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1. Introduction

Let 6 denote the heat operator 37 | D}—D, in R"*'={p=(x,1): x€R" tcR},
and let 6* denote its adjoint 3 | D?+D,. Concepts relative to the adjoint equa-
tion will carry the prefix 6*. Let D be an open subset of R***, and let G, denote
its Green function unless D=R"*!, in which case the subscript is omitted. Then
for each fixed g€D, the function G,(-,q) is a non-negative supertemperature
on D and a temperature on D\ {g}, whereas Gp(g, -) is a non-negative 6*-super-
temperature on D and a 6*-temperature on D\ {q}. In [14, 15], it was shown that
the characteristic integral mean values of subtemperatures over surfaces defined by
G(q, -)=(4nc)~ "%, are convex functions of ¢~"2. Here we extend this result to
integral mean values over surfaces defined by Gp(g, -)=(4nc)~"*, for any D which
is 8*-Dirichlet regular. Since it is possible that the gradient of Gp(g, -) may vanish
at points where Gp(g, -)=>0, we cannot assume that the sets where Gp(q, -)=
(4nc)~™* are smooth surfaces for all values of ¢, only for (Lebesgue) almost all values.
Thus our integral mean values are not in general defined for all ¢, and what we
prove is that there is a convex function ¢ such that they are equal to @(c™"*) when-
ever they are defined. The means also have the other, more elementary properties
that are well-known in the case where D=R"*'. Our methods are generalizations
of those in [15], not least because we lack sufficient knowledge of the Dirichlet
regularity of points on the surfaces to use the methods in [14]. The convexity theo-
rem enables us to generalize the other results in [14], on volume means, the exten-
sion of the mean value theorem for temperatures, and unique thermic continuation
of subtemperatures, from the case of R"*" to a general D. Some of these results are
then used to prove a necessary and sufficient condition for thermic majorization
on D, analogous to the one given for R*X]— o, g in [15].

In [2], Bauer proved that the measure on the surface where G(g, - )=(4nc)~"*
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that appears in the characteristic integral mean value of subtemperatures, is obtained
by sweeping the unit mass at q onto the set where G(gq, - )=(4nc)~™>. Here we
are again able to extend the result from R"*! to a general D. Bauer’s proof uses
knowledge of the Dirichlet regular boundary points on the surface, which is not
available in the general case; ours avoids this by using the convexity theorem for
the surface means. A more recent proof for the case of R"*’, given by Netuka [9],
requires knowledge of the stable boundary points on the surface, which is again
lacking in the general case. In outline, our proof follows that of Bauer,

Finally, we turn our attention from integrals over surfaces where Gy(q, -)=
(4nc)™"*, to suprema over sets where Gg(-, q)=(4nc)~"? for an arbitrary open
set E. Here we establish an analogue of the classical three spheres theorem on sub-
harmonic functions. Since we do not require any smoothness of the sets over which
the suprema are taken, we need not assume any Dirichlet regularity of E, and we
do not have to avoid exceptional values of c. Suitable versions of the standard con-
sequences of the three spheres theorem [10, p. 131] are deduced, as well as a new
maximum principle that involves only approach to 9E along sequences {p,} such that
Gg (Pj » q)—~0.

A typical point of R"*? will be denoted by p or (x, #), whichever is convenient.
We put

Vou = (Dyu, ..., D), Vu = (Vou, D), (x,y) = 2_ Xy

and use | -] to denote the Euclidean norm in both R” and R"*!, We use ¢ to denote
surface area measure. When no measure is specified, the term ‘almost everywhere’
(or “a.e.’) is to be interpreted with respect to Lebesgue measure. The terms ‘increasing’
and ‘decreasing’ are used in the wide sense. Integrals with respect to (n+ 1)-dimen-
sional Lebesgue measure are denoted by [ dp, and those with respect to n-dimen-
sional Lebesgue measure by [ dx. A temperature is a solution of the heat equation
Ou=0, and supertemperatures and subtemperatures are the corresponding super-
solutions and subsolutions (see [12, 13] for details; also [6], where they are called
superparabolic and subparabolic functions). A subtemperature w is said to have
a thermic majorant on a set E, if there is a temperature v, such that w=u on E.

2. Preliminary discussion of surfaces and means

Let D be 6*-Dirichlet regular, and let p,£D. There is a positive, bounded
6*-temperature & on D such that

(I) GD(I)O’ ') = G(p()a ')”h;
so that Gp(p,, +)€CT(D\{po}). (The function h is the PWB solution of the 6*-



Mean values of subtemperatures over level surfaces of Green functions 167

Dirichlet problem on D with boundary values G(p,, -) [13; 6, p. 331].) It there-
fore follows from Sard’s theorem [11, p. 45] that, for almost every ¢=0, the set

2 {peD: Gp(po, p) = (4nc)="%}

is a smooth regular n-dimensional manifold. We call such a value of ¢ a regular value.
(To avoid confusion, the potential-theoretic notion of regularity is always referred
to as Dirichlet regularity.) For an arbitrary value of ¢=0, we put

Qp(po, ¢) = {pED: Gp(py, p) = (4mc)™"%}

(omitting the subscripts D if D=R"+'). For any regular value of ¢, the union of
{po} with the set in (2) is 992p(p,, ¢). Since Gp(p,, -) is lower semicontinuous,
any Qp(p,,c) is open. The assumption that D is §*-Dirichlet regular implies that
Gp(py, -) can be continuously extended to zero on 0D, so that Q,(p,, )& D.
In view of (1), there is a positive constant § such that

3 G(po, -)—3 = Gp(po, *) = G(po. *)
on D, so that if d satisfies (4nd)~"*=(4nc)-"*>+3, we have
) Q(po,d) E Qp(po, ¢) & 2(po, ¢)-

Hence Q,(p,, ¢) is bounded. Furthermore, 2,(p,,c) is connected; for otherwise
it would have a component K that did not contain Q(p,, d). Then we would have
G(py, p)=(4nd)~"* for all peK, so that Gp(p,, -), a 6*-temperature on K, would
be bounded on K because of (3). Since Gp(p,, - )=(4nc)~"* on K\ {p,}, it would
follow that Gp(p,, -)=(4rc)™™* throughout K, contrary to the definition of

