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O. Introduction 

The gist of  many theorems in analysis and probability theory is that for each 
measure It in a given class M0 and for some reference measure tr, the Radon- -  
Nikodym derivative dit/da is equal a-almost everywhere to a limit along a directed 
set • of  ratios Ri(It, a), i ~ J ,  defined in terms of It and tr. In this paper, we strengthen 
the main result from [6] to develop an equivalent formulation of such limit theo- 
rems. The essential idea is that the desired result is established for all #EM0 once 
it is shown that for any measurable set E and any v~Mo with v(E) =0,  limi R~(v, tr) =0  
a-almost everywhere on E. Indeed, assuming the class M0 is closed with respect 
to scaling, it is enough to show that limsup~R~(v, tr)<_-I a-almost everywhere 
on E. We describe the ratios R~(It, a) and the limit process with sufficient generality 
to make our reduction technique applicable in quite diverse settings. The applica- 
tions in this paper are boundary limit theorems in potential theory, the martingale 
convergence theorem in probability theory, and differentiation theorems in measure 
theory. Here are prototypical theorems in these three areas. 

0.1 Radial and Fine Limit Theorems in Potential Theory. Let C be the bound- 
ary of the unit disk D={z~Cllzl< 1}. For each finite, positive Borel measure It 
on C, let PIt denote the harmonic function on D obtained by taking the integral 
with respect to It of the Poisson kernel. Fix two positive harmonic functions h = Ptr 
and g=Pit on D. By the ratio Fatou theorem (see [10]), for a-almost every z~C, 
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the limit of  g/h exists along the radial line {r.zlrER, 0 ~ r < l } ,  and 

lim g(r.  z) dp 
, -1 -  h (r . z )  - da (z). 

The fine limit theorem of  F a t o u - - N a i m - - D o o b  [6], [10] replaces limits along radii 
with limits defined in terms of  "minimal fine neighborhoods". 

0.2 Martingale Convergence Theorem in Probability Theory. Let (f2, ~ ,  P)  be 
a probability space and (~r an increasing sequence of a-algebras such that ~r is 
the smallest a-algebra containing them all. For  each integrable function h on f2 
and each nEN, let E[hl~r denote the conditional expectation of  h with respect 
to ~r The martingale convergence theorem for generated martingales states that 
for each integrable h, 

h(oo)=limE[hl~/,,](e~) for P-a.e. ~oCI2. 

It follows from our general result that this statement is equivalent to the seemingly 
weaker one that for each measurable set E and each integrable function h =>0 which 
vanishes on E, 

l imsupE[hld , ] ( to )  ~ 1 for P-a.e. o)EE. 

0.3. Lebesgne Differentiation and Density Theorems in Measure Theory. 
Let ~ denote the Borel subsets of  R n, and let tr be a Borel measure, finite on 

compact sets, with support Y=CR". For  any E( .~ ,  let aF. be the measure defined 
at each AE~ by setting a L ( A ) = a ( E n A ) .  Fix a finite Borel measure it, and let 
d#/dtr denote the Radon--Nikodym derivative of the absolutely continuous part 
of  it with respect to tr. For  each yEY, let B(y,  r) denote the closed ball with 
center y and radius r>0 .  By the Lebesgue differentiation theorem, 

lira t'(B(Y' r)) '0' 
,~0+ ~(BO', ,9) - aG (: ')  

for ~r-almost every yE Y. I h e  Lebesgue density theorem is the same result with # 
restricted to the set of  Borel measures of  the form Ge- Covering theorems of  Be- 
sicovitch, Morse, and Vitali are usually used to establish this measure differentiation 
theorem. 

The setting of our general result is a finite measure space (X, ~ ,  cr) with 
a(X) >0.  Here, we let M denote the set of all nonnegative finite measures on (X, M). 
The point of  the technique discussed here is that one works not with just one other 
measure, but with all measures in a subset M(a)C=M having some additional struc- 
ture. Of particular importance are the cases M(~r)=M and M ( a ) =  {halhELP(~r)}, 
1 ~p<= oo. We will treat the limit process in terms of a nonempty family ~ of  non- 
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negative real valued functionals on M(a) .  With ~-almost every point xEX, we 
wilt associate a filter ~(x)  on ~ ;  the limit will be in terms of  these filters. 

Such a class ~- is obtained as follows in the setting of  the Lebesgue differentia- 
tion theorem (Example 0.3). Each closed ball B determines a functional Fn by setting 
FB(/~)=p(B) for each Borel measure p. For  each fixed x, the balls B(x, r) centered 
at x with radius r<= 1/n form a typical set in a filter base of  such functionals. The 
Lebesgue theorem is a corollary of  the Besicovitch--Morse covering theorem (given 
a simple proof  in Section 5) and a new measure differentiation theorem established 
using our reduction technique in Theorem 4.2. For  general metric spaces with an 
appropriate reference measure, we use a new Vitali covering theorem (6.1). 

A class J of  functionals also appears in the setting of  the radial and fine limit 
theorems (Example 0.1). Here, X is the boundary C of  the unit disk, ~ is the class 
of  Borel sets in C, and M ( c r ) = M  is the class of  positive finite Borel measures on 
(C, ~) .  Each point y inside the disk determines a functional Fy on M(a) by taking 
the harmonic extension Pit o f  a measure It on C and setting Fy(p)=Pp(y). 

For the martingale convergence theorem (Example 0.2) and its generalizations, 
the reference measure a is the probability measure P. Here, point evaluations of  
conditional expectations form the appropriate set ~- of  functionals on M(P). Prob- 
lems with the ambiguity of  such evaluations in terms of  sets of  zero probabili ty are 
anticipated in the formulation of  our principal theorem. 

1. A general limit theorem 

In what follows, (X, ~ )  is a measurable space and M is the set of  all non- 
negative finite measures on (X, ~) .  We use the notation PE for the restriction of  
a measure /2 to a measurable set E;  i.e., pe(A)=p(Ac~E). We let R + denote 
the nonnegative real numbers, N the natural numbers, and CE the complement 
of  a set E in X. I f  p and r/ are measures, we write p ~ q  if le(A)<=q(A) for 
each AE~.  

