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1. Introduction 

Let 0 denote the heat operator ~ '~=1D~-D, in R"+I= {p=(x,  t): xER", t~R}, 
and let 0* denote its adjoint ~ = 1  D~+Dt. Concepts relative to the adjoint equa- 
tion will carry the prefix 0". Let D be an open subset of  R "+1, and let Go denote 
its Green function unless D = R  "+~, in which ease the subscript is omitted. Then 
for each fixed qED, the function GD( ' ,  q) is a non-negative supertemperature 
on D and a temperature on D \ { q } ,  whereas Go(q, .) is a non-negative 0*-super- 
temperature on D and a 0*-temperature on D \ { q } .  In [14, 15], it was shown that 
the characteristic integral mean values of  subtemperatures over surfaces defined by 
G(q, �9 )=(4nc) -"/~, are convex functions of  c -"f2. Here we extend this result to 
integral mean values over surfaces defined by Go(q, �9 )=(4nc) -"/2, for any D which 
is 0*-Dirichlet regular. Since it is possible that the gradient of  GD(q, �9 ) may vanish 
at points where Go(q, �9 )>0 ,  we cannot assume that the sets where GD(q, �9 ) =  
(4he) -"/z are smooth surfaces for all values of  c, only for (Lebesgue) almost all values. 
Thus our integral mean values are not in general defined for all c, a n d  what we 
prove is that there is a convex function ~0 such that they are equal to q~(c -"/2) when- 
ever they are defined. The means also have the other, more elementary properties 
that are well-known in the case where D = R  "+x. Our methods are generalizations 
of  those in [15], not least because we lack sutficient knowledge of  the Dirichlet 
regularity of  points on the surfaces to use the methods in [14]. The convexity theo- 
rem enables us to generalize the other results in [14], on volume means, the exten- 
sion of  the mean value theorem for temperatures, and unique thermic continuation 
o f  subtemperatures, from the case of  R "+1 to a general D. Some of  these results are 
then used to prove a necessary and sufficient condition for thermic majorization 
on D, analogous to the one given for R " •  ~,  a[ in [15]. 

In [2], Bauer proved that the measure on the surface where G(q, �9 )=(4nc)  -"/2 
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that appears in the characteristic integral mean value of  subtemperatures, is obtained 
by sweeping the unit mass at q onto the set where G(q, .)=<(4rw) -n/~. Here we 
are again able to extend the result from R n+x to a general D. Bauer's proof  uses 
knowledge of  the Dirichlet regular boundary points on the surface, which is not 
available in the general case; ours avoids this by using the convexity theorem for 
the surface means. A more recent proof  for the case of  R "+1, given by Netuka [9], 
requires knowledge of  the stable boundary points on the surface, which is again 
lacking in the general case. In outline, our proof  follows that of  Bauer. 

Finally, we turn our attention from integrals over surfaces where GD(q, �9 ) =  
(4nc) -"/'~, to suprema over sets where GE(' ,  q)=(4rtc) -"/2, for an arbitrary open 
set E. Here we establish an analogue of  the classical three spheres theorem on sub- 
harmonic functions. Since we do not require any smoothness of  the sets over which 
the suprema are taken, we need not assume any Dirichlet regularity of  E, and we 
do not have to avoid exceptional values of  c. Suitable versions of  the standard con- 
sequences of  the three spheres theorem [10, p. 131] are deduced, as well as a new 
maximum principle that involves only approach to r)E along sequences {p j} such that 
Gn(pj,  q)--,-O. 

A typical point of  R ~+1 will be denoted by p or (x, t), whichever is convenient. 
We put 

n V,~u = (D~u . . . .  ,D,,u), Vu = (V.~u,D,u), ( x , y )  = Z i=l  x, Yi, 

and use II �9 II t o  denote the Euclidean norm in both R n and R ~+1. We use a to denote 
surface area measure. When no measure is specified, the term 'almost everywhere' 
(or 'a.e.') is to be interpreted with respect to Lebesgue measure. The terms 'increasing' 
and 'decreasing' are used in the wide sense. Integrals with respect to (n+ l)-dimen- 
sional Lebesgue measure are denoted by f dp, and those with respect to n-dimen- 
sional Lebesgue measure by f ,ix. A temperature is a solution of  the heat equation 
Ou=O, and supertemperatures and subtemperatures are the corresponding super- 
solutions and subsolutions (see [12, 13] for details; also [6], where they are called 
superparabolic and subparabolic functions). A subtemperature w is said to have 
a thermic majorant on a set E, if there is a temperature u, such that w<=u on E. 

2. Preliminary discussion of surfaces and means 

Let D be 0*-Dirichlet regular, and let poCD. There is a positive, bounded 
0*-temperature h on D such that 

(I) G~>(po, �9 ) = G(p,,, �9 )-/~, 

so that Go(p0, ")EC~'(D\{po}).  (The function h is the PWB solution of  the 0"- 
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Dirichlet problem on D with boundary values G(po, .) [13; 6, p. 331].) It there- 
fore follows from Sard's theorem [11, p. 45] that, for almost every c>0 ,  the set 

(2) {pED: GD(Po, p) = (4he) -"/z} 

is a smooth regular n-dimensional manifold. We call such a value of c a regular value. 
(To avoid confusion, the potential-theoretic notion of  regularity is always referred 
to as Dirichlet regularity.) For  an arbitrary value of c>0 ,  we put 

12o(po, c ) =  {pCD: GD(Po,p) > (4nc) -'';2} 

(omitting the subscripts D if D•Rn+x). For  any regular value of  c, the union of  

{Po} with the set in (2) is Of2o(Po , c). Since Go(po, �9 ) is lower semicontinuous, 
any f2o(po , c) is open. The assumption that D is 0*-Dirichlet regular implies that 
Go(po, .)  can be continuously extended to zero on OD, so that Oo(po , c )~D.  
In view of  (1), there is a positive constant 6 such that 

(3) G ( p o ,  �9 ) - 6  <- G D ( p o ,  �9 ) <= G ( p o ,  �9 ) 

on D, so that if d satisfies (4nd)-"/"=(4nc)-"/2+6,  we have 

(4) f2(p0, d) ~ Oo(P0, c) c= O(Po, c). 