‘QD(p09 C).
If ¢ is a regular value, the outward unit normal v=(v.,v,) to 9Q2,(p,,c) is
given by the standard formula

v = —=VGp(py, - ) IVGp(Ps, I~

We shall need to integrate (V,Gp(p,, -), v,y over 8Qp(p,,c) with respect to
surface measure. Now,

(VxGp(Pos * ) vx) = — [V Gp(Po, IIFIVG(po, )I7*

is obviously dominated by [VGp(p,, ), and so is bounded outside any neigh-
bourhood of py=(x,, t,) (relative to dQp(p,, ¢)). It follows from (4) that

©) 2n(ty— 1) log (di(ty—1)) = [|xo~ x|* = 2n(t,— ) log (c/(to—1))
whenever p=(x, £)€02p(py, c)\{po}> so that for such p we have
IVxG (o> P)I* = G(Po, P)* X0~ XI*/4(to— 1)?
= (4nc) " nlog (d/(ty— 1)) 2(ty— 1),
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which implies that [|V,G(p,, p)| —~ < as p—p, through that set. Recalling (1), and
noting that |Vh]| is bounded on 08Q,(p,,c), we deduce that |V,.Gp(py,2)|~

V.G (po> P)I and [VGp(py, p)li~IVG(ps, p)|l as p—p, through 92,(ps, )\ {po}-
Therefore

_<VxGD(p0’ p)9 vx>’\' ”VxG(pO’ P)”2 ”VG(PO: p)”_l = Q(pOa p)G(pO’P)’
say, where
(6) O(ps>p) = ||xo—x||? {4 llxo — x||?(ty — t)2+(”xo‘xuz“zn(’o—’))z}_l/z
9 _ 2, —1/2
_ { 4(ty—1) +[1  2n(ty—1) ) }

llxo — x| %o — x[1*

= froe gy 1 'm]}/

in view of (5). Since the last expression tends to 1 as #—~7,—, we deduce from (3)

that (V.Gp(p,, -),v,) is bounded on AQp(p,, c)\{po}, and is therefore surface
integrable.

Our first theorem introduces the integral means that we shall study, via a prop-
erty of temperatures. Given po€ D and any regular value of ¢, we put

M@, P, )= [, Ko(po, P)u(p)de(p)

92p(pg

whenever the integral exists, where

Kp(pos +) = |V Gp(Pos I IVGp(Po, I

= —(V:Gp(po, + ), Vx)
on 92p(py, )\ {Po}-

Theorem 1. Let E be an arbitrary open set, and let D be an open set which is

6*-Dirichlet regular. If p, and c, are such that Q,(p,, ¢,)SE, and u is a temperature
on E, then

u(po) = Mp(u, po, ©)
for every regular value of c€]0, c,].
Proof. Let A be any bounded domain whose boundary is smooth enough for
the divergence theorem to be applicable, and whose closure lies in E. It follows from

Green’s formula for the heat equation that, whenever v is a 6*-temperature on a
neighbourhood of 4, we have

(7) faA (<uvx v— vvx u, vx) + uvv‘) do' = 0,
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where (v,,v,) is the outward unit normal to dA4. In particular, if v=1,
®) f 5, (—(Vstt, v,y +-uv) do = 0.

Let ¢ be a regular value in ]0, ¢;], and put Q=Q,(p,, ¢), 2,=QnR"X]— =, 1),
and B,=(0Q2) N (R"X]— s, f[) (whenever the intersections are non-empty). Applying
(7) to the components of Q,, with v=Gp,=Gp(p,, -), we obtain

) f o, (V.G — GpV,u, v, +uGpv) do = 0.
On ¢'=0Q\B, we have v,=0, v,=1, and do=dx, so that
f«pt uGpdx = —fa, u{V,Gp, v,)do —(dnc)~"? fB‘ (= (Veu, vy +uv,) do,

since Gp=(4nc)~"* on B,.

We now make #—7#,—. In view of (4) and (8),
f 5, (= Vet vy +uv,) do —~ f I (—=(Veu, vy +uv,)do = 0.
Since (V,Gp, v,y is bounded on 0,
—fB u<VxGD’ Vx>d0' - '//lD(u’pO’ C);

so it remains to prove that

(10) f@uGDdx — u(p,).
Now,
J 4 4(2) G(p) dx ~u(po)

= [, @) ~u(py) Go(p) dx+u(py) ([, Go(p) dx—-1),
and the first integral on the right tends to zero, because u is continuous and

ijD(p)dx ngnme(p) dx = 1.
Also, in view of (3),

0= l—f‘ptGD(p)dx = l—f¢tG(p)dx+f°‘5 dx.
It follows from (4) that the Lebesgue measure of @' tends to zero, and that
wa(p) dx ~ 1.

Therefore (10) follows, and the theorem is proved.

Notation. For generality, we shall sometimes work with domains whose bound-
aries consist of two surfaces of the form 9Q,(p,, ¢). If O<ec;<c;, and c,, c; are
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regular values, we put

Ap(po, 1, €2) = 2p(Po. Cz)\QD(Po’ ).

It is sometimes convenient to write Ap(p,, 0, ¢;) for Qp(p,, c3).
The constant 2"*'z"2n~1 appears several times, and we denote it by x,. Its
occurrence is partly due to the following lemma on the transformation of integrals.