We work with a nonzero measure ~rEM, called a reference measure, and a 
set M(g)==M with gEM(g).  Our theorem is given in terms of  a class ~ of  func- 
tions mapping M(g)  into R + with F ( g ) > 0  for each F E Y .  Associated with ~r-al- 
most every point xEX is a filter ~(x)  on ~-. We will assume that the following 
conditions hold for each pEM(~r): 

i) For  every rER +, rpEM(~r) and 

{FE~IF(r#)=r.F(IO}E~(x) for a-a.e, x~X. 

ii) For  every EE:~,/IEEM(o- ) and 

{FEo.~IF(p)=F(It~)+F(pcE)}E~(x) for a-a.e, x•X. 
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iii) If s .ae~_l~_t .a  e for some EE~ and s, tER +, then 

{FE~Is-F(aE) ~-- F(tO ~-- t.F(an)}E~(x) for a-a.e, xEE. 

Note that the equalities in Properties i and ii are satisfied by all of the func- 
tionals in 8s" if they are affane linear. The second inequality in Property iii is satisfied 
by all the functionals if they are affme and increasing. In what follows, we write 
limr,~(~) F(lO/F(o.)=a if for each ~>0 there is a set SeE~(x) such that for all 

du 
FESe, IF(#)/F(o.)-a[<8. Also, we write for the Radon~Nikodym derivative 

do. 
of the absolutely continuous part of # with respect to o.. 

1.1 Theorem. Given o.EM(o.)C=M, a family ~ o f  nonnegative functionals with 
F(o.)>0 for each FE ~ r, and filters ~(x) on ;~r defined for a-almost all x, assume 
that Propertiesi--iii hoM for each ltEM(o.). Then the following are equivalent: 

F(IJ) d# 
(1) For each ~EM(O.), limr,~(,o F(o.) = do. (x) for a-a.e, xEX. 

(2) For each EE~  with r162 and each vEM(o.) with v(E)=O, 

lim F ( v ) - 0  for a-a.e, xEE. 
r,~(x) F(a) 

(3) For each EE~  with o.(E)>0 and each vEM(o.) with v(E)=0,  

{FE~IF(v) <= F(o.)}E~(x) for o.-a.e, xEE. 

Proof. (1:~ 3) Assume 1 holds and fix EE~  with o.(E)>0 and vEM(o.) 
F(v) dv 

with v(E)=0.  Then lime,~(x) F(o.) = do" (x)=0 for o.-a.e, xEE, so 

{FE~IF(v)/F(a)<= 1}E~(x) for o.-a.e, xEE. 

0=~2) Given E E g  with o.(E)>0 and vEM(o.) with v(E)=0,  we have for 
each kEN, kvEM(o.) and kv(E)=O. Let 

~e= {FC~IVkEN, k. F(v) = F(kv)}. 

By discarding a set of o.-measure 0 from E, we may assume that 6eEl(x)  for all 
xEE. It now follows that VkEN, 

{FEAalF(v)/F(O.) ~_ l/k} = {Fr ~_ 1}E~(x) 

F(v) 
for o.-a.e, xEE. Therefore, limt,~(x)F(o.)=0 for a-a.e, xEE. 

(2~1)  Fix a finite, nonnegative, integrable function h on X and a measure 
v_l_a so that / l-ha+vEM(o.) .  There are disjoint measurable sets X1 and Xa with 
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X=X1 uX2 and a(,Y,)=v(X~)=0. By Property ii, therefore, ha and v are in M(a), 
and the set 

{FE~-IF(/~) = F(ha) + F(v)} E ~(x) 

F(v) dv 
for a-a.e, xEX. By assumption, limF.~(x) F(a)=0=--~-a (x) for a-a.e, xEXa and 

thus for a-a.e, xEX. To finish the proof, we must show that for some measurable 
F(ha) 

set U with a ( U ) = 0  and for all x E X - U ,  limF,~(,) Ffa) =h(x). Choose an 

hEN, and partition R + into intervals of length 1/4n. Let E be the inverse image 
with respect to h of  one of  the intervals Jr, r +  l]4n]. If a (E)=0 ,  adjoin E to U. 
If a (E)>0 ,  let 6eE be the set of all F E ~  such that 

F(a) = F(aE) + F(ac~), F(ha) = F(hae) + F(hacE), 
and 

r .  F(aE) ~_ F(haE) ~_ +- f f  �9 F(ae).  

By discarding a set of a-measure 0, we may assume that oCeEE~(x) for each xEE. 
Now for any xEE and any F E ~ ,  we have 

F(a). IF(ha)IF(a) - h(x)] = IF(ha)- h(x). F(a)] 

IF (ha ) - r .  Ffa)l + Ir. F ( a ) - h ( x ) .  F(a)l 

~_ [F(hacE) - r.  F(acE)l + IF(haE) - r.  F(a~)l + (h(x) - r) F(a) 

~_ F(hacE)+r.F(ac~)+ l . F ( a ~ ) + l . F ( a ) .  

Since F(a)=  F(oe)+ F(acE), F(a~)/F(a)~ 1, so 

I F(ha) h" "[ F(hacn) 

By assumption, for a-almost all xEE, 

F(ac~) 1 
r .  -P(a) 

tim F(hace) = 0, and lira r .  F(acr) = 0. 
r,~(x) F(a) r,~(~,) F(a) 

Therefore, for a-a.e, xEE, there is a set Se~(x)E ~(x) such that IF(ha)/F(a)--h(x)l < 
1In for all FESta(x). We obtain the desired result by putting all of the sets of measure 
0 together for the sets E corresponding to the partition and repeating the operation 
for each nEN. [] 

1.2 Coronary. Assume that F(0)=0 for  every FE,~ r. Let l(t(a) be the family 
o f  all signed measures o f  the form Itn--tlce, #E M(a) and EE ~.  For such a signed 
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measure and any FE ~ ,  set 

F ( p e -  PcE) = F(pE) -- F(PcE). 