Hence f2o(po, c) is bounded. Furthermore, f2D(po, c) is connected; for otherwise 
it would have a component K that did not contain f2(po, d). Then we would have 
G(po,p)<-(4nd) -'/2 for all pEK, so that GD(po, -), a W-temperature on K, would 
be bounded on K because of  (3). Since GD(po, �9 )=(4nc)  -"/2 on OK\{p0}, it would 
follow that Go(Po, ")=(4nc)  -n'2 throughout K, contrary to the definition of  

f2o (Po, c). 
If  c is a regular value, the outward unit normal v=(v x, v,) to Ol2D(po, c) is 

given by the standard formula 

v = - VGD(po, �9 ) HVGD(PO, �9 )11-1 
We shall need to integrate (V.G.(po, .), vx) over Of2D(po, c) with respect to 
surface measure. Now, 

(VxGo(po, �9 ), v~) = -IlV.~Go(po, �9 )1] ~ IIVGo(po, �9 )I]-1 

is obviously dominated by IlVao(po, -)11, and so is bounded outside any neigh- 
bourhood of  p0=(x0, to) (relative to 9Oo(po, c)). It follows from (4) that 

(5) 2n(t 0 - t) log (d/(to - t)) <= [Ix0 - x[[ 2 =< 2n(to - t) log (c/(to - t)) 

whenever p = ( x ,  t)~OOD(po , c)\{p0} , so that for such p we have 

IlVxG(po, p)ll 2 : G(po, p)2 I[x0- xllZ/4(to- 02 

(4nc)-~ n log (d/(to - t))2(t0 - t), 
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which implies that IJVxG(po,p)l[--~o as P-~Po through that set. Recalling (1), and 
noting that IlVhll is bounded on OI2o(po, c), we deduce that I lVxaD(po,P) l l  ~ 

[IV~G(po,p)l[ and [IVGo(Po,P)II"~tlVG(po,P)II as P-~Po through Of2o(po, c)\{po}. 
Therefore 

- (V~ GD(po, p), v~) ,~ IIVxG(po, P)ll z IIVG(p0, P)II--1 = a(po, p)G(po, p), 

say, where 

(6) Q(po, p) = llxo- xl/m {4 llxo - xl)2(to - 0 2 + ([Ixo - xll 2 -  2n( to-  t))~} -a/2 

- {  . 4 ( t~  (1 2n( t~  f }  -x/~ 
Ilxo-xl? ~- Ilxo-XP 

< [  2(to--t) ( 1 -  I 

in view of  (5). Since the last expression tends to 1 as t ~ t o - ,  we deduce from O) 
that (V~GD(po, �9 ), vx) is bounded on Ot2o(Po, c)\{po}, and is therefore surface 
integrable. 

Our first theorem introduces the integral means that we shall study, via a prop- 
erty of temperatures. Given ponD and any regular value of  c, we put 

po, c) = f Ko(Po, P) u(p) do(p) 

whenever the integral exists, where 

Ko(po, �9 ) = IIV~Go(Po, �9 )ll 2 IIVGo(po, �9 )11-1 

= - (VxGD(Po,"), v~) 
on OOa(Po, c)\{p0}. 

Theorem 1. Let E be an arbitrary open set, and let D be an open set which is 
O*-Dirichlet regular. I f  po and co are such that ~o(Po, co)C= E, and u is a temperature 
on E, then 

U(po) = ~D(u, Po, c) 

for every regular value o f  cE]O, Co]. 

Proof. Let A be any bounded domain whose boundary is smooth enough for 
the divergence theorem to be applicable, and whose closure lies in E. It follows from 
Green's formula for the heat equation that, whenever v is a O*-temperature on a 

neighbourhood of  .4, we have 

(7) -ofO~ ((uVx v - vv , ,  u,  v,,) + uvv,)  d~r = O, 
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where (vx, vt) is the outward unit normal to OA. In particular, if v =  1, 

(ST f~  (-(vx., v ~ ) + u v , ) a ~  = o. 

Let cbe  a regular valuein ]0, co], and put f2= I2o(P0, c), t2t=t2c~(R"X] - 0% tD, 
and B t = (0s n (R" •  - o% t D (whenever the intersections are non-empty). Applying 
(7) to the components of  s t, with v=GD=Go(po,  .) ,  we obtain 

(97 f,~ ((uv~6o- a~vx., v~) + . a : , )  d~ = o. 

On cbt=OO,\B,  we have v ,=0 ,  v t= l ,  and da=dx ,  so that 

f ~  uGodx  = - f . u(v~ oo, v~) d a - ( 4 n e ) - " / '  f .  (-(v~., ~)+,,~,)d~, 

since Go=(4nc)-"/2 on Bt. 
We now make t ~ t 0 - .  In view of  (4) and (8), 

Since (V~GD, v:,) is bounded on 0t2, 

- f .  u(vx~.,. , .  ,,~)a~ -~ ~t.(U, po, O; 

so it remains to prove that 

(10) 
Now, 

f . ,  UGD dx --- u(po). 

fo, u(p) Go(p) ~ -  U(po) 

= f~, (u(p)- u(po))GD(P)dx + u(po)(loGo(p)dx- I), 
and the first integral on the right tends to zero, because u is continuous and 

f~, a~(p)ax <= fR.• ~(pTax = i. 
Also, in view of  (3), 

f .  (p) dx < 1 f .  G(p) dx + f .  ~ dx. 0 < -- 1-- Go = - 
t t t 

It follows from (4) that the Lebesgue measure of  ~t tends to zero, and that 

f , G ( p ) d x  ~ 1. 

Therefore (10) follows, and the theorem is proved. 

Notation. For  generality, we shall sometimes work with domains whose bound- 
aries consist of  two surfaces of  the form Of2o(po, c). I f  0 < c l < c a ,  and c~, ca are 
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regular values, we put  

Ao(Po, c1, c2) = t2o(po, c2)\Oo(Po, cO. 

It is sometimes convenient to write AD(po, O, cz) for t2o(po, cz). 
The constant 2n+lnn/~n-1 appears several times, and we denote it by x. .  Its 

occurrence is partly due to the following lemma on the transformation of  integrals. 

Lemma 1. Let F be a measurable function on Ao(Po, cl, cz), where O<=cx <c2. I f  

f AD(po, Cx, q) Fdp 
exists, then it is equal to 

. ;1 f ~  r -"'~' _1 dr f~o(,o., r II VG o (P0,")l] -1 da. 