Lemma 1. Let F be a measurable function on Ap(p,, ¢1, ¢3), where 0=c,<c,. If

F
fAD(po' €1,€4) ap

exists, then it is equal to

%"_lfc!y—("ﬂ)—ld‘yfao ,y)F”VGD(pOs ‘ )“—1 dO'.
1 p{Po

Proof. Let g=Gp(py, -) and py=(xy, %,). Given any 1</, define g, on
R**! by putting g.(x, 1)=g(x, 1) if (x,1)€Ap(po,c1, ) and t=17,g.(x, 1)=
(4me)™™® if (x, )€Qy(py, ¢)) and 1=t (if ¢,>0), g.(x, )=(@ncy)™* if
(x, )ER"™N\Qp(py, c;) and t=7, and g,(x,1)=g.(x,7) if t>1. Then g, is a
Lipschitz function on R"*. Now define F, and f, on R**! by putting F,(x, )=
F(x,t) if (x, £)€Ap(p,, 1, ¢y) and t=t, F.(x, t)=0 otherwise, and f,=F]Vg]™*
on R**!, Noting that Federer uses the term ‘integrable’ to mean ‘has a well-defined
integral’, we can apply the coarea formula [7, p. 249] to the positive part of £, and
obtain

Sowur 5 \Veddp = [l da [, f+do,

where L(t, 0)=g;'({«}). Thus

(Anec, )»n/!
f Etdp = Vondaf  frdo,
Ap(Por €1, €4) (4rncy)-"/2 L(r,a)
Cy
— -1 —(n/2)—-1 f + de.
)Y d 3,(p,, r)f’

As t—1ty—, the positive parts of F, and £, increase to those of F and F|[Vg| ™! re-
spectively, so that the monotone convergence theorem yields

Frdp =xit ["y=0m-1dy [ F+ |Vg||~do.

fAD(Poy €3,Cy) N n(pp 7

A similar argument can be applied to the negative parts, and the result follows.
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3. An essential lemma

The following result is fundamental to the entire paper. We say that a function
is smooth if the partial derivatives that occur in 6 exist as continuous functions.

Lemma 2. Let p,cR"", let O<c,<c,, let w be a smooth function on an open
superset E of Ap(p,ci,cs), and let Qp(c)=Qp(p,,c) and My(c)=Mp(W, py,c) for
all regular values of c€[cy, ¢c;]. Then there is an absolutely continuous function f
on [c;,¢,), such that f(c)=A4p(c) for all regular values of c€[c,, ;) and

(11) Ky €O (0) = [ (Vew, vy —wy)do

2p(c)

Jor almost all c€[cy, ¢;]. If, in addition, Ow=0 on E, then [’ exists everywhere on
[c1, ¢,), is absolutely continuous there, and satisfies

(12) P = D[ VG (pa, )T 0w do

Jfor almost all c.

Proof. We require certain Green identities, which can be found in [15]. If »
is a smooth function on E, and A4 is a domain, with closure in E, for which the di-
vergence theorem is applicable, then

(13) fA W0* v +{(V,w,V,v) —wD,v)dp = fM w(V,v, v,) do
and
fA wbw +{V,. v, V. wY—wD,v)dp = fBA (v (Ve w, v,y —owv,) do.

The latter formula will be used only in the case where v=1, that is,
(14) f Owdp = f 5, (Vew, v.)—wv) do.

Let ¢ be a regular value in Jcy, ¢,], and let A,=A,(p,, ¢;, c). We want to use
(13) with A=A, but with v=(4n)"1Gp(p,, -)~¥", and the smoothness of this
choice of v breaks down at p,. We therefore use an approximation argument. For
t<ty, let
B, (1) = 0Qp(c) n(R"X ] ==, 1),

By(1) = 0Qp(c) n(R"X ] <o, 1)),

V(t) = Apn(R"X]— =, 1))
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Applying (13) on ¥ (¢), with v=(47)"2Gp(p,, )~ %", we obtain

2(2 IV, Gpll? b2 2D,G, ]
~|1= x _ d
fv(r)[n (n + 1) 65 TG, (Vaw, VuGp)+ nGy )P

2ow 2 oW
“Jave NG, (V<Op, vy do = T (fa,(o_fnl(,)] _G_D'KD(I’O’ -)do

— (n/2) +1 _ pln2)+1 w Ndo
%n [C fBz(t) cl fB,(r)] KD(pO, )
— 3t (L (€) ~ MLl p(cy)

as t—ty—, since Kp(p,, -) is integrable. To show that the integral over V()
tends to the corresponding integral over A4p, we first note that, since v=c on Ap,
the integrand is dominated by a multiple of

IV Gpli*G5*+ Vs Gpl G5* + 1D, Gp| G5
In view of (1) and (4) {with c replaced by ¢,), there is d;>0 such that
IVeGoll = [V Gl + | Vo] = [V, G| G~ (4nd) ™"+ [V, h]| = C1(IVGI G+ 1)
on Ap, for some constant C,. Therefore

IV, Gpll G5 = C, (V.G G~ + 1)(@re)"™,
and similarly
|D,Gpl Gt = Co(1D, G| G2+ 1)

on Ap,, for some constant C,. Hence the integrand is dominated by a muitiple of
[VsGIEG~2+ [V, G| G~ +|D: G| G~ +1,

whose value at (x, t) does not exceed a multiple of
(15) %0 = x[(fa— )7+ 2n(t,— )" + L.
This expression is obviously integrable over ¥ (¢) for any #<f,. Furthermore, in
view of (4) there is d;>0 such that A,C A(p,, dy,c), and if (x,1)€A(py, d;c)
we have |x,—x[2=2n(t,—1) log (d,/(t,—1)); therefore, if f,—t<dje™! also, then
the expression in (15) is majorized by

2lxo—x|*te— )72 +1,

which is integrable over Q(p,,c), by [12, Lemma4). We can therefore make
t—+t,— and obtain the identity

2(2 [V, Gpil? 2v 2D,Gp J
(16) fAD [7{71-+1) G5 W — G, (V.w,V,.Gp)+ G, vw|dp

= 24 (P Mp(c) — P+ Mp(cy)).
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We now want to apply Lemma 1 to the left side of (16). If y is a regular value in
[e1, €], then cn 0Q2,(y) we have

2 (V. Gpl® 2 2D, GD
[7 (7']*1) G5 w G, (V,w,V GD>+

= [2 (2 +1] gf W —n-2Gl; (V. w, vx)——wv,)]

n

] VGl ~*

= %y (1 +%] YLK w + %, YL (V,ow, v) —wy)),

since v=y, v=—VG, [VGp| ™2, Kp=||V.Gpl2|VGp| ! and G,=(4ny)~™2. The in-
tegral of this expression over 9Q,(y) is

x,z,[1+%] yn+lﬂb(?)+xn.y(n/2)+lf

2200 (Vew, vy —wv)do,

so that from Lemma 1 and (16) we obtain
17) D () — eI Mp(cy)
= (1+3) [ syt [ )

Since (17) holds with ¢=c,, the right side of (17) defines an absolutely con-
tinuous function of ¢ on [¢, ¢;]. Therefore (17) enables us to extend .#p(c) to an
absolutely continuous function f on [¢;, ¢,] such that

) (Vew, v)—wv,) do.