F(~o) dcp (x) for o"-a.e, xE X i f  and only i f  for Then for each ~0Eiff(o"), limv,~(~) F(a----) - do" 

each EE~ with o"(E)>0 and each vEM(a) with v(E)=0,  {FE ~IF(v)<=F(a)}E~(x) 
for er-a.e, xE E. 

Note that if M(cr) is the family of  all finite measures on (X, ~) ,  then by the 
Hahn decomposition theorem, )17/(o") is the set of all finite signed measures on (X, ~).  

The remainder of this paper consists of applications illustrating the use of  our 
general reduction technique. The fine limit theorem is our first example. It was 
the motivation for the weak version of Theorem 1.1 established in [6]. To help 
clarify the interpretation of Theorem 1.1, we briefly describe this potential theoretic 
application. 

2. Fa tou- -Na im- -Doob  fine limit Theorem 

Let D be the unit disk and C its boundary. We let Pp denote the Poisson in- 
tegral of a finite measure/~ on C. For each yED there is a corresponding functional 
Fy such that Fy(p)=Pp(y).  In terms of the notation of Section 1, X = C  and -~=D.  
Here, we set M ( a ) = M  regardless of the choice of o", but for more general domains 
and potential theories one may need a subset of M to insure finite harmonic ex- 
tensions. For each zEC, the fine neighborhood ~(z) is a filter in D refining the 
ordinary neighborhood system at z. Using a weak form of Theorem 1.1 and a proof 
that works in very general potential theoretic settings (e.g., [5], [18]), the following 
result was established in [6]. 

2.1 Fatott--NaimnDoob Theorem. Fix a harmonic function h=Pa>O. Also 
fix a superharmonic function s>-O on D; that is, s=p+ Pp, where p is a potential 
and ITEM. Then for a-a.e, zEC, 

�9 S d/l 
h m--r- = ~:) n ~ ( z ) .  

The ratio limit theorem of Fatou stated in Example 0.1 is an immediate corol- 
lary of Theorem 2.1 and a result of Brelot and Doob (see [10], Section 1. XII. 21). 

g 
That is, for positive harmonic functions h and g on D, if " hm~(~)~-~  at a bound- 

g(r. z) 
ary point zEC, then limr-,1- h(r.z-----~=x. 
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3. The martingale convergence theorem 

Let (f2, ~r P)  be a probability space and J a countable subset R + with N ~ J .  
The ordering on ~r is the ordering inherited from R +. Let {.~t~liE J }  be an increasing 
family of a-algebras such that ~ is the smallest a-algebra containing them all. 
Given an integrable function f on f2, f(o)=limi~jE[fls4~](o~) for P-almost all 
ogE f2. We will employ Theorem 1.1 in a proof  of  this equality and its extension to 
more general martingales and submartingales. Since f = ( f + l f l ) - l f [ ,  we may 
assume f=>0. In applying Theorem 1.1, we take ~=~r  and our reference measure 
a is P. Instead of working just with measures of the form f .  P, however, we let 
M(P) be the set M of  all finite measures on the measurable space (f2, ~r Our 
technique then yields a short proof  of  a result due to Andersen and Jessen [2], [9]. 
First we need some notation. 

For each pEM and iEJ ,  let lq denote the restriction p[~r and fix a finite, 
nonnegative version h~' of the Radon--Nikodym derivative dpjdP (measurable 
with respect to ~r We set h ~ - I  and h~ The functions h~' form a martingale 
if for each iEJ ,  pg<<P. (Otherwise, they form a supermartingale; see [9], page 

632.) In any case, we will use Theorem 1.1 to show that a--~P (og)=limihf(o~) for 
dP 

P-alnaost every o9EI2. The convergence theorem for martingales generated by 
integrable functions (Corollary 3.3) is the application of  this result to measures 
absolutely continuous with respect to P. 

For  each pEM, AEsr and kEN, let 

A k = {~oEA IsuphU(og)> 1}. 
i>=k 

We need the following maximal inequality: If  AE~tk, then k > k p(Au)=P(A~,). Recall 

this result follows by taking an arbitrary finite subset 

{k = ia < i., -<: ...-< im} C= or 

setting B0=~b, B,={oEA[h~' > 1 } -  ,-1 Uj=0Bj  for l<=n<-m, and noting that 

> " f he de  >= Z . %  -- P(U." e.) .  = Z n = l  / ' / (On) ~ Z n = l  B,, '" =1 

The maximal inequality has the following corollary which is the key to our use of  
Theorem 1.1. 

3.1 Proposition. Fix EEoC with P ( E ) > 0  and vEM with v (E)=0 .  For each 
iE J ,  let h~ be a version of  dvi/dP. Then 

lira sup h~(o) ~ 1 
tea r 

for P-almost eve1T coE E. 
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Proof. We will show that P(Ak=x Ek) =0" Fix e>0. Since ~r is generated 
by the Mi's, there is a kEN and an AE~k such that (P+v)(AAE)<8. By the 
maximal inequality, k < k P(A,)=v(.4,), so, 

P(Eb ~_ P ( E -  ~) + P(A~,) ~_ P ( E -  A) + v ( A -  E) < ~. 

It follows that P(Ak=X Ek) =0. [] 

Proposition 3.1 verifies Condition 3 of Theorem 1.1. To see this, let Ft.o,(/~)= 
hi(c0) for each coEf2. Let ~={F~,~,IiEJ, coEO}, and for each coEt2 let ~(co) 
be the filter on ~" generated by the sets {F~.~,li-_>k}, kEN. It is easy to see that M, 
~', and the filters ~(co) satisfy the Properties i--iii needed to apply Theorem 1.1. 
(Note that if # satisfies the hypothesis of Property iii, then It<<P.) Given Proposi- 
tion 3.1, we can now apply Corollary 1.2. Here again, Iti=/~l~r for each iE~r 

3.2 Theorem (Andersen and Jessen [2]). For any finite signed measure It on 
(f2, ~) ,  and for P-almost coE I2, 

du dit, 
dP (co) = iejlim - -~  (co). 