Proof. Let g=Go(po, ") and po=(x0, to). Given any z<to ,  define g, on 
R "+1 by putting g,(x, t)=g(x, t) if (x, t)EAo(po, cl, c2) and t<-z,g,(x, t)= 
(4nCl) -"12 if  (x,t)EO,(po, cO and t ~ z  (if c ,>0) ,  g,(x, t)=(4rtc~) -~/2 if  
(x, t)ERn+l~,Oo(Po, e2) and t<=z, and g,(x, t)=g,(x, z) if  t>z .  Then g, is a 
Lipschitz function on R n+l. Now define F, and f ,  on R "+x by putting F,(x, t)--- 

F(x, t) if  (x, t)EAo(po, Cl, c2) and t_<-z, F,(x, t ) = 0  otherwise, and f ,=F,  IlVgll-X 
on R n+l. Noting that Federer uses the term 'integrable' to mean 'has a well-defined 
integral', we can apply the coarea formula [7, p. 249] to the positive part  o f f .  and 
obtain 

f . . .  A + Ilvg.II ga : f . d ~  k . , = , f .  + d.,  

where L(z, cx)=g~-l({(X}). Thus  

= f(4~rc~ )- '12 
f ~o(~o,c,.*,, F,+ dp a (,,,q)--/, a~, f ~,,.~, f,+ da, 

v - 1  fct,~,--(nl2)--I d'~, f f +  da. 
= ~n d q  t - t  ja f jo (po ,  r ) J ,  

As T-*to-, the positive parts of  F, and f ,  increase to those of  F and FiIVgl]-I re- 
spectively, so that the monotone convergence theorem yields 

f .o,.o.O,,~, f + ap = ~;l f 2; r-'"/=I-l dr f o.o,... F+ HVgH-ldo ". 

A similar argument can be applied to the negative parts, and the result follows. 
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3. An essential lemma 

The following result is fundamental to the entire paper. We say that a function 
is smooth if  the partial derivatives that occur in 0 exist as continuous functions. 

Lemma 2. Let p0ER "+1, let 0<c1<c2 ,  let w be a smooth function on an open 
superset E of  Ao(po, cl, c~), and let f2o(c ) = f2o(po, c) and Jgo(c)=~gD(w, Po, c) for 
all regular values of cE[cl, c~]. Then there is an absolutely continuous function f 
on [cl, c~], such that f(c):~t[o(c) for all regular values of  cE[cl, c~] and 

(11) ~n c(n/2)+l f ' ( c )  :- f o o,c, 

for almost all cE[cl, c~]. If, in addition, Ow>=O on E, then f" exists everywhere on 
[cl, c~], is absolutely continuous there, and satisfies 

(12) ~n (C(n/~)+l f ' ( c ) ) "  = c-(nl~)-l f o~D(c ) I[VGo(p0, �9 )1l-10w da 

for almost all c. 

Proof. We require certain Green identities, which can be found in [15]. I f  v 
is a smooth function on E, and A is a domain, with closure in E, for which the di- 
vergence theorem is applicable, then 

(13) 

and 

f a (wO*v+(Vxw, V~v) - w D ,  v)dp = f OA w(V~v, v~) da 

f ( Ow + (vxv, Vxw)-wD, )ap = f (v w, 

The latter formula will be used only in the case where v =  1, that is, 

(14) f a ow @ = f oA (<Vxw, vx>- wv,) a~. 

Let c be a regular value in ] e l ,  C2] , and let AD=AD(pO, el, c). We want to use 
(13) with A=AD, but with v=(4n)-lGD(po, .)-2/", and the smoothness of  this 
choice of  v breaks down at Po. We therefore use an approximation argument. For  
t<to, let 

B~(O = a~o(cO n (R" • ] - 0% tD, 

a~(t) = O~D(c) c~ (R" • ] -  ~ ,  tD, 

v(t) = A~, c~ (R" • 1 -  0% tD. 
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Applying (13) on V(t), with v=(4n)-~GD(po, .)-2/,, we obtain 

2 2 2v . 2DtGo 
G~ 7~--~v {Lw' V ~ G D ) + ~  vw] ap 

= Lv(o 2vW(vxGD' vx)da= 2 ( f  f ] vw nGD n an,(,)-- B~(O~'-~O KD(p~ " )da 

as t-*-t0-, since Kv(po, �9 ) is integrable. To show that the integral over V(t) 
tends to the corresponding integral over AD, we first note that, since v<=c on AD, 
the integrand is dominated by a multiple of  

[[V~ GoII2G~a + Ilv~ G~II GDI-[ - ID, GoI G51. 

In view of (1) and (4) (with c replaced by cl), there is dx > 0  such that 

IIVxGDII <= ][VxGII + HVxhll ~- llV~ GII G-l(4~dO-"/2+ llVxh[I -~ Ca(llVxGll G - a +  1) 

on AD, for some constant (71. Therefore 

live, GDll G~ a --< C1 (llVx GI[ G -x + 1)(4~c) "/2, 
and similarly 

ID, GDI G~ ~ <= C2(ID, GI G-~ + 1) 

on AD, for some constant C~. Hence the integrand is dominated by a multiple of  

IIV~ GII 2 G -2 + IlVx GII G -~ + IO, G[ G -1-1- 1, 

whose value at (x, t) does not exceed a multiple of  

(15) [Ix0 - x[l~(t0 - t) -2 + 2n( to -  t) -x + 1. 

This expression is obviously integrable over V(t) for any t<to. Furthermore, in 
view of  (4) there is d l > 0  such that ADC=A(po, d~, c), and if (x, t)EA(po, d~, c) 
we have IIxo-xll2>=2n(to-t)tog (dd(to-t)); therefore, if to-t<d~e -1 also, then 
the expression in (15) is majorized by 

2 flXo- xlt (to- t) + 1, 

which is integrable over fl(Po, c), by [12, Lemma4].  We can therefore make 
t~ to -  and obtain the identity 

(16) L o  t ,, v w _  ,,,_,,, ,,w 
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We now want to apply Lemma I to the left side of  (16). I f ,  is a regular value in 
[Cl, c], then Gn t)I2o(,) we have 

G~o vw--A-~o (V~,w, VxGo) +---h-d~ ~ IIVGol1-1 

_ f ! / ! +  1) KD 2, / 
-- I,n ~n w , w + - - ~ o  ((V~w, vx)-wv,))  

= ~.(~ +§ +,.r w, v~)- wv,), 

since v = , ,  v=--VGDIIVGolI% go=l[V,,Goll211VGol1-1 and Go=(4n,) -",'~. The in- 
tegral of this expression over 0f21,(, ) is 

~ { 1 +.~ ) ,"+1`g1,(, ) + x. ,t.,s)+1 f o~~ ((V~ w, v,,) - wv,) at,, 

so that from Lemma 1 and (16) we obtain 

(17) ct./2) + 1 ̀g1, (c) - c~ "/2) + 1 "tto (cl) 

-- (1 + A  - ,}f;v"/'`gl,(,)dv+,~zlf;, drk,,.(,,((V=w,~)-wv,)a,. 

