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O. I n t r o d u c t i o n  

Let LP(D) (/7_->1) be the Banach space of  all measurable functions f o r t  the 
open unit disk D---(z6C: [z[<l} such that 

(0.1) llfll, = {fD If(z)l' aA(z)}" <oo, 

where dA is the normalized Lebesgue area measure. Let A p be the subspaee of  
LP(D) consisting of analytic functions. The A p are usually called the Bergman 
spaces. 

Definition. We say that a subset A of  the disk D is a zero-set for the space A p 
if  there exists a nonzero function fE A p such that f l a  = 0. 

The purpose of  this paper twofold. First we introduce a Blaschke type product 
whose factors have an extremal property in A 2 similar to the extremal property 
enjoyed by the classical Blaschke factors for the Hardy spaces H p. It will be shown 
that our Blaschke type products converge for all AP-zero sets, and they are con- 
tractive divisors of  zeros for A 2. In the second part of  the paper we apply these 
Blaschke type products (or rather their modification) to obtain a result concerning 
probabilistic characterization of  AP-zero sets. The probabilistic approach to the 
study of  AP-zero sets was apparently initiated by Emile LeBlane [B] who obtained 
the following result: 

T h e o r e m  ([B]). Let {r.}~*= x be a sequence in (0, 1) that satisfies the condition: 

(0.2) lim sup • (1 -- r.) '  +' 1 
- log l/s < 2p " 

Then for almost all independent choices o f  {0,}~*= x the set {r, el~ 1 is an A p- 
zero set. 
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The proof  of  this theorem was based on a Blaschke type product introduced 
by C. Horowitz in [Hor]. It will be shown that our Blaschke type product is more 
effective and allows us to sharpen the result of  E. LeBlanc to its natural limits: 

Theorem 1. Let 1-<p<-2 and {G}~=I be a sequence in (0, 1) satisfying the 
condition 

(0.3) l imsup ~Y'"<~-~ (1 - r . )  < 1 .  
~-o log 1/e p 

Then for almost all independent choices o f  {0~}~'=1 the set {Gei~ is an A~-zero set. 
The constant lip is sharp. 

In order to see how this result is related to the condition (0.2) we prove the 
following 

Proposition 0.4. Let {dk} be a sequence o f  positive numbers, and let 

y~ = lim sup Z d~ +' 
- log 1/e ' 

~2 = l imsup Za~>,d~ 
log log 1/e " 

(o.5) 

(0.6) 

Then ~1<--~2<--_e~1. 

Proof. Consider the function m(x)=~ak> x dk. It follows from (0.6) that for 
every ~ >~,~ 

re(x) < 7 log log l /x  

for all sufficiently small x. Hence we have 

Y~ d~, +" = - f ~ x" dm(x) = e f ~ x ' - l  m(x)  dx 

fo =< e~ loglog 1 / x d x + c  = e~ e - U l o g t d t + c  

= ? f ?  e -s log (s/e) dt + c <- y log 1/e + c, 

where c is some constant which depends only on m and 7. We conclude that ),t<-~,. 
Since ~ can be chosen arbitrarily close to ~2, we have yt<=?~. 

Now let Y>Yl and 5>0  be sufficiently small. It follows from (0.5) that 

s e x~-lm(x) dx ~- ~log i / e+c  

for some c >0 .  The function m(x)  is decreasing, hence for every O < a <  1 we get 

~ f 2  x ~-  ~ m (x )  d x  > m (a)  a ~ 
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and m(a)<=?a -~ log lle+c. We can now choose e=(log l/a) -x and this gives the 
inequality ~,.,~e?. I 

The proposition above shows that E. LeBlanc's condition (0.2) is essentially 
the double-logarithmic growth of  the function 

(0.7) ~p(r) = ~,.<,(1--r,) 
and the gap between logarithmic and double-logarithmic conditions cannot be over- 
come with the help of  a Horowitz type product. 

Theorem 1 (in a slightly stronger form) will be proved in Section 2. In Section 3 
a similar result is established for the case p>2; however, in this case we are unable 
to obtain a sharp constant. Section 3 also contains some open problems and other 
discussions. 

Acknowledgement. The author is grateful to professor B. Korenblum for stim- 
ulating discussions and for his attention to this work. 