3.3 Corollary. I f  h is an integrable function on f2, then for P-a.e. coE t2, 

h(c0) = l~m E[hl~Cd (co). 

Corollary 3.3 is the convergence theorem for martingales generated by an in- 
tegrable function, but not all martingales take this form. In [9], J. L. Doob established 
the almost everywhere convergence ofLl-bounded submartingales {hiliEJ} adapted 
to {~r That is, supi~j,E[lhil]< +o% each h i is measurable with respect to 
Mi, and for i<j  in J ,  the conditional expectation E[hjl~t]>-hi P-almost every- 
where. (E[hjl~i]=hi P-a.e. if the h:s form a martingale.) Johansen and Karush 
[13] showed that the limit of such a submartingale is the Radon--Nikodym deriva- 
tive of a signed measure tp defined on (t2, .~r Here, q~ is the countably additive 
part of  the finitely additive signed measure tp 0 defined on the algebra ~r = Ul~J ~r 
by setting tp0(A)=lim~e J, fA hidP for each AE~r Note, however, that one can 
not directly apply Theorem 3.2 to tp0 and tp does not generate the h:s even when 
they form a martingale. 

Johansen and Karush [13] (and later Chatterji [7]) actually established almost 
everywhere convergence for the Radon--Nikodym derivatives dq~.~dP of a bounded, 
increasing family tpi, iEJ,  consisting of finite signed measures. Here for each iEor tp i 
is defined on Mi, supie3 Iq~il(f2)< + ~, and q~j(E)>=tpi(E) for each EE~r and 
j>i.  If, for example, one starts with a martingale or submartingale {htliEJ }, then 
each tp i is defined by the formula 

1) q, i w )  = f g hi dP VEs 
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We will establish the convergence of the functions dq~t/dP as a corollary of Theo- 
rem 3.2. Our method is to show that dq~dP converges almost everywhere on f~ 
by showing that on a nonstandard extension *~ of  ~, the extended-real valued 
functions ~ iEJ, converge almost everywhere. An alternate approach 
of  Baez--Duarte [3] for the special case of  an Ll-bounded martingale {xn}, applies 
a weak form of the Andersen--Jessen theorem to the image of  {xn} in an appropriate 
product space. For our approach, we need some terminology from [1] and [12]. 

Fix an Rl-saturated, nonstandard extension of a standard structure containing 
R and O. (See [12].) Suppose one is given an internal a-algebra ~=c*~r and an 
internal signed measure v on (*f2, cg) with the standard part of the internal total 
variation ~ + ~o. The finitely additive set function ~ has a unique, real- 
valued, countably additive extension t~ defined on the smallest a-algebra a(c~) con- 
taining ~. Following the literature (e.g., [1]), we call (*12, a(c~), 9) the Loeb space 
generated by (*f2, c~, v). As in [14], however, we do not assume that a Loeb space 
is complete since we will be working here with more than one measure. 

Let (*g2, &.., P) be the Loeb space generated by (*I2, *~r *P). For each 
iE*•, let ~ be the smallest a-algebra containing *~r and let ~k~ denote the extension 
of o(,r from *~r to ~ .  Recall that J is the set of standard indexes. Let g be the 
smallest a-algebra containing ~ for every iEJ ,  and fix an infinite ~E*N-N.  
Now for each iEJ ,  : ~ i ~ g ~ . . .  Let ~ denote the restriction of ~k~ to ~ ,  
and for each iEJ,  let ~b ~ denote the restriction of ~k to ~s- It follows that for each 
iE~', ~bt_~ffi and ff(*g2)=sup~i ~,i(*I2). If the ~o~'s are defined by Equation 1 using 
either a submartingale or a martingale, then for each i ~ ' ,  ~k~<<P, and for the 
case of a martingale, ff~=~k i. In general, it follows from a maximal inequality 
that the Radon--Nikodym derivatives d(~k~-~k~)/dP converge P-almost everywhere 
to 0. To see this, fix kEN, e>0, and a finite set {k=i~<...<i,~}~=Y. Set 

We then have 

(q, r )(*a > B,) k k - -  i i z - -  1 - : - " ' =  ~ "  1 " 

Now by Theorem 3.2, d~bi/dP converges P-a.e. on *12 to d~/dP. It follows 
that d~kJdP converges P-a.e. on *12 to d~k/dP. On the other hand, for each i~J ,  
d~ki/dP=~ Therefore, by the following measure theoretic result (3.4), 
the Radon--Nikodym derivatives d~o~/dP converge P-almost everywhere on f2 to 
a function f such that ~ on */2-U,  where U is a set of P-measure 
0 in ~ . . .  

3.4 Proposition. Let (Y, ~ ,  2) be a finite measure space and {h~li6~'} a 
family of finite, measurable functions indexed by a countable, ordered set ,~ ~=R § 
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with the ordering inherited from R + and Nc_J. Let (*Y, ~ ,  ~) denote the Loeb 
space generated by (*Y, *d ,  *2) in an Rl-saturated nonstandard extension of  a 
standard structure containing R and Y. For each iE J ,  let gi=~ Then the func- 
tions hi, iE J ,  converge ).-almost everywhere on Y to a function h i f  and only i f  the 
functions gi, iE or converge 2-almost everywhere on *Y to a function g, in which case 
g=~ ,~-a.e. on *Y. 

Proof. I f  the h{s converge almost everywhere to h, then by Egoroff's theorem, 
the g{s converge almost everywhere to ~ For  the converse, fix ~ >0  in R, mEN, 
and any finite set m=ia<i2<...<i,  in J .  Set 

A = {yEYI3j, 1 ~_j<= n, with Ihm(y)-h~j(y)l >= ~}, 

{ YI3j j Ig ( )l Ig ( ) ( )1 > } B =  xE* 1 <= <_-n, with x = + ~ o  or ~ x g~j x 

Then *AC=B, and so 2(A)=~(*A)<=2(B). By Egoroff's theorem, hi(y), iEJ, 
satisfies a Cauchy condition for 2-a.e. yE Y. [] 

4. Differentiation of  measures 

Let (X, O) be a metric space or even a quasi-metric space, where the triangle 
inequality for 0 is replaced with the existence of  a constant K =  > 1 such that for all 
x,y,  zEX, O(x, z)<-K .[Q(x,y)+O(y, z)]. (See Section 6.) For  each set Sc=X, we 
write A (S) for the diameter of  S and Zs for the characteristic function of  S. Let 

denote the collection of  Borel subsets of X, ~ (~)  denote the set of  all subsets 
of  ~ ,  and M denote the set of all finite regular Borel measures on X. For  each meas- 
ure aEM and each xEX, let 9~x,~= {SE~IxES and a (S )>0} ,  and let a* be the 
outer measure generated by a. 