Since (17) holds with c=c2, the right side of  (17) defines an absolutely con- 
tinuous function of c on [cx, c~]. Therefore 07)  enables us to extend `gv(c) to an 
absolutely continuous function f on [cx, c~] such that 

c(.l') + X f(c)  -- c~'l') + l f(cl)  

= {§ 1If;: ,n"2f(,)d,--[-J,~nlfr d, fo,,~ ~,,)-wv,)a,, cl 

for all c6[cl, cd. The function f i s  differentiable a.e., with 

(C (n/2)+ l f (c ) ) '  = ( ~  Ol- 1) cn'2*(C) -t- X;  1 Lfl . (c)  ((vI  W, Vx) -- WPit ) do', 

which establishes (11). 
We now take a regular value of c~]c~, c2], put A1,=A1,(po, cl, c) again, and 

apply (14) with A =At, to obtain 

(18) L~ ow ap = L . ~  (<v.w, 

With the extra hypothesis that Ow>=O, we can apply Lemma 1 to the left side of 
(18) and obtain 

f Ao Owdp = ~;1 I : ,  -r , dr -- f0O~ IIVGoll -~ Ow da. 
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It now follows from (11) and (18) that, for almost all cC[c~, cz], 

(19) g.(C ̀ n/2,+a f" (C)__C(n/9.,+ l f" (Ca)) : 24 l f~ ]  .}~--(n/2,--a d~ f ,..,.) IIVColl- Ow a~. 

(Since we can vary Cl and cz slightly without affecting the statement of the lemma, 
we may assume that ( l l )  holds when c6 {c~, c2}, and then 09)  holds with c : c z . )  
The right side of  (19) defines an absolutely continuous function of  c on [ca, c~], 
so t h a t f '  coincides a.e. with an absolutely continuous function g on [ca, cz]. Then 
f is the indefinite integral of g, so that f ' (c )  exists and (19) holds for all cE [ca, cz]. 
Since f ' = g ,  it is differentiable a.e., and (12) follows from 09). 

4. Mean values of subtemperatures 

In this section we establish various properties of  the means ~r Po, c) when 
w is a subtemperature. We also extend these properties to volume means, and establish 
inequalities between the volume and surface means. The volume means are defined by 

~/fD (u, P0, c) = (1 + (2/n)) (4he) -("/z)-afao(p0 ' c) ao(po, �9 )-(2/n)-2 ][Vx ao(po," )ll~u de 

for any function u on 12o(po, c) such that the integral exists. As before, the open 
set D must be 0*-regular, but ~o(u, P0, c) is defined whether c is a regular value 
or not. 

Theorem 2. I f  w is a subtemperature on an open set E and poe E, then Jib(w, Po, �9 ) 
is increasing and real-valued on the set o f  regular values o f  c such that ~o(Po, c)C= E, 
and W(po)=inf~go(w, po, .). Furthermore, for every c such that Oo(po,C)C=E, we 

have w(po)<=~fD(w, Po, c). 

Proof. Let I={c>O: ~o(po, c)C=E}, and suppose first that w is smooth, so 
that Ow>-_O. By Lemma 2, if Cl, c2 are regular values in I with c1<c2, there is 
an absolutely continuous function f on [ca, c2] such that f(c)=JgD(w, po, c) for 
all regular values of c6 [cl, cz], and 

• c("'~)+l f"  (c) = f  oo,c, ((vx w, wv,) 

for almost all c~[c~, c~]. Applying (14) with A=s we obtain 

f"  (c) = o(~) Ow dp O. 

Therefore f is increasing on [ca, cz], and it follows that ~o(w,  po, �9 ) is increasing. 
If  now w is an arbitrary subtemperature, given any cEI we can find a decreasing 

sequence {w~} of  smooth subtemperatures with limit w on a neighbourhood of  
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~o(P0, c), by [6, p. 281]. For each j', the function .,r .) is increasing, so 
that the same is true of  -gD(W, po, �9 )=limj_,..  dlo(wj,Po, �9 ). 

The upper semicontinuity of  w easily implies that .1Co(w, Po, c)~w(po) as c ~ 0  
through regular values (cf. [12, p. 406]), so that w(po)=infJgo(w, po, �9 ). 

The next step is to prove that w(po)<-:/:o(w, po, c) for all c~L as this is used 
in the proof  that ,go(W, po, .) is real-valued. We begin by showing that 
~o(1,p0, c ) = l  for all c. By Theorem 1, for almost all 7 we have 

(20) 1 = f ~o,r, Ko(po, �9 )da. 

Multiplying by ~:,/2 and integrating over [0, c], we obtain 

1 = ( r  1)c -("12)-1 fo:,'arLOo..Koa. 
= 1 ) c - ( "  ' ' ) - 1  z-`2l", Kod6. 

Since Ko=IIVxGolI2IIVGoll -~, it follows from Lemma 1 that 

1 = (-~ + 1 ) c-(./z) -1 ~. fDo(C) (4n) -" -1 G~2- (2/.) l[ Vx Go l[ 2 dp = ~f'o ( 1, Po, c). 