1. A Blaschke-type product 

Some notations and definitions. Symbols C and D will stand for the complex 
plane and the open unit disk in C. T = 0 D =  {zCC: Izl= 1} is the unit circle. Let 
dA(z) be the area measure on D normalized so that the area of  D is 1: 

aA(z) = •  = L,.arao. 
7~ 7~ 

For  1<=p=<r162 H p will denote the classical Hardy space and AP(D) (or simply A p) 
the Bergman space of functions analytic in D with the norm 

l l f l l .  = {A l / ( z ) l "  < - .  

For  basic facts about spaces H ~ and A p see [Dur], [Zhu]. 
AS(D) is a Hilbert space with the scalar product 

( f '  g) = fD f(z)g(z) dA (z). 

K;.(z)=(1-.~z) -~ is the reproducing kernel o f A  2 so that for every ),~D and f~A ~ 

(f ,  Ka) = f(2) .  

It is easy to see that IIK~[12=(1-121m) -1. 
Let d~= 1-I,~1 ~ and define the function sa(z)=d~Ka(z). 
For  a fixed ).~D we consider the following problem: 

(1.1) sup {9tf(0): f~A 2, Ilf l lz = 1, f (2 )  = 0}. 
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The solution to an analogous problem for the spaces H p (for every p, 1 =p = ) is 
the Blaschke factor 

IAI & - z  
B a ( z ) -  2 1--)Tz" 

For the space A ~ the extremal function exists and is given in the following 

Proposition 1.2. Let fa be the solution to the extremal problem (1.1). Then 

A(O)A(z) = 1-d~Kx(z). 

Proof Let gEA ~ and g(2)=O. The function 

q~(t) = ~ ( f x  + tg, l)[ /A+tglff  1 

must have its maximum at t=0.  This implies that ~ (g ,  1)=fx(0)9t(g,f~). Since 
g can be multiplied by any constant we conclude that the function 1-fa(O)fa is 
orthogonal to the space A]={hEA~: h(2)=0} and hence is equal to cKx with 
some constant cCC. This constant can be determined from the condition 
A(2)=0.  | 

The function J~ can be written in any of the following forms: 

(1 .3)  A(z)  = 1 - ~ K ~ ( z )  
r -d~ 

~,(2_ z) ( 2 ~21~.- z} 

121 1 / 2 -  121 z ( l  - ~z)  ~ 

1 
- r Bx(z)(2- 121Ba(z)). 

At 2=0  it is natural to definef~ by continuity: 

f0(z) = r 
We proceed now to the contractive properties ofJ~. 

Definition. Let A] = {f6A':  f(2)=0}. A function f6A~ is said to be a con- 
tractive (or 2-contractive) divisor for the space A ~ if Ilfll,~_ 1 and for every g6A], 
we have g/f  in A ~ and 

IIg/fll2 ~- Ilgl12. 

Proposition 1.4. For every 2~D the function fx defined by (1.3) is a contractive 
divisor for the space A ~. Moreover, for every gE A s 

(1.5) IIAgll| = Ilgllg+ ~21~d~d$ fD (1 - Izl~)~lgx(z)l Ig'(z)l 2 dA (z). 



A Blaschke-type product and random zero sets for Bergman spaces 49 

Remarks. 1. The fact that fx is a contractive divisor follows immediately from 
(1.5) and the simple observation that Ilfxll~= 1. 

2. Equality (1.5) is an analog of formula (1) [Car] for functions with the finite 
Dirichlet integral, It is a special case of  the formula obtained by H. Hedenmalm 
(cf. Corollary 4.2 [Hed]). 

Proof. We begin with the following: 

(1 - d~)Ilfagll[ = ((1 - d~Ka)g, (1 - d~Ka)g) 

= (1 - d~)Ilgll~ + d~fD {d~ Igx(z)l ~ - 29tK~ (z) + 1} Ig(z)l 2 da (z). 

The expression in braces can be represented as a linear combination of moduli of  
analytic functions: 

d~lga12--29~ga+ 1 = I g x -  llZ-212lzlgalz+ IAI4[gal z 

and it is easy to check that the last expression is equal to 
1 ~- I&lZA~ {(1 -IzlZ)Zlg~(z)l}. 