4.1 Definition. Fix a E M  and an arbitrary subset A of  X. A mapping 
N: A ~ ( N )  is called a differentiation basis with respect to tr on A (or just a dif- 
ferentiation basis) if the image of  each aEA is a nonempty subset N(a) of  &o,, 
with inf{A(D)lDEN(a)}=O. Such a differentiation basis has the Besicovitch-- 
Vitali property with respect to parameters ~ and t / i f  for any differentiation basis 
on A with 5r for each aEA, there is a mapping a~-~S(a)E~(a) defined 
on a finite subset AoC=A with 

Z ,  cAoZs(.) ~= ~ and a*(A) ~ tl.Zo~aoa(S(a)). 

We say a differentiation basis has the Besicovitch--Vitali property on a subset E 
of  A if its restriction to E has this property with respect to some parameters g and 
t/, which may, of  course, depend on E. 
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The assumption that A 0 is finite is not a restriction. I f  the Besicovitch--Vitali 
property holds without the finiteness condition on A0, then A0 must at least be 
countable since the measure tr is finite and a(S(a)) is always positive. Replacing 
the parameter  i/ with 2q allows one to replace A0 with a finite subset A1. 

There always exists a differentiation basis with the Besicovitch--Vitali property 
on subsets o f  a bounded open set X in a finite dimensional normed vector space. 
Let a be a Borel measure on X with support Y~X. Let ~ be a differentiation 
basis such that for each yEY, ~(y) is a set of  closed balls B(y, r) with centers 
equal to y. Then ~ has the Besicovitch--Vitali property not only on Y, but on 
every subset A of  Y. Indeed, an immediate consequence of Theorems 5.3 and 5.4 
is that for each set Ac=Y and each differentiation basis 5 e with 5e(a)~(a)  for 
aEA, one can choose the set A0 as a subset of  a countable set A~C=A such that 
AC=t.J~ar S(a) (whence q = 2  works) and a n can be chosen that depends only 
on the dimension of  X. Alternatively, Corollary 5.6 shows that A0 can be chosen 
so that the sets S(a), aEAo, are disjoint; i.e., n =  1. It  follows from Theorems 5.3 
and 5.4, that  shapes other than balls are also possible. In Section 6, we show that 
a differentiation basis with •  1 and q_->2 exists for our more general space X if  
for an appropriate m > 1, 

trCB(a, m. r)) } rl 
s u p  - a A, r > 0 

Assuming, for now, that one has a differentiation basis with the Besicovitch--  
Vitali property,  Theorem 1.1 yields a measure differentiation theorem in our general 
setting. To apply Theorem 1.1, we fix aEM and set M(a)=M. Let Y be the sup- 
port  of  tr in X. For  each SE& and ItEM, let Fs(It)=It(S). Let 9 be a differentia- 
tion basis with respect to tr on Y. Set ~ - = U y ~ r  {Fo[DE~(Y)}, and for each yEY, 
let ~ ( y )  be the filter generated by the sets {F9[DEg(y), A(D)<= l/n}. 

4.2 Theorem. I f  ~ has the Besicovitch--Vitali property on evely subset of Y, 
then for each ItEM and a-almost every yE Y, 

lim It(D) dit 
DE ~(y), A(D)~O a( D) = -d~ (y)" 

Proof. We show that  Condition 3 of  Theorem 1.1 holds by fixing a Borel set 
Ec=Y and a measure vEM with a(E)>O, and v(E)=-O. For  each point xEE, 
let SP(x)= {SEg(x)[a(S)<v(S)}. Let A be the largest subset of  E on which the 
mapping a~-~S,"(a) is a differentiation basis. We must show that a*(A)=0 .  Given 
~ > 0  and the constants n and t/ for A, we fix a compact  subset C ~ X - E  such 
that  v(X-C)<8/(x.  ~l). For  each aEA, we remove sets intersecting C from 5 e (a). 
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By assumption, since 5a is still a differentiation basis on ,4, there is a mapping 
a,-.S(a)~Se(a) defined on a finite subset A0__cA such that 

Z. Ao Z. Ao V(S(a)) v (x -c )  < 
Since 8 is arbitrary, a* (A)=0.  []  

Theorem 4.2 has an obvious generalization to topological spaces, but the 
covering theorems needed to establish the conditions of Theorem 4.2 seem to re- 
quire a metric or quasi-metric space. The theorem we discuss in the next section 
reduces a covering to one where the overlap is controlled. In Section 6, we prove 
a general Vitali covering theorem establishing the existence of  a disjoint family of  
sets which can be expanded to form a cover while controlling the increase of  the 
reference measure. Before going to these more general settings, however, we con- 
sider the case X = R .  The authors are indebted to Jesus Aldaz for the following 
optimal covering lemma for the real line based on a result of  T. Rad6 [17]. It shows 
that any differentiation basis formed by intervals has the Besicoviteh--Vitali prop- 
erty on any subset of  its domain. 

4.3 Proposition. Given any finite Borel measure ~r on R and an arbitrary collec- 
tion of  non-degenerate intervals jr, there is for each e > 0  a finite disjoint subset 
{11, ..., 1,} c=jr such that (2+e) .  ~ = 1  a(lk)~a(UIEa~ I). 