Since w is locally bounded above, it follows that "/:D(w, P0, c) is defined for every 
c~L Therefore, if we replace (20) by the inequality 

W(po) f K o ( p o ,  �9 ) w da, 

a similar calculation yields w(po)<=~o(w, po, c) for all c6I. 
We now show that ~o(w, po, c ) > - ~ o  for all sufficiently small c. Recall that 

there is a bounded 0*-temperature h on D such that Go(po, . )=G(p0 ,  . ) - h .  
Choose Co such that D(P0, co)C=D. Then IIVxhll is bounded on ~(P0, co), so that 

(21) IIV~ Gall 2 <_- 2(llV~all~+ llV~hll z) ~_ 2 IIV~GII2+K 

on ~(Po, Co), for some constant K. Since h is bounded, there is 6 > 0  such that 
GD(Po, .)>=G(po, . ) - 6  on D. Ifcx is chosen such that 0<e~<_-Co and (4nex)-":>= 
22, then on O(Po, c0 we have both (21) and G(po, �9 )>=22, so that 

G(~I ")+z =:> 2 - ( 2 / , ) - 1  G(2/,)+2 _ 6(9/,)+2 => 2-(2/,)- ~ G(2/,)+~, 
and hence 

llVxGoll 2 a~ ~2/.)-2 ~ Kx llVx GI[ 2 G -c~:')-~ + K2 

for some constants /s163 Since f2o(po, c)Gf2(po, c), it follows that 

~/'o(w-,po, c) ~_ KJ: (w- ,Po ,  c)+K3c-~ f w - d p  
.I rio(C) 

for all cC]0, c~[, where/s is a constant and : denotes ~o with D = R  "+~. Since 
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w is locally integrable on E by [12], and ~e'(w, p0, c)ER by [14], we deduce that 
~o(w, P0, c)ER whenever eel0, c1[. 

We can now show that clio(w, Po, �9 ) is real-valued. If  eel0, c1[, we have 

(22) (~ + I) c-("12~-' f o  ~"/2"#~ (w, Po, 7) d7 = ~ (w, Po, c)E R, 

so that dlv(w, po, .) is finite a.e. on ]0, ca[. Since •tD(w, po, .) is increasing, it 
is therefore finite at every regular value of  eel0, c1[. Since w is locally bounded above 
and (20) holds, dgo(W, po, c)ER whenever it is defined. 

Theorem 3. Let  PoED, let O<cx<c 2, and let w be a subtemperature on an 
open superset E o f  4 o (Po, cl, Cz). Then there is a function ~o, either finite and con- 
vex or identically -co ,  such that Jlo(w, po, c)=~o(c -"/z) for  all regular values o f  
cE [Cl, c2], 

Proof. Suppose first that w is smooth. By Lemma 2, there is an absolutely 
continuous function f on [ci, c2] such that f(c)-=dlD(w, po, c) for all regular 
values of cE [c~, c2], f "  exists everywhere and is absolutely continuous on [Ca, cz] and 

~z (c(,/~)+l f , (c)) ,  = f , i lvao(p0, .  )[I-10w da 

for almost all c. Since Ow>=O, for almost all c we have 

(23) (c("'z)+a f '(c))" ~- O. 

The function 2 on [ca, c2], defined by 2(e)=c"/2f(c), is differentiable everywhere, 
with 

2"(c) : (n/2) e("/2)-l f (e )  § c"/Zf'(c). 

Hence ~.' is absolutely continuous, so that for almost all c we have 

2"(c) = -~ {-~- 1) c("/~)-2 f (c) + nc("/2)-~ f "  (c) + c"/' f "  (c). 

I f  A(~)=2(~/"),  then A'(~)=(2/n)2"(~21")~ c2/")-~ for all ~, and 

4 ~(2/n)--2 At'(~) = .~- ((~--..{-1)~ft(~2/n)-~-~(2/n)+lftt(~2/n)} 

for almost all ~. Writing c=  ~2/,, this becomes 

A"(r = 4_. ~(z/,)_2 ((~+ 1)c"/ ' f ' (c)+c("/z)+xf"(c)) 

so that A"(~)=>0 for almost all ~, by (23). Since 2' is absolutely continuous, so is A'. 
Therefore A" is the indefinite integral of  A", so that A" is increasing and A is con- 
vex. Thus c"l~f(c) is a convex function of  c "/2, which means that f (c)  is a convex 
function of c -"/2. This establishes the result for smooth subtemperatures. 



Mean values of subtemperatures over level surfaces of Green functions 177 

I f  w is not  smooth,  take a decreasing sequence {w j} of  smooth subtemperatures 
which converges to w on a ne ighbourhood  of  ,4D(Po, cl ,  c2). Then for each j there 
is a convex function ~oj such that  J//o (w~, P0, c ) =  ~pj (c -"/2) for all regular values o f  e. 
Therefore  

J4D( w, P0, c) : lira .Alp(W j,  Po, C) = l im  ~Oj(C -"/2) 

at the regular values. 

Corollary. Let poED, let 0 < c 1 < c 2 ,  and let w be a subtemperature on an open 
superset E o f  Ao(Po, Cl, c2). I f  v is defined on Of 2o(Po, c) for all regular values of  
cC[cl, c2] by 

v(p) = Jll~(W, Po, Go(po, p)-2/ ,) ,  

and v is not identically -co,  then v can be extended to a O*-subtemperature on 

Ao(po, Ca, e2). 

Proof. By Theorem 3, there is a convex funct ion tp such that  v (p) = ~o (Go (Po, P)). 
Since ~ooGo(po, .)  is defined on Ao(po, cl, c2), and GD(po, ") is a 0~-temperature 
there, it follows from the dual o f  [12, Theorem 2] tha t  q~oGD(po, �9 ) is a 0*-sub- 
temperature  on Ao(Po, cl, e2). 

We now establish that  the volume means o f  subtemperatures have similar 
properties to those o f  the surface means, and derive inequalities between the two. 

Theorem 4. Let w be a subtemperature on an open superset E o f  Oo(Po, co). Then 
(i) ~o(w, po , �9 ) is real-valued and increasing on ]0, Co], 

(ii) there is a convex function ~ such that ~o (w, Po, c) = ~ (e-"/2) for all c~ ]0, co], 
(iii) for all regular values o f  c in ]0, co], 

~D(w, Po, c) <= dto(w, Po, c), 

(iv) i f  x=((n/2)+ l) -2/", then for all regular values o f  • in ]0, y.co], 

.a'~,(w, po, xc) = *'o(w, Po, e). 

The  p r o o f  o f  Theorem 4 is similar to that  o f  [14, Theorem 3], and is based 
upon the formula in (22). When D = R  "+1, it is known that  x is the best possible 
constant  in (iv), but  we are unable to establish this in general. 
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5. Some consequences of the convexity theorem 

We first use Theorem 3 to obtain the conclusion of Theorem 1 under weaker 
hypotheses. 

Theorem 5. Let w be a subtemperature on an open superset E o f  Oo(Po, Co). 
I f  w is a temperature on f2o(po, co), then 

w(po) = ,/to(w, Po, c) 

for every regular value o f  cC]0, co]. 

We omit the proof of Theorem 5, since it differs from that of [14, Theorem 4] 
only in minor details. 