Now we can apply Green's formula to obtain (1.5). I 

Given any function fC,42 with the zero set Ay = {26D: f (2)=0} we can divide 
this function successively by the factors {fa}~at without increasing the norm o f f .  
Moreover, since for every ,42-zero set A 

Z ~ c a  (i  -IAI2) ~ < ~ ,  

(this follows from (2.3) below), the product /-/~r converges. We have thus 
proved the following result: 

Theorem 1.6. Every non-zero function fC A s admits a factorization 

(1.7) f = BF 

where FEA 2, F has no zeros in D, IIFII2<_-Ilfll~, and n = l I f z  is a Blaschke-type 
product whose zeros coincide with those o f f .  I 

This factorization (as well as that of C. Horowitz [Hor] and B. Korenblum 
[Kor2]) is not quite satisfactory because we can hardly control the A2-norm of  
the Blaschke-type product. Nevertheless this product admits good probabilistic 
estimates, and under some assumptions it turns out to be almost surely in A s. 

On the other hand the factorization discovered recently by Hfikan Hedenmalm 
[Hed] features both factors B and F belonging to/ /8 .  It is interesting to note that 
Hedenmalm's Blaschke-type factor is the solution (for an arbitrary set A) to the 
extremal problem sup {9~f(0): II f i le  -<- 1, f l a=0} ,  which corresponds to the situa- 
tion for H ~ and the classical Blaschke product. 
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2.  R a n d o m  z e r o  s e t s  

For the definition of a random set we will use the probability space f2 = / / ~ 1  f2,, 
where Q, is the interval [0, 2n) for each n. A, is the a-field of Lebesgue measurable 
sets and P~ is the (normalized) Lebesgue measure. An element of f2 is denoted by 
o9=(01, 02 . . . .  ) where 0=<0~<2r~ for all n. {01, 02 . . . .  } is a sequence of  random 
independent variables defined on 12. 

For every countable set A={2,}~=IcD define a random set Ao, as a map 
f2---2 n, where for every toe f2 the set A,, is obtained by a rotation of  each point 
2,E A through the angle 0,: 

(2.1) Ao, = {2.e'~ 

We denote by Ar the intersection of the set A with the disk Dr= {z: ]z] =<r}: 

A, = {26A: I~1-~ r} 
and define the following functions: 

~o(r) = 2 ~ a . ( l  -I)~1), 

r 
r = ~'aCa, log 121' 

r = ~'a~a,  (1 -- l'~1"9, 
(2.2) n(r) = card At. 

It is well-known that any A~-zero set A satisfies the condition 

(2.3) Z a ~ a  da log -x-~ l/d~ < co 

for all g>0  (see [Hor]). From now on we restrict our considerations to the sets A 
which satisfy (2.3). We need the following technical result. 

I.emma 2.4. Le t  A ~ D be a discrete set satisfying condition (2.3). Then 

(2.5) 2r ) = O(I)  as r-*- 1, 

(2.6) q h ( r ) + ( 1 - r ) n ( r ) - ~ p ( r ) = O ( 1 )  as r - - l ,  

&o ( t____2) ~o ( r____)_) 
(2.7) n(r) = f 2  re(o,  1) and n(r) 

1 - t  ' - -  l - - r "  

Proof. (2.5) and (2.7) are direct consequences of  the definition (2.2). The ex- 
pression in (2.6) is equal to 

~ a ,  (log (1/121) - 1 + I;,I) + n(r) (log r -  1 + r). 

The first term is bounded by the finite sum ~ ' ( I - I21 )L  The second term is 
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O((1- r )Zn(r ) )  and hence O((1-r)~0(r)) .  The function ~0(r) admits the following 
estimate 

= 1 - r  z~a" (1 - 12l) l~  " 

We conclude that (1 - r )~p( r )=o(1)  as r---l, and (2.6) is thus proved. I 

We proceed now to the construction of  the Blaschke-type product. For every 
2ED and s=>l define 

(2.8) 

When s =  I, this is equal to 

b~*>(z) = 1 (1 -121z) �9 
(1 - ~ z )  s " 

boa 1)(z) = Ba(O)Ba(z), 

where B~ is the classical Blaschke factor. For s = 2  the function b~ s) coinscides with 
fx(O)f~(z), where fx is the extremal function described in Section 1. 

For every set A c D  and every function s=s (2 )  we can define an infinite 
product 

(2.9) b~a s) = / / a ~ a  b~ ~r 

Suppose that the functions s satisfies 

(2 . I0)  Z ~ c A  d ~  < o o .  

Then the product (2.9) represents a function holomorphic in D whose zeros are 
precisely on A. 