Proof. Note that (U,Ea, I ) - ( U , ~ j ,  I ~ is at most a countable set, so by 
LindelSf's theorem we may assume that j r  is countable. We employ Rad6's result after 
first reducing jr  to a finite collection jrj. such that a ( U , ~ , t  I )~(1  +~/2) -1 a(Uz<j  I) 
and each IEjr~. contains a point not in any other interval of  jrs" We order these 
points and the corresponding intervals so that for any indices i, fi and k with i < j < k  
we have X~<Xj<Xk and thus I~C=(-~o, xj) and IkC=(Xj,+*o). Since the in- 
tervals with even indices form a disjoint collection, as do the intervals with odd 
indices, the desired subset o f  Jr is whichever of  these two families has the greater 
total measure. [] 

5. Besicovitch--Morse covering theorem 

In this section we establish a generalization of  a covering theorem first proved 
for disks in the plane by A. S. Besicovitch [4] and extended by A. P. Morse [16] 
to balls and more general sets in finite dimensional normed vector spaces. These 
theorems have two parts. The first part uses geometric reasoning to find an 
upper bound to the number of  balls, or more general sets, that can be in what 
we shall call z-satellite configuration. For the reader's convenience, we give a short 
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proof of  the geometric part of  Morse's theorem. The non-geometric parts of  the 
proofs in the literature (e.g., [11]) are here compressed and generalized using a 
relatively simple proof in Theorem 5.4. That theorem together with Morse's result, 
gives a covering theorem independent of  any measure for spaces locally isometric 
to finite dimensional normed vector spaces. Combining these results with the dif- 
ferentiation theorem in Section 4 establishes a differentiation theorem for such 
spaces that works for any reference measure a. 

The setting of this section is again a metric or quasi-metric space (X, 0). (See 
Section 6.) As before, B(a, r) denotes a closed metric ball with center a and radius 
r>0 ,  and A(S) denotes the diameter of  a set S. The geometric results mentioned 
above concern a configuration of  sets which can be described even in this general 
setting. 

5.1 Definition. Fix ~>1 and I , = { 1 , 2  . . . .  , n } c N .  Let {a~liEIn} and {StliEIn} 
be, respectively, an ordered set of  points and an ordered set of bounded subsets in X. 
We say that the ordered collection of  sets St is in v-satellite configuration with 
respect to the ordered set of points ai if the following conditions hold for each iEI, 
and some index ioEI~ called the central index: 

i) a, ES~, ii) S~,c~S~ ~ 0, iii) A(S~o) < z.A(S~), 

iv) I f  i < j  -< n, then ajqS~ and A(Sj) < r.A(S~). 

Note that i f  r < z l  and Conditions iii and iv hold for T, then they hold for zl. 
In understanding Definition 5.1, it helps to take z close to 1 and let each St be a 
ball with center ai and radius r i . In this case, the balls all intersecting S~,=B(a~, ri,), 
each center is outside or almost outside every other ball, and r~, is almost the min- 
imum radius. For the case that X is a finite dimensional normed vector space, there 
is an upper bound to the number of  balls in such a configuration (see [15]). There 
is also, however, an upper bound for shapes more general than balls. We consider 
next (Theorem 5.2) a sufficient condition for the existence of  such a bound. 

In Theorems 5.2 and 5.3, we will assume that X is a finite dimensional vector 
space and that the metric 0 is given by a norm II-II. We will write Card (.4) to 
denote the cardinality of a finite set A. For each V:>0, we let N(V) be an upper 
bound to the cardinality of  any set A contained in the closed ball B(0, 1) such 
that the distance between distinct points in A is at least I/~,. It is well-known that 
we can choose N(V) so that it depends only on ~ and the dimension of X. Given 
points a, b, and c in X with a~b and a~e, we set 

b - a  c - a .  
U(a; b, c) = [Ib-al-------[ llc-all " 

The following result is essentially due to Morse (Theorem 5.9 in [16]). 
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5.2 Theorem. Let (X, I1" !I) be a finite dimensional normed vector space. Fix 
z with l<z<-2 .  Suppose we are giten a ,set In= {1, 2 . . . . .  n } c N  and an ordered set 
(Si[iE [,, } o f  bounded subsets o f  X in z-satellite configuration with respect to an ordered 
set {ailiE In} o f  points in X. Also suppose that a ball B(ai, ri) with center al is con- 
tained in Si for each iE I,,. Gi~'en the central index i o, set a=ai,, r=rio and S=SIo. 
Assume there are constants Co:>O and C1-> 1 with the following property: I f  i and j 
are indices in I n such that 

Cx .r  < [lai-aj[ <= Ilaj-a[I and U(a; ai ,aj)<: l/Co, 

then ai must be a point in Sj .  Then for 2 = max t E r, A (Si)/2r t, we hare 

l) n ~ N(22.  Cl) -~- N(8)/)  �9 N(Co). 

Proof. For  i< j  in I, ,  

[lal-ajll ~- rt >-_ A(S~)/2)~ >= A(S)/4). >= r/2).. 

Therefore, there are at most N(22.C1) points ai with Ilat-all<-Cl.r. If  i < j  in 
I, and aiE Sy, then 

aj~B(ai, A(Sj)) c= B(ai, 42.rt) and llaj-aill >= ri -> ri/22. 

If  also .]<k in In, and aiESk, then akEB(a~,4)..ri) and 

I[ak--ajH -> rj >- A ( S y 2 2  ~- ]]aj-aiH/2). >: ri/2). ~ * 

Therefore, N(822)->Card ({i6l,,lai~ Sj}). Finally, consider the sets 

J = {i~InlC~'r < Ila,- all} and J '  = {iEYl~/j6J- {i}, ajff St}. 

By assumption, if i and ./" are in J ' ,  then U(a; at, aj)>l/Co. Therefore, N(Co) >- 
Card (J ' )  and N(822).N(C0)_->Card (J),  so Equation 1 holds. [] 

As an example, assume that 2=  1, that is, S~=B(at, r~) for each iCl,. Given 
z sufficiently close to 1, one can show that indices i and j in In must be equal 
if (3/2).r<[]a~-all-<l]ay-a[] and U(a; a i,aj)<=l/4. (See [15].) It is no harder, 
however, to work with sets St which are starlike with respect to the points in B(a~, r~). 
That is, for each yCB(a i, ri) and each x~St ,  the line segment ~ . x + ( 1 - ~ ) . y ,  
0 < - ~  1, is contained in St. Given 2 -> 1 and a~X, we let Sa~(a) denote the collection 
of  all sets S ~ X  for which there exists an r > 0  such that B(a, r)C=SC=B(a, At) 
and S is starlike with respect to every yEB(a, r). 