LS (e)— e (cy)

=G+ [ ot [T a f

- )((V, w, V) —wv) do

for all c€[ecy, ¢5]. The function f is differentiable a.e., with

D+ f () = (5+1) 2 fe)+ %7 [

2900 «Vew, vi) —wv)da,

which establishes (11).
We now take a regular value of c€le;, ¢;], put Ap=Ap(p,, ¢y, ) again, and
apply (14) with A=A, to obtain

(18) fA Owdp = fu (Ve w, v;) —wv,)do.

With the extra hypothesis that w=0, we can apply Lemma 1 to the left side of
(18) and obtain

— =1 € o =(y2)—-1 -1
fAD Owdp = x; fq'y 2-1 g, f.m,,m IVGpl~ 6w do.
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It now follows from (11) and (18) that, for almost all c€[c;, ¢4,
(19) s, (C("/Z)“f’(c)~c{"/2)+1f'(c1)) _ %"_1,[c _y-(n/Z)—'l dyfag ( )][VGD”_IOW do.
€1 pl?

(Since we can vary ¢, and c, slightly without affecting the statement of the lemma,
we may assume that (11) holds when c€ {c;, ¢,}, and then (19) holds with c=c; )
The right side of (19) defines an absolutely continuous function of ¢ on [¢y, ¢,
so that f” coincides a.e. with an absolutely continuous function g on [c;, ¢]. Then
£ is the indefinite integral of g, so that f”(c) exists and (19) holds for all c€[c;, cg].
Since f’=g, it is differentiable a.e., and (12) follows from (19).

4. Mean values of subtemperatures

In this section we establish various properties of the means .#p(w, p,, ¢) when
w is a subtemperature. We also extend these properties to volume means, and establish
inequalities between the volume and surface means. The volume means are defined by
Vo, or ) = (14 QM) (dre)=eD=1 [ Gp(py, -)~ M2 |V, Gp(po, - Pudp

25(pg c)
for any function u on Q,(p,, ¢) such that the integral exists. As before, the open
set D must be 0*-regular, but ¥, (u, py, c) is defined whether ¢ is a regular value
or not.

Theorem 2. Ifwisa subtemperature on an open set E and po€ E, then My(w, po, +)
is increasing and real-valued on the set of regular values of ¢ such that Qp(py, OSE,
and w(po)=inf Mp(W, po, - ). Furthermore, for every c¢ such that Qp(py, )SE, we
have W(Po)é"//z)(ws Po> C).

Proof. Let I={c>0: @p(p,, c)SE), and suppose first that w is smooth, so
that 6w=0. By Lemma 2, if ¢, c, are regular values in I with ¢;<c,, there is
an absolutely continuous function f on [, ¢;] such that f(c)=#p(w,p,,c) for
all regular values of c€[c;, ¢,), and

x, ™D () = [, (oW, vy —wy) do

Q2p(c)

for almost all c€[c,, c,]. Applying (14) with A=Q,(c), we obtain
(/D167 0) — = 0.
Ky € f(c) f 25 Owdp =

Therefore f is increasing on [c;, ¢,], and it follows that #,(w, pg, -) is increasing.
If now w is an arbitrary subtemperature, given any c¢€I we can find a decreasing
sequence {w,} of smooth subtemperatures with limit w on a neighbourhood of



Mean values of subtemperatures over level surfaces of Green functions 175

@5 (po, ¢), by [6, p. 281]. For each j, the function #p(w;, py, ) is increasing, so
that the same is true of #,(w, py, - )=lim; . MW}, po, ).

The upper semicontinuity of w easily implies that #,(w, p,, ¢)~w(p,) as ¢—~0
through regular values (cf. [12, p. 406]), so that w(p,)=inf #,(w, py, -)-

The next step is to prove that w(py)=¥,(w, py, c) for all ¢€l, as this is used
in the proof that #,(w,p,, -) is real-valued. We begin by showing that
(1, ps, ¢)=1 for all ¢. By Theorem 1, for almost all y we have
20) = [y Ko(Pos - do.

n/2

Multiplying by y** and integrating over {0, ¢], we obtain

n - - €
1= [g+1)c (n/2) 1fo'y 2dy agD(y)KDdG

= (X —2)-1 €, ~(m2)-1 —n—17-2—(2/n)
= (2 +1)c foy dyfmb(y)(4n) Gp Kpdo.
Since K,=|V,.Gpl%[VGpl 1, it follows from Lemma 1 that
L= (3+1) P, [ @m) "G5 |V, Gol dp = (1, po, ©)

Since w is locally bounded above, it follows that ¥5(w, p,,c) is defined for every
cel. Therefore, if we replace (20) by the inequality
we) = [, Ko(po, -)wdo,

a similar calculation yields w(py)=¥p(W, pg, ¢) for all c€l.

We now show that ¥5(w, py, ¢)>— o for all sufficiently small ¢. Recall that
there is a bounded @*-temperature h on D such that G,(pg, -)=G(p,, -)—h-
Choose ¢, such that Q(py, c))SD. Then ||V k|| is bounded on Q(py, ¢;), so that

(2n IVsGpll* = 2(| V. G| + V< h|®) = 2|V, G|*+ K
on Q(p,, c,), for some constant K. Since h is bounded, there is =0 such that
Gp(po, -)=G(py, -)—6 on D. If ¢, is chosen such that 0<c,=c¢, and (4nc,) 3=
26, then on Q(p,,c;) we have both (21) and G(p,, -)=25, so that

Gg/n)+2 = 2—(2/n)—1 G(z/n)+2_5(2/n)+2 = 2—(2/n)—2G(2/n)+2,
and hence

IV<GolP G5 = K [V, GIP GO 2 4 K,

for some constants K, K,. Since Q,(p,, c)EQ(p,, ¢), it follows that

Vo= Pos €) = Ky (W™, po, )+ Ky c==1 [ w=dp

Qp5(c)

for all ¢€]0, c,[, where K; is a constant and ¥ denotes ¥;, with D=R"*', Since
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w is locally integrable on E by [12], and ¥ (w, po, c)¢R by [14], we deduce that
VoW, po, c)ER whenever ¢€]0, cyf.
We can now show that .#,(w, py, ) is real-valued. If c€]0, ¢,[, we have

(22) (F+1)e=m=r [oy2.tty(w, po, ) dy = ¥ 0%, Po €)CR,

so that #,(w, py, -) is finite a.e. on 10, ¢;[. Since (W, p,, -) is increasing, it
is therefore finite at every regular value of ¢€10, ¢,[. Since w is locally bounded above
and (20) holds, .#,(w, py, c)¢R whenever it is defined.