These Blaschke type products B r a~, are instrumental in proving the following 
result which is somewhat more general then Theorem 1: 

Theorem 2.11. Let  1 <=p<=2 and A =  {2,}~*= 1 be a discrete subset o f  the unit 
disk D that satisfies the condition 

(2.12) f l  eta( o log" 1 dr < o~ 
~'0 l - - r  

for some a>  1. Then for almost all independent choices o f  {0,}~'= 1 the set A~= 
{2,e i~ is an AP-zero set. 

Corollary 2.13 (see Theorem 1). I f  l<=p<=2 and 

lim sup _~n,<l- ,  (1 - r~) < 1 
~-o log lie p ' 

then for almost all 094 I2 the set {r,e~a-}~*=x is an AP-zero set. 
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Proof of Theorem 2.11. Consider the Banach space LP(12, A p) of all AP-valued 
measurable functions on f2 with the norm 

(2.14) I[fl[~,, = ( f  ~ ][f((-~176 ills. 

Let A be a subset of D that satisfies (2.12), and Ao, be the random set defined by 
(2.1). Our aim is to construct a sequence s =  {s,} so that the product 

Ba,o(Z) "= ~n~_l l --  "l--~I,~.z 

(where ~n=e ~~ converges to a holomorphic function in D, which belongs to the 
space LP(s AP). When this is done, the conclusion of the theorem will follow 
because the finiteness of the norm (2.14) for the product (2.15) implies that for 
almost all ~o~ ~ the function B ~s) belongs to A p. Hence for these w's the set Ao, is Aco 
an AP-zero set. 

Define a function g on I) by 

(2.16) g(z) = f~  In~) (z)l p d~o. 

We can apply Fubini's theorem to obtain 

(2.17) lln(2), ll ,  = f o g(z) dA (z). 

Our goal is to established that gELX(D). 

1.emma 2.18. Let 0<p<-2, 2CD, and s>=l. Then 

(2.19) •  (1 /"' 21: o IbP)(rei~ ~- -~ F2(s) ( 1 - 1 2 ~ )  ~-x)  " 

Proof. The function b(2 ) defined by (2.8) has the following Taylor expansion: 

F(n+s) (~Iz)". 
(2.20) bi~)(z) = 1 - d l  ZT=o n!F(s) 

Using this expansion we can easily compute the integral (2.19) when p=2: 

~--g f ]b(a')(re'O)['dO = ( I -a l l ) '+  ~Y:=x d}'[ I'(n +s)12 nV---V_-_~s~ )I'~r12"" 

Since F~(n+s)<=F(n+ 1 ) F ( n + 2 s -  1), we have 

r ( 2 s -  l) dp 
(F(S))' (1--1212r2) 2,-x' 
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o r  

(2.29) 
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which completes the proof of (2.19) in the case p = 2 .  To obtain (2.19) for pE(0, 2) 
one has to use the inequality IrfHnp<=flflJn,. II 

Proposition 2.22. The function h ( s ) = F ( 2 s -  1)/F2(s) has the following prop- 
erties: (a) h ( l ) = l ;  (b) h ' (1)=0;  (c) h (1 )=~- ,  (d) h( s )<=l+2(s - l )  2 for l=<s=<2. 

Proof. This follows from the basic properties of the/ ' -function.  II 

Proposition 2.23. Let rE(O, 1), 5>0, and r~< 1 satisfy 

1 
(2.24) l - r 1  = ( 1 - r )  log -1 - '  l - r  " 

Then for every 121=>q and s~=l 

(2.25) d~(1 -121'r2) 1-~-s ~_ c da log -1 - '  (l/d).) 

with some constant c independent o f  2 and r. 

Proof. Condition (2.24) and 121->rl imply that 

da ~ 2(1--r  0 = 2 ( 1 - r ) l o g  -~-~ I / (1 - r ) .  

The last inequality is equivalent to 

(2.26) d~(1 - r )  -x <- ca log - a - '  (if/a) 

with some c t>0.  
We can also deduce from (2.24) that for [21 >r~ 

(2.27) (1 -1212r2) -~ ~_ c2(1 - r )  -x. 

Combining (2.26) and (2.27) we obtain 

dz(1 -- 121~rZ) -x _~ c log -1-* l/da. 