The next result extends and, in a minor way, strengthens [14, Theorem 5]. 
The proof is necessarily different, and requires the concepts of upper and lower 
PWB solutions of the Dirichlet problem, and we refer to [6, p. 329] for a discussion 
of these. 

Theorem 6. Let w be a subtemperature on an open superset E o f  ~o(Po, Co), 
where co is a regular value. Then there is a unique subtemperature v on E such that v 

is a temperature on I2o(po,Co) and v = w  on E \ ~ o ( p o , c o ) .  Furthermore, v>=w 
on E, J[D(v, po, co)=J[(w, po, co), and on I2D(po, Co) the function v is the PIYB 
solution o f  the Dirichlet problem with boundary function the restriction o f  w to 

Of 2o(po, Co). 

Proof. Let f2= I2D(p0, co). Let {cj} be a strictly decreasing sequence of regular 
values with limit co, and for each j let f2j = t2o(po, cj). Then {f2j} is a contracting 
sequence with intersection 0\{p0},  and we can therefore suppose that 0 j ~ E  
for all j .  

Given j,  let F~ denote the class of all subtemperatures tt on E such that u<-w 
on E \ f 2 j .  If  u~Fj, then its restriction to f2j belongs to the lower PWB class on 
f2j for the restriction of  w to 0f2j, so that sup Fj<=_H~ on f2j, where _H i denotes 
the corresponding lower PWB solution. Since w is locally bounded above, there 
is a constant 2 such that J<  - i  < Hw Hw=Hw=2 on t2~ (where - J  denotes the corresponding 
upper PWB solution), so that w is resolutive, by [6, pp. 332, 115]. Therefore sup Fj <= 
H~, the PWB solution. On the other hand, if h belongs to the lower PWB class 
on t2j for w, then so does max {h, w}, which can be extended by w to a subtem- 
perature on E. This extension belongs to F i ,  which implies that H~=sup  Fj. By 
the parabolic fundamental convergence theorem [6, p. 314], the upper semiconti- 
nuous regularization wj of  sup Fj is a subtemperature on E. Clearly w~=w on 
E \ O j ,  w~ is a temperature on f2j, and wj_->w on E. The sequence {w j} is dec- 
reasing, so that the function w =limj_.~ wj is a subtemperature on E that ma- 
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jorizes w on E, coincides with w on E \ ~ ,  and is a temperature on t2 by the Harnack 
convergence theorem [6, p. 276]. 

Now let v be an arbitrary subtemperature on E that is a temperature on I2 
and equal to w on E \ O .  For  each . /we have v = w  on 0fJj\{p0}, so that HJ=HJ,~. 
Therefore, i fv j  bears the same relation to v as wj does to w, then vj=wj  on E\O f2 j .  
Since cj is a regular value, 0f2j has (n+  1)-dimensional Lebesgue measure zero, so 
it follows that v j = w  i on E, by [13, p. 276]. Therefore v<_-limj_.~ v i=w ~ on E. 
By Theorem 5, for any regular value of  cE]0, Co], we have 

By Theorem 3, 

(24) 

Since v = w = w~ 

~#.(v ,  po, c) = v(po) = ~r po,  Co). 

~/ilD(v, Po, Co) = lira ~llD(v, Po, c j). 
j ~  

on E \ O ,  we have 

~r Po, c j)  = ~#D(w~,  po, ci) 

for all j ,  so that by Theorems 3 and 5, 

~f/D(v, po, c) = !im d[o(w~ , Po, cj) = d/o(w~ , po, Co) = w~(po) = dr po, c) 

for every regular value of  cE]0, Co]. Since w - v = > 0  on E, it follows that w ~ = v  
on OI2o(Po, c) for all such c, and therefore w = v  on ~ because both functions 
are continuous on O. Hence v=w->=w on E. Since v = w  on E \ O ,  it follows 

from (24) and the corresponding formula for w, that J[D(v, po, c0)=J/D(w, po, co). 
Finally, by an argument similar to that used on f2j above, the upper sere/continuous 
regularization of  the function that is equal to w on E \ f 2  and to the PWB solu- 
tion for w on f2, is a subtemperature on E with the properties of  v, and is therefore 
equal to v. 

We are now in a position to generalize the results on thermic majorization 
in [15]. I f  ponD, we denote by A(po, D) the set of  all points p E D \ { p o }  which 
can be joined to P0 by a polygonal line in E along which the t-coordinate increases 
strictly from p to P0. By the dual of  [13, Theorem 14], we have 

A(p0 ,  Jg) = {pOD: Go(po ,  �9 ) > 0} = Uc>0 Oo(p0 ,  c). 

l_emma 3. Let  w be a subtemperature on an open superset E o f  A (Po, D) t_) {Po}. 
I f  ~/r Po, �9 ) is bounded above on the set o f  all positive regular values, then there 
is an increasing family {we: c is a regular value} o f  subtemperatures on E such that 
the function u=l im~_~ w~ is the least thermic majorant o f  w on A(po, D). Fur- 
thermore, 

u(po) = lim ~/go(w, Po, c). 
r  
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Theorem 7. Let w be a subtemperature on D. Then w has a thermic majorant 
on D i f  and only i f  there is a sequence {p j} in D such that 

D = U;=I A(py, D) 

and .-go(w, p1, �9 ) is bounded above on the set of  all positive regular values for every j .  
I f  w has a thermic majorant on D, and u is the least one, then 

u(p) = sup J /o(w,p ,  �9 ) = l imdlo(w,  p, c) 

for every pE D. 

The proofs of  these results follow those of  [15, Lemma 2 and Theorem 3]. 

6. The relation between the integral means and swept measures 

In this section we generalize a result of  Bauer [2] by proving that the measure 
KD(po, �9 )da is obtained by sweeping the unit mass at P0 out to the complement 
of  f2D(p0, c). We use the notation f - l i m  to denote a fine limit, that is, a limit 
in the coarsest topology in which every subtemperature is continuous. We refer to 
[6] for details on sweeping and fine limits. 