Theorem 3. Let p,cD, let O<c,<c,, and let w be a subtemperature on an
open superset E of Ap(py, ¢, ;). Then there is a function ¢, either finite and con-
vex or identically — oo, such that Mp(w, py, c)=¢(c="?) for all regular values of
c€ley, ¢yl

Proof. Suppose first that w is smooth. By Lemma 2, there is an absolutely
continuous function f on [c;,c,] such that f(c)=,(w,ps,c) for all regular
values of c€ley, ¢,], f7 exists everywhere and is absolutely continuous on {[¢;, ¢;] and

12 (cWPH ()Y = c“"’”‘lf

0 -1 )
s 1 VG (Pos )~ 0w do

for almost all ¢. Since Ow=0, for almost all ¢ we have
(23) (c®+1£7(c)y = 0.
The function 7 on [c;, ¢}, defined by A(c)=c"*f(c), is differentiable everywhere,
with
X (c) = (n/2) D=1 fe) + 2 £ (c).
Hence A’ is absolutely continuous, so that for almost all ¢ we have
K@) = 5 (5 1) P2 £(0) + nc®D=1 £ () + "2 f7 (c).

If A(E)=A(&¥"), then A’(&)=/n)A’(E¥™)EEM -1 for all &, and

A”(&) =  ECM=2 ((F+1) Ef/ (&) + E@m+1 f7(g2m))
for almost all ¢£. Writing ¢=¢%", this becomes

A”(é) — % 6(2/70—2 [[_;L+ 1) cn/2f/(c)+c('l/2)+lf”(c)) ,

so that A”(£)=0 for almost all £, by (23). Since 4’ is absolutely continuous, so is A”.
Therefore A’ is the indefinite integral of A”, so that A’ is increasing and A is con-
vex. Thus ¢"?f(c) is a convex function of ¢™2, which means that f(c) is a convex
function of ¢~"2. This establishes the result for smooth subtemperatures.
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If w is not smooth, take a decreasing sequence {iv;} of smooth subtemperatures
which converges to w on a neighbourhood of A,(p,, ¢,, ¢2). Then for each j there
is a convex function ¢; such that ,(w;, p,, ©)=¢;(c”™?) for all regular values of c.
Therefore

'//[D(w’ Po> C) = }Lnl JID(Wj, Po> C) = Jl_l.rg (pj(c_""lz)

at the regular values.

Corollary. Let pycD, let O<cy<c,, and let w be a subtemperature on an open
superset E of Ap(py, ¢1,¢5). If v is defined on 0Qp(p,, c) for all regular values of
66[019 c2] by

2”(p) = "//[D(wﬁ Po, GD(p()ap)—2/")’

and v is not identically — oo, then v can be extended to a 0*-subtemperature on
Ap(po, €1, €3)-

Proof. By Theorem 3, there is a convex function ¢ such that »(p)= (p(GD (Po> p)).
Since @oGp(py, -) is defined on Ap(py, ¢;, ¢2), and Gp(py, -) is a 8" -temperature
there, it follows from the dual of [12, Theorem 2] that @cGp(p,, -) is a 8*-sub-
temperature on A,(p,, €1, Co).

We now establish that the volume means of subtemperatures have similar
properties to those of the surface means, and derive inequalities between the two.

Theorem 4. Let w be a subtemperature on an open superset E of Qp(pq, ¢,). Then
(1) ¥5(w, py, -) is real-valued and increasing on 10, c,),

(ii) there is a convex function \y such that ¥5(w, py, €)= (c=™?) for all c€]0, c),

(iii) for all regular values of ¢ in 10, ¢y},

VoW, pos €) = Mp(W, Po, ©),
(iv) if x=((n/2)+1)"%", then for all regular values of xc in 10, xc,),
Mp(W, Py, %) = Vp(W, Do, ©)-
The proof of Theorem 4 is similar to that of [14, Theorem 3], and is based

upon the formula in (22). When D=R"*1, it is known that x is the best possible
constant in (iv), but we are unable to establish this in general.
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5. Some consequences of the convexity theorem

We first use Theorem 3 to obtain the conclusion of Theorem 1 under weaker
hypotheses.

Theorem 5. Let w be a subtemperature on an open superset E of Qp(p,, o).
If w is a temperature on Qp(p,, ¢,), then

w(po) = Mp(W, Po, €)
Jor every regular value of c€)0, c;).

We omit the proof of Theorem 5, since it differs from that of [14, Theorem 4]
only in minor details.

The next result extends and, in a minor way, strengthens [14, Theorem 3].
The proof is necessarily different, and requires the concepts of upper and lower
PWB solutions of the Dirichlet problem, and we refer to [6, p. 329] for a discussion
of these.

Theorem 6. Let w be a subtemperature on an open superset E of Qp(p,, ¢o),
where ¢, is a regular value. Then there is a unique subtemperature v on E such that v
is a temperature on Qp(p,, ¢,) and v=w on EN\Qp(p,, ¢). Furthermore, v=w
on E, A#y(v, py, co) =MW, pg, cy), and on Qp(p,, ;) the function v is the PWB
solution of the Dirichlet problem with boundary function the restriction of w to
02y (P, €o)-

Proof. Let Q=Qp(p,, c;). Let {c;} be a strictly decreasing sequence of regular
values with limit ¢,, and for each j let Q;=Qp(p,,c;). Then {Q;} is a contracting
sequence with intersection O\ {p,}, and we can therefore suppose that Q,CF
for all j.

