
f ,, I:1' = f vff = f ,, Z (tF~: + I,~,l ~) 

+ 2 R e f v - Z  (&+, 2k + as, Fk + ak,~,,+,), 

(since all other terms in the expansion o f f f  are orthogonal to v). 
But 

1&+,2kl ~- ~ IF~+,I~+~ Izl,l", 

IzlkFkt _~ ~l&l~+~-lzlklL 

IAk-4k+ll ~-- lakl~+ Izlk+~l", 
forany  ~>0 Therefore, 

f r i l l '  >= (1 -4 , ) f v  Z 1~12+ (1- ,'--4} fv Z la~l'. 
1 So choosing ~=~- gives 

f v ]f[2 ~ ~ f  ~ Z l&l*- 35 f ~ Z la: ,  
which gives ( , ) .  

Proof of Theorem 2. For n--1 write ~ - = ~ +  o~- where ~ and ~'~ consist of 
alternating A~ (i.e. moving from left to right, every second Aj is 0). These alternating 
A 1 are orthogonal with respect to the weight w, so we have 

fw : 1 '  ~- 2fw : 1 : +  2fw :~1 ~ 
= 2 f wS(~)~ + 2 f ws(s~:, 
= 2 f w s ( : ) ~ .  

Now take n_->2 and assume that theorem 2 is true for all integers y, l~_y_~ 
n - 1 .  Fix a version of E** satisfying (E1)--(E3) with 2_~3n. We wish to replace 
(E3) by 

(E3') 2nl(Fu G) >- l(AO, I(A~.) >= nl(Fw G). 

This involves taking a 2-refinement and then re-defining A, F, and G: Introduce 
points a', b' at a distance of nl(FuG) to the left and right of each F and G respec- 
tively, as shown in Fig. 4. When this has been carried out at all (except terminal) 

E 

f :  G 

1 t , - . - - . - ,  [ ~ I I 

F" G" b 
,k t y "  

E I 

Fig. 4. 
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nodes, let E'.. consist of all the a' and b', with the obvious tree structure, inherited 
from E_. For a subtree E '  define 

a" = E%(F'  va O3, 

and A~, A~, a~ analogous to Fig. 2. Properties (El), (E2), (EY) are easily verified 
for the AS, F', G'. If an m-refinement of S is further 2-refined by using the new 
points a', b" then a 2m-refinement of SE- is produced. Similarly, if the points a, b 
are used to 2-refine an m-refinement of SE- then a 2rn-refinement of S is produced. 
So by (1.2) and the induction hypothesis, we may assume that inequality (2.1) holds 
for 1 ~y<-n-1, with S~ replaced by a 2m-refinement of Sz" (and a different con- 
stant C). Conversely, the induction step will be established if we can prove that (2.1) 
holds for the integer n, with S~ replaced by some m-refinement of S t ' .  This will be 
our objective. 

To simplify notation we return to the original prime-free notation, and assume 
(EY) instead of (E3). The upper bound in (EY) is used below for (3.2) and (3.3) 
in Lemma 4. To begin the proof of (2.1), write ~ - = ~ +  o~-, where eft and ~ar con- 
sist of alternate levels of E, as shown in Fig. 5. 

AX 

A A 

A & A 

A A z~ A A  A A A 

Fig. $. The splitting .~= ,~1 + ~z .  

Without loss of generality, we assume that ~r= ~ or ~r = ~ r .  We then have 
the property that for every node d with subnodes At, riG: 

(2.2) A = 0  or A v = A o = 0 .  

Now for every (non-terminal) A define Pa by 

IF+ A + GI ~' = IFI ~ + IGI ~ + Pa. 
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Iterating this equation, we obtain 

(2.3) I~[ ~ = ~'4~E ~ ,  

if for the terminal d we set P4=IA[ ~. 
For the non-terminal A we have 

(2.4) Pa = z~ KF~ GcF~ ~P G~, 

where K=K(a, b, c, or, fl, ~), and the sum is over integers a, b, c, ~t, fl, ~=>0 with 
a+b+c=~t+fl+v=n, a + u < 2 n ,  c+ ~< 2 n .  