5.3 Theorem (Morse). Let (X, I! �9 N) be a finite dimensional normed vector space. 
Fix 2-> 1 and f ix  z with 1 <z<_-2. I f  {Si[ 1 <:i<-n} is a finite ordered collection o f  sub- 
sets o f  X in r-satellite configuration2 with respect to an ordered set {aill<~i<=n}cX, 
and for l<=i<=n, SiES~;.(ai), then 

n ~ N(64)~ 3) + N(8).2) �9 N(162). 
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Proof. For  l<=i<=n, fix r~>0 so that B(ai, r~)C=S~C=B(ai,2ri) and S~ is 
starlike with respect to every yEB(a~, r~). Let i 0 be the central index, and set a=a~o, 
r=r~, and S=S~o. Let i a n d j  be indices such that 

32"A2"r < Ila~-all ~- Ilaj-all and U(a; ai, aj) ~_ 1/162. 

By Theorem 5.2, we need only show that a~ must be in Sj. To simplify notation, let 
b=ai and c=aj. Let s=ltc-ajJ/Ijb-atl and t=l/s.  Fix x ~ S n S  i, and let 
y = ( 1 - s ) . x + s . b .  Then b = ( 1 - t ) . x + t . y ,  so we need only show that Ily-cll  _-< 
r j . NOW, 

y - - c  = ( 1 - s ) ( x - - a ) + s ( b - - a ) - ( c - - a )  

I b-a c - a  1 = ( 1 - s ) ( x - a ) + l l c - a l [  llg-Z'-all l ~ a ] l  " 

Since 162- A (S)<=32.).~. r< l [b-a l l ,  and U(a; b, c)<= 1/162, 

IIY- c[I <= s.  Ilx-all  + IIc-all/16)~ <= s. lib -a11/162+ IIc-all/162 

-- Ilc-a11/82 <= (lie-x[I + Ila-xJ/)/82 ~ Z (Sj)/2). ~_ rj. [] 

Theorem 5.3 shows that the hypotheses of  the following theorem (5.4) are sat- 
isfied by rather general coverings in finite dimensional normed vector spaces and 
spaces locally isometric to finite dimensional normed vector spaces. Theorem 5.4 
requires only the setting of  a quasi-metric space, and it applies to shapes more general 
than balls. Our use of  the notion of  r-satellite configuration yields a theorem which 
is more general than corresponding results in the literature. Even for Euclidean 
spaces, the use of  ordering gives additional structure to those collections whose 
cardinality must be bounded in order to apply the theorem. We will only need the 
weaker statements of  Corollaries 5.5 and 5.6 for the differentiation of  measures. 
Indeed, for that application, it suffices to work on a bounded set, and then, if the 
bounded set is compact, the natural numbers suffice for the index set in the fol- 
lowing proof. 

5.4 Theorem. Let A be an arbitrary subset of  X. With each point aE A, associate 
a set S(a) containing a so that the diameters A (S(a)), aEA, ha~'e afinite upper bound. 
Assume that for some ~>1, there is an upper bound xCN to the cardinality of  any 
ordered set {ai[l <-i~n}C=A with respect to which the ordered set {S(ai)li<=i<=n} is in 
z-satellite configuration. Then for some m-<= z, there are disjoint subsets A1, ..., A,, 
of  A such that A~U~'=I U,~Aj S(a) and for each j, 1-~j~m, the elements of  the 
collection {S(a)l a~ A j} are pairwise disjoint. 

Proof. Let T be a choice function on the nonempty subsets B of  A such that 
T(B) is a point bEB with z.A(S(b))>sup~B A(S(a)). Form a one-to-one cor- 
respondence between an initial segment of the ordinal numbers and a subcollection 
of  A as follows. Set BI=A and al=T(B1). Having chosen a, for ~</~, let Ba= 
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A-L.J~<p S(a~). If  BB~I, set ap=T(Bp). There exists a first ordinal ~, for which 
B7=0, that is, AC=L.J~<~S(a~). Note that for ~</~<V, we have apr and 
A(S(ap))<~.A(S(a~)). Let Ac={aJ~<V}, and let T r(B) denote the first element 
of each nonempty subset B of Ac. 

Given any nonempty subset B of Ac, form a one-to-one correspondence be- 
tween an initial segment of the ordinal numbers and a subset V(B) of B as follows. 
Set BI=B and a(1)=Ty(B1). Having chosen a(~) for ~<fl, let 

Bp = {bCBIW < 8, = 0}. 

If Bp#0, set a(/~)=Ti(Bp). There exists a first ordinal y for which Br=0. Let 
V(B)={a(~)I~< ~,}. For each b ~ B - V ( B ) ,  there is an a~V(B) with S(a)c~ 
S(b)#fJ. If  a is the first such point with respect to the ordering on A,, then 
, .A (S(a) )>A(S(b) ) .  