Now (2.25) follows from this and the condition 2 s - 1  => 1. II 

We are now ready to complete the proof of Theorem 2.11. Fix a positive e < a -  1. 
For every 2,E A we choose s, as the root of  the equation 

d~" = da. log -~-" l/da., 

s, = 1 +(1 +c)  log log (l/da.) 
log (1/dj 

First, note that condition (2.12) implies the convergence of the series 

(2.30) z~ d~ log -1-~ (l id 9 < 



54 Gregory Bomash 

for every positive ~. Indeed, this sum is equal to 

1 d<p(r). 
f 2  l~  1- - r  

Integration by parts and an application of  H61der's inequality then lead to (2.30). 
Combining (2.30) and (2.28) we see that the product (2.15) converges for every 

o ~ .  
The independence of  {0,}~= x implies 

1I** Z I'~" ]b<a~,o. (z)]' dO.. f~  In~ )-(z)l' d,o = . : '  2~ J o 

Lemma 2.18 and the inequality 1 +x=<exp (x) result in the following estimate for 
the function g in (2.16): 

(2.31) g(z) ~ exp (~ z~'=x h(s,) d?~"(1- 12[~r~)1-~-}. 

For  a fixed r=lzl  we split the sum in (2.31) into two parts: the sum over J2l_->rl 
and the sum over 12[<rt. Let rt be defined as in Proposition 2.23. The sum over 
I~.l _->r~ is bounded by the finite sum 

(2.32) c ,~lal~rx da log -1 - '  (l/da) ~_ const. 

(Here we used (2.25) and (2.30)). For the sum over 121<rx (i.e. 2EA,I ) we have 

(2.33) ~'a,~ h (s,) da. = ~ 'a , ,  da. + z~a,, (h (s.) - 1) da. 

g0z(rl) +2  Z(Sn--1)2da, ~_ 2q~(rt)+c, 

where the first inequality follows from Proposition 2.22 and the last one follows 
from (2.5), (2.29) and (2.30). Combining (2.32) and (2.33) we obtain 

g(z) ~_ c exp (p~o(rl)), 

where rl depends on r=lz] as in (2.24). Using (2.12) and the change of variable 
r~=rl(r) we obtain 

fDg(~) aAfz) <--~ f~ exp (p~o (]-1)) all- ~ c f: exp (,~(,)),og" ~ dr < ~. 

Hence B~) belongs to the space LP(f2, A p) and the proof of Theorem 2.11 is com- 
plete. The sharpness of this result will be discussed in Section 3. | 
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3. Concluding remarks and conjectures 

3.1. First we discuss how far the condition in Theorem 2.11 is from being 
necessary. Let A be an AP-zero set, i.e. there exists a nonzero function fE A ~ with 
f lA=0.  Without loss of generality we can assume f (0 ) r  Jensen's formula and 
H61der's inequality give (see [Hor]) 

l f~"lf(re'~ dO def (3.1) If(0)l p exp (p~ol(r)) ~_ = M~,(f, r) 

(for the definition of r see (2.2)). For all functions fE A p we have 

1 

2 f~ rM~,(f, r) dr = llfllg < 

Mg(f,  r) < Ilfllg 
= i - r '  

M g ( f ,  r) = o ( ( l  - r ) - q .  

Thus, inequality (3.1) implies the two (generally speaking, not equivalent) necessary 
conditions for AP-zero sets: 

(1) The LP-type condition 

(3.2) f2 exp (ptpa (r)) dr < c o  ; 

(2) The L~-type condition 

(3.3) exp (p~o 1 (r)) = o ((1 - r ) -  1). 

Lemma 2.4 shows that if the set A satisfies the following growth condition for 
the function n(r )=card  (A,): 

(3.4) n(r) = O ( l l ~ _ r  }, 

then the function ~oa in (3.2) and (3.3) can be replaced by the function r In this 
case the necessary condition (3.2) differs from the probabilistic condition (2.12) in 
Theorem 2.11 by a logarithmic factor. In particular we see that the constant l ip 
in Theorem 1 is sharp, i.e. cannot be replaced by any larger one. 

Conjecture 1. Let A be a discrete subset of the disk D that satisfies (3.2) and 
(3.3). Then for almost all toe t2 the set A,~ is an AP-zero set. 

The Zero-One law guarantees that for every set A either A,~ is almost surely 
(a.s.) an AP-zero set, or for almost all toe ~ the set A~, is a set of  uniqueness (i.e. 
not a zero set) for A p. I f  Conjecture 1 is true, we have the following refinement of  
the Zero-One law: 
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Conjecture 2. The following alternative holds: Either A,~ is almost surely an 
AP-zero set, or A~, is never an AP-zero set. 