Lemma 4. Let E be an open superset o f  Go (Po, co), where c o is a regular value, let 
w be the difference o f  two subtemperatures on E, and let u be the P W B  solution of  
the Dirichlet problem on [2o(po, co) corresponding to the boundary function w. Then 

~r162 Po, Co) = f - -  lim u(p). 
P~Po 

Proof. Let w~ and w2 be subtemperatures on E such that w = w : - w 2 ,  and 
let u: and u2 be the PWB solutions of  the Dirichlet problem on f2D(po, Co) cor- 
responding to the boundary functions wx and w2, so that U=Ul-U2. Using Theo- 
rem 6, we can extend the temperatures ui to subtemperatures on E, which we also 

denote by ul, in such a way that Jgo(ui,Po, Co)=Jgo(wl,pO, Co). Let u=u:--u2 
throughout E. Then Theorem 5 implies that 

u(po) = ~r Po, Co) - ~o(u~, Po, Co) = dtD(w, Po, Co). 

By [6, p. 308], every g2(p0, d) is a deleted fine neighbourhood of  Po, so that the 
same is true of  g2D(p0, Co), in view of  (4). Since u is a difference of  subtemperatures 
on E, we have u(po)=f-limp_.po u(p), and the result follows. 

For  Theorem 8, we need some notation. We let eo denote the unit mass at P0, 
and for any set A we let e ca denote e0 swept out to Rn+l~-,4. 
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Theorem 8. Le t  poC D, let Co be a regular value, and let p~  o denote the prob- 
ability measure on O0o(Po, Co) given by dpOo=Ko(po, �9 )da. Then ~o" o__~o_Ca, where 
12 = f2 o (Po, Co). 

Proof. Let S denote the class of all continuous functions on Or2 that are the 
restrictions of  subtemperatures defined on open supersets of ~. By Lemma 4, given 
any g ~ S  we can find a sequence {pj} in t2 such that Pj~Po and p~?(g)~/t0~ 

o denotes the parabolic measure for ~2 at pj [6, p. 332]. From this sequence where #j 
of probability measures, we can extract a subsequence which converges vaguely 
to a probability measure 2g on 0fL by [1, p. 243]. Therefore po~ By a 
result of Boboc and Cornea [3] (for a simple proof, see [8]), there is flg~[0, I] such that 

2g = fig no + (1 - fig) e ct~ u tvo}) . 

Since {Po} is polar, it follows that 

(25) p~ = Pg s0(g) + (1 -/~g) ~o~~ 

L e t f b e  a continuous function on 0t2. By [13, p. 290], there is a sequence {f/} in 
S - S  which converges uniformly to f o n  0ft. By (25), for each i there is fli = f l s f  [0, 1] 
such that 

~g (f ,)  = /~ ,  ~o (f i)  + (l - /~ , )  so ~~ (f,) ,  
that is, 

/~, (~o~~ -) - s0(f,)) = ~0~~ (L) - ug(L)-  

Since f / -~f  uniformly on 0f2, we have v ( f l ) - ~ v ( f )  for every finite measure v 
on Of 2. If  eoC~ then co o so ( f ) = # o ( f ) ,  and we put ~z=0. Otherwise 

fl,-+ e c u ( f ) - - P g ( f )  
eco ( f )  _ io ( f )  ' 

and we label this quotient as. Then, in both cases, usE[0, 1] and 

u g ( f )  = ~s So(f)  + (1 - ~ s )  ~0r176 �9 

It now follows from a result of Bauer [2, p. 80] that there is ~E[0, 1] such that 
poD=~0+(1-~)~ c ' .  Since po D is absolutely continuous with respect to a, we have 

0 = pod ({Po}) = a + (1 -a)eoc~ ~ ~, 

so that a = 0  and " a - - c ~  / 'to - -  ~ 0  �9 

Remark.  It follows from (4), and the fact that Po is a Dirichlet irregular bound- 
ary point of every f2(p o, d) (see [12, p. 399]), that Po is also Dirichlet irregular for 
f2/)(po, co). We can therefore combine a result of Netuka [9, p. 7] with Theorem 8, 
and deduce that, for every lower bounded resolutive function f on ~12D(po, co), 
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the integral ~r P0, co) exists and 

(26) f -  lim Hi(p)  = J lo( f ,  Po, Co), 
P--Po 

which greatly generalizes Lemma 4. Netuka also gives an example, for the case 
D = R  n+x, of  a resolutive boundary function f s u c h  that the fine limit in (26) does 

not exist. 

7. The three sets theorem 

Let E be an arbitrary open subset of  R "+1, and let po~E. We shall prove a 
result analogous to the classical three spheres theorem on subharmonic functions, 
in which the spheres are effectively replaced by level sets of  the Green function 
Gr.  Such a result is not possible if we take the suprema of  a subtemperature over 
OOn(po, c) for c>0 ,  since it would imply their continuity as a function of c, and 
the characteristic function of  R" •  co, 0] is a subtemperature which would create 
a discontinuity. We therefore replace Of 2E(po, c) by Of2*e(po, c), where for any c > 0  

f2~(po, c) = {pEE: Ge(p, Po) > (4;rc)-"/2} �9 

�9 f2E(po, c) is Since Ge(',Po)<-G(',po), we have f2r(p0, c )~  ~2*(p0, c), so that * 
bounded. If  0<c1<c2,  we put 

A~(po, c,, c2) = a~(po, c2)\O~(po, Cl). 

The result seems to be new even in the case E = R  "+1. 

Theorem 9. Let w be an upper bounded subtemperature on A=A*e(po, cx, c~), 
and define w on dA\{po  } by 

w(q) = lira sup w(p). 
P~q'  pEA 

I f  the function 6e r is defined on [c1, c2] by 

seE(c) = sup {w(p): pEdOk(po, c) c~ (E\{P0})}, 

then there is a real-valued convex function q9 such that 6ae(c)=~o(c -"/~) for all 

c~ [cl, cd. 

Proof Let O<=d~<dz, and put R=A~(po,d~,d2) if  d~>0, R=f2~(po, d2) if  
dx =0.  I f  E is not Dirichlet regular, then dR n dE may not be empty. However, 
we can show that dR c~ dE is a parabolic measure null set relative to R. The proof  
is similar to one given for Laplace's equation by Brelot and Choquet in [5, p. 228], 
and again by Brelot in [4, p. 119]. That is, suppose that v is an upper bounded sub- 
temperature on R, such that lim sup v(p)<-O as p approaches an arbitrary point 
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of  Ec~OR from inside R. Choose x > 0  such that 

~r (sup v +) _~ (4rtdz) -"/2, 

and put f = - •  + on R, f = 0  on E",,R. T h e n f i s  lower semicontinuous on E, 
and since it satisfies locally the characteristic mean value inequality, it is a super- 
temperature on E, by [12, p. 408]. Whenever pER we have 

G~(p, Po) + f (P) >= (4nd~ -"/2 - ~ (sup v +) => 0, 

so that Gr(' ,po)+f>=O on E. Since G E ( . , p 0 ) = G (  . , p0 ) - r l  where r/ is a tem- 
perature on E, it follows from the minimality of  GE(" ,P0) [13, p. 267] that 
Gr( .  ,po)+f>-Gr( .  ,Po) on E. Therefore v<_-0 on R, so that ORc~OE is a parabolic 
measure null set. 