Now for i -  > l, form the sets A s by induction as follows. Set ~Ix = V(A~). Having 
chosen As for l<=i~_n, let Bn=.4c-U~=IAi. If B,r set An+x=V(B,). Note 
that for each aEBn, there are points a~EAt, l<=i~-n, such that S(a~)c~S(a)~f~ 
and ~. A (S(a~)) >A (S(a)). Thus, the set {S(al), ..., S(a,), S(a)} is in v-satellite 
configuration with respect to the set {a~, a2 . . . . .  a n, a} when each is given the 
ordering inherited from A,. Therefore, B,=fJ for some n_<-~. [] 

5.5 Corollary. For _ m .,4c--Uj=l Aj, we have ~ < ~" ~ <u K A ~ , a E A c  K S ( a )  ~ �9 

5.6 Corollary. Assume that S(a) is a Borel set for each a~ A. Then for any 
finite Borel measure It on X, there is a j with l ~_j~_m and a finite subset .4~c=.4~ 
such that 

It*(A) It 

Proof. Choose the first j~_rn which maximizes the sum ~,cAj It(S(a)), and 
choose a finite subset .4,c=.4~ so that 

1 z .  [] 

5.7 Theorem. Fix a finite, regular Borel measure a on X, and let Y be the sup- 
port o f  or. Let ~ be a differentiation basis with respect to a on Y. Assume that for 
some ~>1, there is a finite upper bound to the cardinality o f  any ordered set 
{atll~_i<=n}C=Y with respect to which an ordered set {D(ai)~(ai)li<=i<=n} can 
be in ~:-satellite configuration. Then for each Borel measure It on X and for a-almost 
every y~ Y, 

It(D) ~ a  
lim = (y). 

v~OO,~m-.o a(D) 

Proof. The result follows from Theorem 4.2 and either of the above corol- 
laries. [~ 
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6. A general Vitali covering theorem 

Again, as in the monograph of  Coifman and Weiss [8], we work with a set X 
and a quasi-metric Q on X. Since in this section the constant associated with Q plays 
a role, we list all of  the properties. That is, a quasi-metric Q is a nonnegative func- 
tion on X •  such that 
1) 0(x ,y)>0 iff x y, 
2) O(x,y)=e(y,x) Vx, yEX, 
3) 3K=>l such that Vx, y, zEX, O(x, z)<=K.[o(x,y)+o(y, z)]. 
Of  course, if  K =  1 we have a metric space. Again, B(x, r) denotes the closed ball 
{yE Xlo(x, y)<-r}. 

The following theorem (6.1) is a generalization of  the Vitali covering theorem. 
Because no conclusions are made about the countability of  the covering, the state- 
ment and proof of  Theorem 6.1 are somewhat simpler and more general than the 
corresponding result in [8]. Countability conditions are automatically fulfilled in 
the applications of  Theorem 6.1. The authors are indebted to Professor Hiroshi 
Matano of  Tokyo University for helpful conversations during the development of  
this section. 

6.1 Theorem. Let A be an arbitrary subset of X. With each aE A associate a 
set Sac=x containing a. Assume there is a 2~1  such that for each aEA, there is 
a point c(a)ESa and a positive number r(a) with 

B(c(a), r(a)) ~ Lea c= B(c(a), 2. r(a)). 

Also assume that supaEa r (a)< + oo. Then there is a subset AoC=A with the fol- 
lowing properties: I f  a~b in Ao, then S, nSn=~, and 

1) A c= U,~aoB(C(a), 5 .Ka.A.r(a)). 

Proof. For each nonempty subsets E of  A, let T(E) be an element bEE such 
that 2.r(b)>sup {r(a)laEE}. We form a one-to-one correspondence between an 
initial segment of  the ordinals and a subset of  A as follows. Let al= T(A). Having 
chosen a~ for all ordinals ~< fl, let 

E a = {bEAIV~ < 1~, b~[B(c(a,), 5.KZ.a.r(a,))}. 

I f  Ea#0,  set aa=T(Ea). There must exist a first ordinal ~ such that Er=O. That 
is, for A0= {a,l~<r}, Equation 1 holds. 

Now for ~</~<~, S % n S ,  =0.  To prove this, we use notation such as S, for 
the set S a ,  c, for c(a,) and r, for r(a,). Assume there is a point bES, n S  a. By 
our construction, 2.r ,>r a and e(ca, aa)>5.K2.A.r,. On the other hand, since 
b S, nSa, 

Q(c,, ca) ~_ K.  [e(c,, b) + O(c a, b)] _~ K.  2. Jr, + rp] < 3. K .  2- r, .  



42 J. Bliedtner and P. Loeb 

Therefore, 

~(c=, ap) _~ K .  [Q(c~, c~) + O(cp, ap)] < 3.  K S. 2 .  r~ + K .  2 .  rt~ 

< 3 . K 2 . 2 . r ~ + 2 . K . A . r ~  <= 5 . K 2 . 2 . r ~ ,  

which is impossible. [] 

Given Theorem 4.2. The following corol lary o f  Theorem 6.1 yields a Lebesgue 

differentiation theorem (6.3) that  is valid for rather general spaces when the reference 
measure behaves like Lebesgue measure with respect to scaling. Of  course, Lebesgue 

measure on Euclidean space is such a measure, as is a Riemannian measure as- 

sociated with a compac t  Riemannian variety. 

6.2 Corollary. Let a be a finite measure on X such that every ball is a-measurable. 
Assume there is a constant C>=I such that for aE,4, 

a(B(c(a), 5. K s. 2. r(a))) <- C .  a(B(c(a), r(a))). 

Then there is a finite subset A1 of  .40 such that 

a*(A) ~ 2c .  Z,~a,  ~*(s.). 

Proof. The sum ~,eAoa(B(c(a),r(a)))  is finite since c is a finite measure. 

We may choose a finite subset A~ of  .4o so that  

a*(A) ~= 2. Z,eA1 a(B(c(a), 5. K".  2. r(a))) <= 2C. ~',~Ax a(B(c(a), r(a))) 

_-< 2C.~Y,~A,a*(S.). [] 

6.3 Theorem. Fix a finite regular Borel measure a on X and let Y be the support 
o f  ~. Let ~ be a differentiation bas& with respect to ~ on Y. ,4ssume that there are 
co n s ta n t s  )~>=1 and C>=I such that for each set DE(JyEy ~ ( y )  there is a ball 
B(c, r) with 

B(c, r) c= D c= B(c, 2. r), and a(B(c, 5. K".  2. r)) <= C.  a(B(c, r)). 

Then for each regular Borel measure # on X and for a-almost every yE Y, 

lira p ( D )  _ dlt (y ) .  
oc~(y),a(o)~0 a(D) da 

Proof. The result follows from Theorem 4.2 and Corol lary  6.2. [] 
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