Lemma 3. 

]f we ] ~_ c ,  f w((3.1)+(3.2)+(3.3)+t3.4)) 

where (3.1)---(3.4) denote the following terms 

(3.1) IFI~X[GI ~7, for integers x,y~_l, x+y=n, 
(3.2) IFI~"-~IAI z, 
(3.3) IGI~"-~IAI ~, 
(3.4) IAi ~. 

Proof. This is clear for the terminal A since then Pn= IAt~=(3.4). For non- 
terminal A we have the following 3 types of  terms in (2.4). 

1. Suppose b + fl = 0. Then a + ~t-> I and c + ~_~ 1. Suppose a + ct = I with 
say a =  1, ~=0.  Then we have the term 

f w o"-lG . = f (FG) = 0 

since deg w+(n-  1)l(G)-<d(F, G) by (E2). Thecase a=O, ot=l is just thecomplex 
conjugate. Similarly, if c + ~ = l  with c = l ,  ~ = 0  we have 

f wF "-~ GF" = f w(FF)"-a(O~ v) = 0 

and the conjugate c=O, ~,=1. We can therefore assume a + ~ 2 ,  c+~-~2, and so 

[F~162 I = [F[~ �9 IGI'+~ 

is majorized by type (3.1) terms. This is clear if a + g  is even, because then c + 7  
is also even. If  it is odd, so is c+~,  and we substitute IFIIGI~_IFI~+IGI 2, noting 
that a+ct>_-3, c+T>_-3 in this ease. 

2. Suppose b + f l = l .  Suppose a+c t=0 .  Then we have ( b = l ,  16=0) 

f w a o  G" = fw(oG)"- l (Ga)  = o, 
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or  its conjugate ( b = 0 ,  f l=  1). To  see that  it is 0 consider (2.2). I f  A = 0  it is clear. 
Otherwise AG=0,  so that,  for  the polynomials,  we have 

G --- F I + A ~ + G 1  = F1 + G1, 

where F~ and G1 denote  the left and right subtrees o f  G, as polynomials.  In terms o f  
the trees we state this as 

G = FIUG1,  
and therefore  

t(G) = t(F~ u GO, 

d(G, A) = d(Fx w G1, A). 
Now by (E3'), 

d(Fx w G~, A) >= nl(F~ w G1), 

so clearly dee w + ( n -  1) I(G) < d(G, A), which implies that  the polynomial  w (GG)"-s 
is or thogonal  to  the polynomial  (GA). 

Suppose c + 7 =0 .  Then  similarly we have 

f wV"-laF"= f w(Fr)"-~(Fa) = O, 
or  its conjugate.  

We can therefore  assume a + ct =-p =~ 1 and c + ~ = q ~ 1. Then  

IF~AbGCF~3 a OVl = IFI p IGI q I,tl, 

and either p is odd  and q is even or  vice versa, since p + q + 1 = 2n. Say p = 2r + 1 is 
odd  and q=-2y is even. Then  

IFI p IGIqIAI = IFI ~' IGIZ'lhl IFI 

_~ IFI ~+2 IGI2y+ If l  ~' IGI ~y IAI ~ 

<= IFI~,+~ IGIaY+ IFI ~"-~ IAI-~ + IGI z.-21/112, 

which are o f  type (3.1), (3.2), (3.3) respectively. 

3. Suppose b + fl > 1. Then  

IF'A b GCF=A a 0r[ = IFI p IGI q IAI "+z 

for  p, q, r>=O, p + q + r = 2 n - 2 .  This is at  mos t  

IFI z'-= IAI z + IGI ~ - z  IA I S + tA I zn-z IA I s, 

which are o f  type (3.2), (3.3) and (3.4). 

Lennna 4. I f  tA is any of  the terms (3.1)~(3.4) ,  then 

Z~,Efw,~ 
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is majorized by the sum of  

(4.1) cfw I ~ l ~ S x ( ~ ' )  2~ 

over integers O~_x~_n--1, x + y=n.  Here SI is some m-refinement with m depending 
only on n, and C is a constant depending only on n. 