It follows that 5e~ is real valued. For  if See(d2)=- oo, then w ( p ) = -  oo for 
f2* all pE0 r(po, d2)n(E".,{po}). Since ORc~OE is a parabolic measure null set, 

there is a negative subtemperature w0 on R with limit - ~ at every point thereof, 
by [6, pp. 329, 108], and therefore w - s u p a  w+wo is a negative subtemperature 
on R with limit - o o  at every point of  OR\(Of2*E(po, dOc~E), making that a 
parabolic measure null set. But GE(-,p0) is a nonconstant, bounded temperature 
on R which is continuous and constant on O0~(po, dO c~ E, so that the remainder 
of  OR cannot be a parabolic measure null set [6, pp. 329, 110]. A similar argument 
shows that o~aE(dl)>- ~o. 

Now suppose that cx<=dt-<d2<=c~. The function u, defined for all pEE by 

u(p) = (4rcd0-"/z 5~E(dz) -- (4rrd2)-"/25pE(d0 + (Sae(d~) --SaE(dz)) GE(p, Po) 
(4~dl)-.,~_ (4naO-./, 

is a temperature on E"x.{p0} and is constant on OI2*E(po, c)c~(E",,{p0}) for every 
c>0 .  Therefore w - u  is an upper bounded subtemperature on A (since GE(. ,p0) 
is bounded on A), and for all qEOf2~(po, ci)n(E'~{p0}), iE {1, 2}, we have 

w ( q ) -  u(q) = w(q)-SaE(ci) <- O. 

Since (19A c~ OE)u  {Po} is a parabolic measure null set, it follows that w<=u on A, 
and hence on (~nE) ' , . ,{p0 }. Therefore, whenever dE[dl, d2], 

(27) 5e~( d) <= ( d-"/~ - d~"/2) 5eE( d') + (di-"/~ - d-"I2) 5"E( d~ 
d~"/3 _ d~,/~ 

as required. 

We can deduce from Theorem 9 appropriate analogues of  the standard con- 
sequences of  the classical three spheres theorem [10, p. 131]. 

Corollary 1. Let c2>0, and let w be a subtemperature which is bounded above 
on A~(po, Cl, c~) for each clE]O, c2[. Then w is bounded above on ~2~(po, cO i f  
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and only i f  

(28) lim inf c~/~ 6er(cl) <= O. CI~0 

I f  w is not bounded above on f2~(po, Cz), then there exist a sequence {p j} and a positive 
constant c5 such that 

(29) w(pj)  >= 6Ge(pj,  Po) -~ oo. 

Proof. If  w is bounded above on f2~(p0, c2), then (28) obviously holds. Con- 
versely, if (28) holds and O<d<d~<=c2, it follows from (27) that 

6a~(d) <= (d -"/2 - d f  "/2) lim inf d~/2 6ee(dl ) + 6r ) <- oq'e(d~.). 
didO 

Therefore 6a e is increasing, and hence w<=6ae(cz) on f2~(po, c2)- 
I f  w is not bounded above, then the lower limit in (28) is positive; denote it 

by 2c5(4n) -'/2. Then (4ncl)n/25ee(cl)>=8 for all sufficiently small q ,  so that 

sup {w(p) GE(p, Po)-l: pEOf2~(po, c1 ) n (E"N{po}) } ~ 6 

for such Cl, and (29) follows. 

Corollary 2. Let c1>=0, and let w be a subtemperature which is bounded above 
on A*e(po, c2, c3) whenever c1<c2<c~. I f  

(30) lira infSP~:(c3) =< 0, 

then the function C~-,Cn/2SeE(C ) is decreashlg on ]q, ~[. Furthermore, i f  (30) holds', 
q = 0 ,  and (4nc)"/26~E(c)-~2 as c~O, then w<--_2GE(.,po) on the set 

A*(po ,  E )  ' * c). = U~>o OE(p0, 

Proof. Suppose that c~<cz<c<c3. Then, by (27), 

~ ( c )  <- (c-"/~ - cr ~ ( c ~ )  + ( c f  "/~ - c -"/~) ~ ( c 9  
cf~/2 _ c ~ " 1 2  

Making c 3 - ~ ,  we obtain 

c f  ~/z See(c ) <- c-"/~'SeE(e2) + (cf ~/2 - c -~/2) lim inf~E(ca) ~ c -~/z S/'e(c2) q~o~ 

by (30), so that the function c ~ d ' / 2 ~ ( c )  is decreasing on ]Cl, o~[. 
For the last part, 2=sups>0 (4nc)"/2S/'E(c), so that 

sup {w(p) GE(D, p0)-l: p q O ~ ( p o  , c) ("3 (E~{po)) } ~ ,~ 

for all c>0 ,  so that w<:2Gz(. ,po) on A*(po, E). 

As a final corollary, we give a new maximum principle for subtemperatures, 
which is analogous to a theorem of Brelot and Choquet [5, p. 229] for subharmonic 
functions on manifolds. (The Euclidean case is also given in [4, p. 121].) 



Mean values of subtemperatures over level surfaces of Green functions 185 

Corol lary  3. Suppose that w is an upper bounded subtemperature on A*(p0,  E ) .  

I f  l i ra sup w(pi)<=O f o r  every sequence {pj} such that G~(pj ,po)-~O, then w<=O 

on A*(po,  E ) .  

Proof.  Given  e > 0 ,  there  is c such tha t  w_-<e on Of2~(po, c); for  otherwise,  

whatever  the  posi t ive  integer  k there wou ld  be qkCO~*E(Po, k)  such tha t  w(qk)>e ,  

so we would  have  G(qk ,po )~O a n d  l i m s u p w ( q k ) - > e ,  con t r a ry  to hypothes is .  

Therefore  (30) holds,  and  since w is bounded  above  on A* (P0, E )  we have e"/25a~(c)~0 

as c ~ 0 .  Hence  w-<0, by C o r o l l a r y 2 .  
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