In order to justify this conjecture we prove its analog for the class A-**= 
I.Jp>0 A p of  all functions analytic in D, satisfying the growth condition 

If(z)l -~ Cs(l -Izl)-", (zED, n s > 0). 

This class was studied in detail in [Korl]. 

Theorem 3.5. Let  A =  {)~}xEa be a discrete subset o f  the disk D. The following 
alternative holds: Either A~, is an A-*%zero set for almost all r 12, or Ao, is never 
an A-O*-zero set. 

Proof. If  for an co6 ~ the set A,, is an A-=-zero set, then 

I 
(3.5) ~Yx~a,(1-12l) --<-- Clog  1 - r  

with some C > 0  (see (3.1.4) in [Korl], or it can be deduced from (3.1)). We can 
split the set A into the union of  at most m = [ 2 C ] + 2  disjoint sets: A = U k ~ l  Ak 
so that for every k the set AS= {p} satisfies 

limsup ~'1,1 <~-, (1 -1~1) 1 
log 1/e < 2 "  

Corollary 2.13 asserts that the random Blaschke type product BA~(z) with zeros 
on A~ is in A 2 for almost all coEf2 ~k). The product Ba~,=/-/[~l BA~ defined on 
C2=/]  f2 (~) will be in A 2/~ for almost all co~ f2, hence A~, is almost surely an A - ~ -  
zero set. II 

Note that Theorem 3.5, in particular, implies that (3.5) completely charac- 
terizes the moduli of  A-~-zero sets, a result first established in [Korl]. 

3.2. It is possible to rewrite formulas (3.2), (3.3), and (2.12) in terms of the 
sequence 

1 
n - -  

In - :  Hk~l r~ ' 

where {rn}~= 1 is the nondecreasing rearrangement of  the set {[2]: 26 A}. 

T h e o r e m  3.6. Let  A be a discrete subset o f  D. Define the sequence {t.} as above. 
Then 

1) I f  A is an AP-zero set, then 

(3.7) 

(3.8) 

t. = O(nltO, 

t~ Z ' - ~  <oo; 
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! 
2) I f  1 <-p <- 2 and ~ tP, (!",- r,_ 1) log" < oo with some a > 1, then the 

1 - r ,  
random set Ao, is almost surely an AP-zero set. 

Proof. 0.7) was proved in [Hor]. The integral in (3.2) is comparable to the sum 

n 2 

Lemma 2 ([Kah], p. 151) says that this series converges if and only if 

tn ~ 
Z7=1 n--r < 0% 

which proves (3.8). 
The second part of  the theorem can be derived directly from Theorem 2.11 if 

the integral in (2.12) is replaced by the infinite sum. l 

3.3. The proof of Theorem 2.11 and Corollary 2.13 can be extended with minor 
changes to the case 0 < p < l .  Unfortunately the author was unable to obtain a 
sharp result for the case p > 2 .  The following result establishes the right rate of 
growth for the function q~(r), but the constant is not sharp. 

Theorem 3.9. Let p > 2  and A={2n}~~ be a discrete subset o f  the unit disk 
D such that 

(3.10) limsup "~1'~"1<1-~(1--IAn[) < 21_2p. 
~0 log (l/e) 

Then the random set A,~ is almost surely an AP-zero set. 

Proof. The key point in the proof of Theorem 2.11 was the estimate for a single 
Blaschke-type factor b(~ ~) obtained in Lemma 2.18. For the case p > 2  we need the 
following estimate: 

Lemma 3.11. Let p > 2 ,  ;tED, and s>-_l. Then 

(3.12) 1._~_/z, 2zr o ]b~)(rei~ ~- 1 + p d l + 2  ~p-2d~(l-l;tl~r~) ~ - z '  

Proof. First consider the case p = 2 n  with n an integer. Define the function 

q(e i~ = - (1 - 1212)~(1 - ~[rei~ -~, 

so that b]~)= 1 +q  and the integral in (3.12) can be written as 

n k 1 l (3.13) ((1 +q)", (1 +q)")n, = Zk.,=o C~C'~(q k, q )n' .  