Proof. 

(3.4) ta=lA[ 2". Recall that A=A~+Az+A3 as in Fig. 2. So 

~ g l A I  2"<- C ~aj~E IztjI ~<- c ( ~  IAII~)" = CS(~) ~. 
S is of  course a 1-refinement of  S. We will use several different refinements below, 
so the S~ in (4.1) can simply be defined as their common refinement, by inequal- 
ity (1.2). 

(3.2) t~ = IF[ 2"-2 IAI 2 <= 3 [FlZ~-2(lAd 2 + 14313+ IAzI~). 

/ ~  t Z~x 3 
| I I I I i| 

A F B 

F i g .  6 .  

Consider Fig. 6 as the N = 2  case of  Lemma 1. Here : ~ = A + A I + F + A 3 + B  
with A defined as everything left of  A1, and B everything right of  A 3. By (E3'), we 
can partition A~, d e, A3 into 10n or fewer intervals t~ with 

deg w -~- ( n -  2) l(F) + l(6) < I(A3). 

So if v=wlFI2"-4[~l 2, then 
degv<l(A3) < I(AI). 

For each 6, Lemma 1 gives 

fw IFt ~-~ 1612 = fv IFI 2 ~ f v(tAt'+ IFI ~ + Int z) 

2fv  1~-12 + 7 0 f  v(IAll~ + IAsl 2) 

~ 2 f v  I~1~+ 70fvS(~) ~. 

Substituting v and using the inequality a"-2b<=~a"-l+c(~)b"-~ taking a = l F [  z, 
b = l ~ l  ~ or S(~-) 2, and e small, it follows that 

f wlFi3.-~16l~ <= C f w(l~t3"-~+S(:)~"-~)l~t 3. 
Summing the latter over A EE and the 10n fi's we obtain 

Z ~  ~ f wt~ ~_ c f w (I ~1 ~"-3 + s ( ~ ) ~ -  ~) s ,  (~)~ 
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where $1 is the refinement determined by the 6's. The latter is clearly majorized 
by 2 terms of  type (4.1). 

(3.3) t~=IGI~-*IAI ~. This is similar to the previous term and will be omitted. 

(3.1) t~=IFI~IGI  "~, x , y > - l ,  x + y = n .  

Let ~=wlFI  ~'. Then by property (El), 

deg ff ~_ deg w + x l (F)  < ~ (G). 

Since l_~y_~n-1, the induction hypothesis gives 
some Sx depending on y. 

Write S~(G) in terms of intervals 6~ G, 

Sl(G)" = Z ~  I~1 ~" 
we have 

f ~IGI~'~_C f ~SI(G) zy for 

F ~ o ~ 1 7 6  Z,,eEIFI~SI(G) ~" = Z~EI I Z6~ ..... 6,.c~I~iI ~ la, l ~ 

Here 61, ..., 6yCE means intervals of the refinement Sx (which is defined on all of 
E**) lying in E. Fix such 6z . . . .  ,6y. Then G331, ..., 6y means all subtrees G con- 
mining {6z, ..., cSy}. These G must be of the form 

~i ~ C~ ~...~ ~M ~ {~i, ..., 6,}. 

Let Fz, A ~>, F~, A ~), ..., FN, A fs> be the corresponding F's and nodes A. Recall 
that each ,I has 3 intervals 

zl = {zll,/I~, ,t3} 

as in Fig. 2. From this we deduce Fig. 7. 
In Fig. 7 the H~ are by definition the spaces between A~ k) and 31(~+z). We also 

define A to be everything left of A~ z), and B everything right of A~ N), so that 

G~ 
k., -i, ~(" 

G~ 

Fig. 7. The N= 3 case. Lengths are not to scale. 
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t(,t~,)) > t (a~ ' ) )  > t (ap>)  > ... > t( ,qN)) => ~t(GN), 

1 t ( z ~ N ) )  ' t(Fx) < t(f~) < . . . <  t(FN) ~_ T 

by properties (El), (E2), (E3"). 
Setting 

v w l ~ d 2 . . . I , ~ l  ~ N = (~'k=l IFk[2) ~-1, 

we have 
deg v =< deg w + yl(GN) + (x -- 1) I(FN) < I(A~N)). 