Given j, let I; denote the class of all subtemperatures « on E such that u=w
on ENQ;. If u€l;, then its restriction to Q; belongs to the lower PWB class on
Q; for the restriction of w to dQ;, so that sup I;=H/] on Q;, where H} denotes
the corresponding lower PWB solution. Since w is locally bounded above, there
is a constant A such that HJ=H’ =) on Q; (where HJ, denotes the corresponding
upper PWB solution), so that w is resolutive, by [6, pp. 332, 115]. Therefore sup I'; =
H{,, the PWB solution. On the other hand, if & belongs to the lower PWB class
on Q; for w, then so does max {h, w}, which can be extended by w to a subtem-
perature on E. This extension belongs to I;, which implies that H! =sup I;. By
the parabolic fundamental convergence theorem [6, p. 314], the upper semiconti-
nuous regularization w; of sup I is a subtemperature on E. Clearly w;=w on
ENQ;, w; is a temperature on Q;, and w;=w on E. The sequence {w;} is dec-

reasing, so that the function w_=lim; _w; is a subtemperature on E that ma-
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jorizes w on E, coincides with won E\ @, and is a temperature on Q by the Harnack
convergence theorem [6, p. 276].

Now let v be an arbitrary subtemperature on E that is a temperature on Q
and equal to w on E\. For each j we have v=w on Q,\{p,}, so that Hi=HJ,.
Therefore, if v; bears the same relation to v as w; does to w, then v;=w; on E\(?{)j.
Since ¢; is a regular value, 02; has (n+ 1)-dimensional Lebesgue measure zero, so
it follows that v;=w; on E, by [13, p. 276]. Therefore v=lim; .. v;=w_ on E.
By Theorem 5, for any regular value of ¢€]0, ¢;], we have

g//[D(v’ ]70’ C) = U(po) = e’/ZD(1791)(]’ CO)'
By Theorem 3,

(24) A (v, Py, o) = 1im (v, Dy, c;).
jooo
Since v=w=w_ on E\, we have

e///D(va Do cj) = "ilD(Wwa Po> cj)
for all j, so that by Theorems 3 and 5,

Mp(v, Dy €) = lim Mp(Wee) o, ;) = Mp(Wen) Po, C0) = Wea(Po) = Mp(Weo's Pos €)

for every regular value of ¢€]0, ¢,]. Since w_—v=0 on E, it follows that w_=v
on 9Q2,(p,,¢) for all such ¢, and therefore w_=v on Q because both functions
are continuous on Q. Hence v=w_=w on E. Since v=w on E\®, it follows
from (24) and the corresponding formula for w, that .#,(z, py, o) =AHp(W, Py, Co)-
Finally, by an argument similar to that used on Q; above, the upper semicontinuous
regularization of the function that is equal to w on ENQ and to the PWB solu-
tion for w on Q, is a subtemperature on E with the properties of v, and is therefore
equal to ».

We are now in a position to generalize the results on thermic majorization
in [15]. If py€D, we denote by A(p,, D) the set of all points pé D\{p,} which
can be joined to p, by a polygonal line in E along which the f-coordinate increases
strictly from p to p,. By the dual of [13, Theorem 14], we have

A(py, D) = {PEDi Gp(Pos> *) > 0} = Ucs>0 2p(Po, ©).

Lemma 3. Let w be a subtemperature on an open superset E of A(py, D) {p,}-
If AHp(w, py, -) is bounded above on the set of all positive regular values, then there
is an increasing family {w.: c is a regular value} of subtemperatures on E such that
the function u=lim,... w. is the least thermic majorant of w on A(py, D). Fur-
thermore,

u(py) = cl_i,ﬂ Mp(W, Py, C).
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Theorem 7. Let w be a subtemperature on D. Then w has a thermic majorant
on D if and only if there is a sequence {p;} in D such that

D=U7, A(p;. D)

and My(w, p;, -) is bounded above on the set of all positive regular values for every j.
If w has a thermic majorant on D, and u is the least one, then

u(p) = sup My(w, p, -) = lim.#p(w, p,c)
Jor every peD.

The proofs of these results follow those of {15, Lemma 2 and Theorem 3].

6. The relation between the integral means and swept measures

In this section we generalize a result of Bauer [2] by proving that the measure
Kp(py, -)do is obtained by sweeping the unit mass at p, out to the complement
of Q,(p,,c). We use the notation f—lim to denote a fine limit, that is, a limit
in the coarsest topology in which every subtemperature is continuous. We refer to
[6] for details on sweeping and fine limits.

Lemma 4. Let E be an open superset of Q,(py, ¢,), where ¢, is a regular value, let
w be the difference of two subtemperatures on E, and let u be the PWB solution of
the Dirichlet problem on Qu(py, ¢,) corresponding to the boundary function w. Then

Hp(%, Po, c1) = /= lim u(p)

Proof. Let w; and w, be subtemperatures on E such that w=w,—w,, and
let u; and u, be the PWB solutions of the Dirichlet problem on Q,(p,, ¢,) cor-
responding to the boundary functions w; and w,, so that u=u; —u,. Using Theo-
rem 6, we can extend the temperatures u; to subtemperatures on E, which we also
denote by u;, in such a way that #,(u;, po, Co)=-Mp(W;, Pys Co)- Let wu=1u, —u,
throughout E. Then Theorem 5 implies that

u(po) = Mp(uy, Py, o) — Mp(Us, Do, ¢o) = Mp(W, Po> Co)-

By [6, p. 308], every Q(p,,d) is a deleted fine neighbourhood of p,, so that the
same is true of ,(p,, ¢;), in view of (4). Since u is a difference of subtemperatures

on E, we have u(p,)= f—limp.,po u(p), and the result follows.