It is easy to see that (1, q)~,=(q, 1)~r,=d]. 
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For each k -> I we have the following Taylor expansion for q~: 

r (m + ks) 
q~(z) : ( - d D  * z ~ = 0  m!F(ks) (Irz)m" 

Hence for k, l -> I the scalar product of qk and q~ in H 2 admits the estimate 

F (m + ks) F (m + ls) 12rl2,,. 
I(q k, q')n,I <= dl (k+~ ~ = o  (m!)2F(ks)F(ls) 

Since 
r(m+ks)r(m+ ls) ~ r (m+(k+  Os- 1)r(m+ 1), 

we obtain 

F(m +(k + l ) s -  l) 
(3.14) I(q k, q')u,I ~- hk,,(s)dl (k+~ Z~=o ~ _ - - ] ~  12rl 2" 

= h,.l(s) d~, (*+t) (1 - I),r12) ~-ck+m, 

where hk,,(s)=F((k+l)s-1)/(F(ks)F(ls)). Combining 0.13) and (3.14) we see that 

$ n II1 +qll~ -<- 1 +2ndz + Zk,,=x C,kf~.hk,,(s) d~(k+o(1 -12rl2) x-(*+')~. 

It is not hard to see that 
~S" ~ '  ( )  k,t=x C,,C,,hk.l s <= 2 4~-2 

for all s sufficiently close to 1. On the other hand, da(l-12rl2)-x_<-i for all r < l .  
Hence we conclude that 

II1 + qll~," <-- 1 +2ndl+24"-2d~(1 -12r[*) 1-z', 

and the proof of the lemma is thus complete for the case p = 2n. 
For an arbitrary p we take n=[p/2]+ 1, apply the previous case, and use the 

inequality [I b(x ~)[I H, ~ II b(z ~)llu:-. II 

In order to complete the proof of Theorem 3.9 we mimic the pattern of the 
proof of  Theorem 2.11. We will omit the details here. II 

3.4. The Blaschke-type product which appeared in the factorization (1.7) of  a 
function fEA 2 is a special case of  a more general construction (2.9), with s(2)=2. 
The following theorem describes the probabilistic properties of this product; it can 
be proved in the same way as Theorem 2.11 : 

Theorem 3.15. Let fEA e and A={2ED: f(it)=0}. Then the random product 

(3.16) Ba.,(z) ~- l l a .  Ea fx.eio.(Z) 

belongs almost surely to the space Np<X AP. 
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(3.17) 

(3.18) 

(3.19) 

i f  

lim sup ~l'~l<l-e(1 -IAI) 1 
2 - 0  " log lie < "4-' 

then the product 0.16) belongs almost surely to A 2 (cf. Corollary 2.13). 

3.5. Finally we consider a generalization of Theorem 2.11 to a wide collection 
of spaces. 

Let k(r) (0=<r< 1) be a nondecreasing function satisfying the following con- 
ditions: 

(1) k ( r ) - - - + =  as r ~  1, 

(2) (1-r)k(r ) - - ,O as r -*  1, 

(3) f ~ k ( t ) d t  = O ( ( l - O k ( r ) )  as r -  1. 

Define A (k) as a set of all holomorphic in D functions satisfying 

(3.20) log If(z)l --- alk(Izl) + bl, 

where constants a~ and by depend on f .  A~o k) will denote those functions in A (k) 
whose constant ay in (3.20) can be chosen arbitrarily small: f6A~o k) if for every 
e>0  there exists C , > 0  such that 

log If(z)l ~- sk(Izl) + C~. 

When k ( r )= log  (1 / ( I - r ) ) ,  the space A (k) coincides with A - =  discussed above 
(see Theorem 3.5). 

Theorem 3.21. Let k(r) satisfy conditions (3.17)--(3.19). 
1) I f  A= {,;t,,}~'=lcD is an A(k)-zero set, then 

(3.22) limsup "~ta"l<'(1 - I2 . l )  = c < o o .  
,-1 k(r) 

2) I f  A c D  satisfies (3.22), then for almost all independent choices of  {0,}~= 1 the 
set Ao, : {An e~~ is an A(k)-zero set. 

Both statements remain true if we replace A (k) by A~0 k) and the constant c in 
(3.22) by 0. 

Outline o f  the proof. The first statement follows easily from Jensen's inequality 
and condition (3.20). To prove the second statement in the case k ( r ) = ( 1 - r )  -~, 
0 < e < l ,  one replaces the sequence {s,} in (2.29)by s ,=l+e+(l+~)/ log(1/d~)  
and then repeats arguments of  the proof of  Theorem 2.11. The detailed proof for 
the general spaces A (k) will appear elsewhere. II 
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