So by Lemma 1, 

2 N fw I,~11 z . . .  I,~,1 Z k = ,  IFkl 2x ~- fw 1611 ~ ... 16~12 ( Z  [Fkl')  x 

= fvZ levi ~ <= fv( I .412  + Z IFklZ+ Z Ia~12+ Inl ~) 

~_ 2f v I : l  ~ + 7 0 f  o 2 (IA~k)12 + IA~ ~) I s) 

~_ 2 f vl~l~ + 7O f vS(:y.  
Substituting v it follows that 

fw I,~1 ~ ... [6ylZ z~ IFk[ z~ _<-- cfw 16,lz (1~'12~ + S(~r)~). 

Summing over ~51 . . . .  ,6yEE, the result is 

2 ~  ~ f w IFI zx IGI 2, -< c f ws~(:)Z,(l:lX~+ s(:)~x), 

and this again reduces to (4.1) type terms. 
This completes the proof  of  Lemma 4. 

Completion o f  proof  o f  Theorem 2. Combining Lemmas 3 and 4, we have proved 

f wl: l  ~" <- c Z "-~ f ~=o wl~12~S~(:) 2~"-~" 

Again using inequalities of  the form 

a~ b y <- ~a ~ + c(e) b" 

( x + y = n ,  x ~ _ n - 1 )  for small e>0,  we obtain (2.1). 

Proof  o f  Theorem 1. Taking w = l  in Theorem 2 and using (1.3) gives 

II:ll~, ~- c. l lS( : ) l l~ ,  
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whenever 2k=>3n in the construction of E~. If ~k --~c~ then 2.k~3n eventually. 
Let S, be the square function of the tree whose non-terminal nodes coincide with 
those of E~ above the first level where 2.=<3n in (E1)--(E3), and whose terminal 
nodes are the intervals containing the left and right subtrees below this level. Then 

since S is a certain m,-refinement of S,. By interpolation, we obtain (1.1) for all 
2 ~ p <  ~o. 

Further Remarks.  

1. The proof of (1.1) also works when S is a classical lacunary square function; 
Aj=[n  i,  n j + l ) u ( - n j + l , - n i l ,  where nj+i/ni>=2.>l. In fact it becomes much 
simpler, since the terms IFleXlGI 2r of Lemma 3 do not arise. One just iterates 
the equation 

IFj+~l~" = I F j + A j I ~ "  = I F j I 2 " + P ~ .  

2. In paper [3] we defined sets Eo~ without using the a k and b k of the present paper, 
i.e. just by 

Ek + , = Ek u E~. 

It turns out that the present E~ is a "lacunary" refinement of the former, and 
therefore both satisfy (1.1), by the classical vector-valued Littlewood--Paley in- 
equality. 

3. In Theorem 1, it probably suffices if 2k~2 for some 2.>0. This would require 
more splitting of ~ and a more detailed iteration expansion than in Lemma 3. 
Our purpose here was just to show the existence of some version of E~ satis- 
fying (1.1). 

4. One generalization of E~ is the following: We observe that if we rearrange the 
intervals of E~o in order of increasing length, we obtain a classical lacunary 
partition (by properties (E1)--(E3)). So a natural conjecture is that any partition 
which is a rearrangement of a lacunary partition has the Littlewood--Paley 
property. A proof of this conjecture may be possible along the lines of the 
present paper. Such a rearrangement has a natural binary tree structure, 
obtained by always choosing the longest interval as the node. However 
property (El) does not hold in general. This probably means that the terms 
IFI2XIGI ~y of Lemma 3 must be estimated directly (without the induction hypo- 
thesis) by further expansion. 

5. It would be very nice to find a less computational proof of Theorem 1. 
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