For Theorem 8, we need some notation. We let g, denote the unit mass at p,,
and for any set 4 we let 54 denote ¢, swept out to R**'\ 4.
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Theorem 8. Let pocD, let ¢, be a regular value, and let u denote the prob-
ability measure on dQy(py, ¢;) given by duP=Kp(py, -)do. Then ul=es®, where
Q= Qp(Ppo, )

Proof. Let S denote the class of all continuous functions on Q2 that are the
restrictions of subtemperatures defined on open supersets of Q. By Lemma 4, given
any g€S we can find a sequence {p;} in Q such that p;—~p, and u;(g)—ug(g),
where ﬂ? denotes the parabolic measure for Q at p; {6, p. 332]. From this sequence
of probability measures, we can extract a subsequence which converges vaguely
to a probability measure 4, on 9Q, by [1, p. 243]. Therefore ug(g)=2,(g). By a
result of Boboc and Cornea {3] (for a simple proof, se¢ [8]), thereis B,€[0, 1] such that

Ay = Bgeo+(1—Bp)e§@Vired)
Since {p,} is polar, it follows that
(25) 13 (8) = Byeo(g) +(1—B,) 6% (9).

Let f be a continuous function on 39. By {13, p. 290], there is a sequence {f;} in
S'—8 which converges uniformly to fon Q. By (25), for each i there is ;=8 7 €00, 1]
such that

lltl))(fi) = Biso(fi) +(1-5) ggﬂ(ﬁ),
Bi (52 () — 8o (f) = s§2(Sf) — ud (S

Since f;—f uniformly on 9Q, we have v(f)—v(f) for every finite measure v
on 9Q. If ef?(f)—eo(f)—~0 then e$?(f)=p2(f), and we put a,=0. Otherwise

5o BD=R()
() el
and we label this quotient a,. Then, in both cases, a€[0, 1] and
He (f) = apeo(f)+ (1 =) e§2(f).

It now follows from a result of Bauer [2, p. 80] that there is «€[0, 1] such that
po=agy+{(1—a)eS?. Since pP is absolutely continuous with respect to ¢, we have

0 = u3 ({po}) = a+(1 ~0)e§?({py}) = o,

so that =0 and uP=¢5".

that is,

Remark. 1t follows from (4), and the fact that p, is a Dirichlet irregular bound-
ary point of every Q(p,,d) (see[12, p. 399]), that p, is also Dirichlet irregular for
Qp(po, €). We can therefore combine a result of Netuka [9, p. 7] with Theorem 8,
and deduce that, for every lower bounded resolutive function f on 0Q,(p,, ¢y),
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the integral #,(f, py, c,) exists and
(26) S~ im Hy(p) = (/. pos <o),

which greatly generalizes Lemma 4. Netuka also gives an example, for the case
D=R"*, of a resolutive boundary function f such that the fine limit in (26) does
not exist.

7. The three sets theorem

Let E be an arbitrary open subset of R**!, and let p,€E. We shall prove a
result analogous to the classical three spheres theorem on subharmonic functions,
in which the spheres are effectively replaced by level sets of the Green function
Gy. Such a result is not possible if we take the suprema of a subtemperature over
09Q:(p,, ¢) for ¢=0, since it would imply their continuity as a function of ¢, and
the characteristic function of R"X]— o, 0] is a subtemperature which would create
a discontinuity. We therefore replace dQ¢(p,, c) by 025(ps, c), where for any ¢=0

QE(po, ¢) = {PEE: Gg(p, po) > (4mc)™"%}.
Since Gg(-,p)=G(-,p,), we have Q%(p,, c)S Q*(po, ), so that Qp(p,, ¢) is
bounded. If 0<c¢;<c;, we put
AE(Pos €15 €3) = QE(Po> c)NQE(Po, €1)-
The result seems to be new even in the case E=R"*1.

Theorem 9. Let w be an upper bounded subtemperature on A=Aj(p,, ¢y, C3),
and define w on 0AN{p,} by
w(g) = lim sup w(p).
P~ pca

If the function ¥ is defined on |[c,, c;] by

Fi(c) = sup {w(p): pedQE(po, ) N (EN{Po})}:

then there is a real-valued convex function ¢ such that Q)= (c™"®) for all
CE[CIa 02]'

Proof. Let 0=d,<d,, and put R=A%(py, di,d;) if d,>0, R=Q(py, d) if
d,=0. If E is not Dirichlet regular, then dRNJE may not be empty. However,
we can show that dRNJE is a parabolic measure null set relative to R. The proof
is similar to one given for Laplace’s equation by Brelot and Choquet in [5, p. 228],
and again by Brelot in [4, p. 119]. That is, suppose that » is an upper bounded sub-
temperature on R, such that lim sup v(p)=0 as p approaches an arbitrary point
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of EnOR from inside R. Choose x>0 such that
x(sgp vt) = (dndy)~ "3,

and put f=-xv* on R, f=0 on E\R. Then fis lower semicontinuous on E,
and since it satisfies locally the characteristic mean value inequality, it is a super-
temperature on E, by [12, p. 408]. Whenever pc R we have

Ge(p, o) +1(P) = (4mdy) ™2 — x (sup v*) = 0,

so that Gg(-,p))+f=0 on E. Since Gg(-,p,)=G(-,p,)—n where 5 is a tem-
perature on E, it follows from the minimality of Gg(-,p,) [13, p. 267] that
Ge(+, po)+f=Gg(-, py) on E. Therefore v=0 on R, so that JRNJE is a parabolic
measure null set.

It follows that &% is real valued. For if % (dy)=— o, then w(p)=—< for
all p€oQy(po, &) N(EN{po}). Since ARNOE is a parabolic measure null set,
there is a negative subtemperature w, on R with limit — < at every point thereof,
by {6, pp. 329, 108], and therefore w—supy w+w, is a negative subtemperature
on R with limit —oo at every point of ARN\(0Q}(py, d)NE), making that a
parabolic measure null set. But Gz(-, p,) is a nonconstant, bounded temperature
on R which is continuous and constant on 0Q5(p,, d;)nE, so that the remainder
of 0R cannot be a parabolic measure null set [6, pp. 329, 110]. A similar argument
shows that S(d;)> — .

Now suppose that ¢,=d,<d,=c,. The function u, defined for all pcFE by

(4ndy) =" Fe(d,) — (Andy) "2 Fp(dy) + (ys(dx) —yE(dz)) Ge(p, Po)
(4nd,)~""? — (4nd,)—"/?

is a temperature on E\{p,} and is constant on dQ%(py, )N (EN{p,}) for every
¢>0. Therefore w—u is an upper bounded subtemperature on 4 (since Gg(-, po)
is bounded on A), and for all g€dQ%(py, c) N (EN{po}), i€{l, 2}, we have

w(g)—u(g) = w(g)~F(c;) = 0.
Since (AN IE)U {p,} is a parabolic measure null set, it follows that w=u on 4,
and hence on (AnE)N\{p,}. Therefore, whenever d<[d,, d,],

(d_,,/z__dz-nm) yg(d]) +(dfn/2_d—n/2)%(d2)
dl—-n/Z_dz—ﬂle

u(p) =

@7 F(d) =

as required.

We can deduce from Theorem 9 appropriate analogues of the standard con-
sequences of the classical three spheres theorem [10, p. 131].

Corollary 1. Let ¢,>0, and let w be a subtemperature which is bounded above
on Ap(pq, €15 €) for each ¢,€10, ¢c,[. Then w is bounded above on Qi(py,c) if
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and only if

(28) lim ig}f V2 F(c) = 0.

If'w is not bounded above on Qi(p,, c;), then there exist a sequence {p;} and a positive
constant & such that

(29) w(p;) = 6Ge(pj, Po) —= .

Proof. If w is bounded above on Qf(p,, ¢,), then (28) obviously holds. Con-
versely, if (28) holds and O0<d<d,=c,, it follows from (27) that

Fi(d) = (d="2 —d;""*) liminf &> S3(dy) + Fp(dy) = Sp(da).
Therefore % is increasing, and hence w=%(c,) on Qi (p,, Cs)-

If w is not bounded above, then the lower limit in (28) is positive; denote it
by 26(4n) ™2 Then (4nc))"2%(c;)=4d for all sufficiently small ¢, so that

sup {w(p) G (P, po)~%: PEIQE(po, 1) N (EN{Po})} = &
for such ¢;, and (29) follows.

Corollary 2. Let ¢,=0, and let w be a subtemperature which is bounded above
on AL(pg, €3, C3) Whenever ¢;<cy<cs. If

(30) lim inf % (c;) = 0,
then the function c—c"2%;(c) is decreasing on ]cy, «<[. Furthermore, if (30) holds,
=0, and (4nc)"*?Fp(c)~Ai as ¢—~0, then w=2Gg(-,p,) on the set
A*(p()a *E) = Uc>0 Q;(pﬂ’ C).
Proof. Suppose that ¢;=<c,<c<cy. Then, by (27),

(c—n/z_ C:;_"/Z)zng(Cz) + (62—"/2_6.-"/2)9;(63)
Cz—n/2_cs—n/2 .

Sr(0) =
Making ¢;—>oo, we obtain
ey P Ip(c) = ¢S (e) + (5 M= eV liminf Fy(cy) = ¢ TES(cy)
Ca—’°°

by (30), so that the function c~~c"2%(c) is decreasing on ]¢;, <.
For the last part, A=sup,.,@nc)"*F(c), so that

sup {w(p) Ge(p, Po) ™" PEIQE(Ps, ) 0 (EN\{Pa})} = 1
for all ¢>0, so that w=AiGg(-,p,) on A*(p,, E).

As a final corollary, we give a new maximum principle for subtemperatures,
which is analogous to a theorem of Brelot and Choquet [5, p. 229] for subharmonic
functions on manifolds. (The Euclidean case is also given in [4, p. 121}.)
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Corollary 3. Suppose that w is an upper bounded subtemperature on A*(p,, E).

If limsup w(p;)=0 for every sequence {p;} such that Gg(p;,ps)—~0, then w=0

on

A*(po, E).

Proof. Given &>0, there is ¢ such that w=e¢ on 0Q%(p,, c); for otherwise,

whatever the positive integer k& there would be ¢q,€0Q%(p,, k) such that w(q)>e,
so we would have G(gq,, py)—~0 and lim sup w(g,)=e, contrary to hypothesis.
Therefore (30) holds, and since w is bounded above on A*(p,, E) we have ¢"? % (c)~0

as

10.

11.
12.

13.

14.

15.

¢—~0. Hence w=0, by Corollary 2.

References

. BAUER, H., Probability theory and elements of measure theory (2nd ed.), Academic Press, London,

1981.

. BAUER, H., Heat balls and Fulks measures, Ann. Acad, Sci. Fennicae Ser. A. 1. Math., 10 (1985},

67—82.

. BoBoc, N., CornEa, A., Comportement des balayées des mesures ponctuelles. Comportement

des solutions du probléme de Dirichlet aux points irréguliers, C. R. Acad. Sci. Paris
Sér. A, 264 (1967), 995—997.

. BReLOT, M., A new proof of the fundamental theorem of Kellogg-Evans on the set of irregular

points in the Dirichlet problem, Rend. Circ. Mat. Palermo, 4 (1955), 112—122.

. Brerot, M., CHOQUET, G., Espaces et lignes de Green, Ann. Inst. Fourier, 3 (1951), 199—263.
. Doos, J. L., Classical potential theory and its probabilistic counterpart, Springer-Verlag, New

York, 1984.

. FEDERER, H., Geometric measure theory, Springer-Verlag, New York, 1969.
. Luke§, J., MALY, J., On the boundary behaviour of the Perron generalized solution, Math.

Ann., 257 (1981), 355—366.

. NETUKA, L, Fine behaviour of solutions of the Dirichiet problem near an irregular point, Bull.

Sci. Math. (2), 114 (1990), 1—22.

PrROTTER, M. H., WEINBERGER, H. F., Maximum principles in differential equations, Prentice-
Hall, Englewood Cliffs, 1967.

STERNBERG, S., Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, 1964.

WatsoN, N. A., A theory of subtemperatures in several variables, Proc. London Math Soc. (3),
26 (1973), 385-—417.

WaTtsoNn, N. A., Green functions, potentials, and the Dirichlet problem for the heat equation,
Proc. London Math. Soc. (3), 33 (1976), 251-—298.

WatsoN, N. A., A convexity theorem for local mean values of subtemperatures, Bull. London
Math. Soc., 22 (1990), 245—252.

WatsoN, N. A., Mean values and thermic majorization of subtemperatures, Ann. Acad. Sci.
Fennicae Ser. A. I. Math., 16 (1991), 113—124.

Received April 10, 1990 N. A. Watson

Department of Mathematics
University of Canterbury
Christchurch, New Zealand



