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Besov functions 

O. Introduction 

Let {~.: n~Z} be a 
/'(8,--- 1) - P(e, -~ - 1) = 1/2. 

(0) 

we define f +  by 

(1) 

The notation 

sequence of  independent random variables such that 
I f  f is a function (or distribution) on the circle with 

f •  ~ Z ~ - ~  e,a. e~"'. 

A~'" will have essentially the same meaning as in Chapter 5 of  
[ST] (with the circle in place of R"); a definition is given at the beginning of Section 1 
below. We shall be considering the following question: Given r Ap,' does it follow J E zJ~ , 

that  f +  E A~ '~ almost surely? Of course this depends on the values of  the parameters; 
Theorems 0 through 3 below suffice for all ~, flCR and p, q, r, s~_[0, 1] except for 
the case l < p < 2 ,  fl~-o~+l/2-1/p,p'<=q.<~ and r = s = ~ ;  here we do not know 
the answer (see the note following the statement of Theorem 3). 

It may be appropriate to point out that many extremely familiar objects are 
included among the Besov spaces A~". In particular, they are generalizations of  
Lipschitz spaces: I f  0 < ~ < 1  then A~*'~*-=Lip,, while A, p'~ is the "L  p Lipschitz 
space" sometimes denoted Lip~. The class of holomorphic functions in AI~ ~ is the 
classical Dirichlet space (A~)~ gives a weighted Dirichlet space), while the holomorphic 
functions in A0 ~2 form the Hardy space H 2, and the holomorphic functions in Ao '~ 
give the Bloch space. (In some contexts the term "Besov space" has a more special 
meaning: The space denoted Bp in [AFP] and elsewhere consists of the holomorphic 
functions in A1/p~' P', these are precisely the A~'" which are (uniformly) invariant under 
composition with the holomorphic automorphisms of the disc.) 

Indeed, our interest in the present question began with [CSU]. There it is shown 
that  the randomization of  a Dirichlet function is almost surely a (pointwise) multi- 
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plier for the Dirichlet space: First one notes that if f is a Dirichlet function (fE A~)g) 
then r +-rAp'2 almost surely for p<o~ (cf. [BS], Prop. 19, p. 300); then one shows J v- -11/2 

that an element of  AaPi~ must be a multiplier if  p > 2 .  Of  course, various similar re- 
sults may be found in [KA]; in particular Theorem 3 on page 89 of  [KA] states that if  
fEA~  '~176 then f + c a ~  ',= almost surely for /3<~. 

It will be convenient to break the argument into four pieces, depending on 
the methods needed: In Theorem 0 we see that the case /3>~ is trivial. The case 
/3 = = is dealt with in Theorem 1 ; here the positive results follow from Khinchine's 
inequality and the negative results from fairly explicit counterexamples involving the 
Rudin--Shapiro polynomials and the Borel--Cantelli  lemma. 

The case /3<~ is treated in Theorems 2 and 3: Much of  Theorem2 follows 
from Theorem 1 together with the inclusions among the various Besov spaces; the 
rest of  Theorem 2 is proved using arguments similar to those used in the proof  of  
Theorem 1. One boundary case which does not appear to be susceptible to arguments 
of  this sort is dealt with in Theorem 3, which involves estimates on the L p norm 
of  a randomized Dirichlet kernel (Theorem 4, inspired by [SZ] and [HA]). 

The proof  of  Theorem 3 has very little to do with the techniques used in the 
rest of  the paper, because the corresponding Khinchine's-inequality argument fails. 
In fact we conjectured at first that Theorem 3 was false, because of  our experience 
to the effect that positive results here should be controlled by L 2 estimates, while 
Theorem 1 shows that the best possible L 2 estimates under the hypotheses of Theo- 
rem 3 do not imply the conclusion. 

We wish to thank the referee for finding an error in an earlier version of  the 
paper and for suggesting various improvements in the exposition. 

1. Definitions and statements of results 

Let p ~  if [n l~l ,  p~  if In l>l .  For  j = l , 2  . . . .  let p~be the piecewise 
linear function of n which vanishes for In]=>2 j+l and interpolates the values 0, 1, 
0, 0, 1, and 0 for n equal to - 2  j+a, - 2  J, - 2  j-a, 2 j-a, 2 j, and 2 j+~ respectively. 
In other words,/J,J is the n-th Fourier coefficient of  

(2) (2K(~,+,~- K(~ O -  (2K(~,~- K(~,-,~), 
where Km is the Fejdr kernel. 

I f  f ( t ) ~ = _ =  a,,e i'' we define 

(3) S j f ( t )  = Z7=-oo I't~a,, ei"'; 

S j f i s  simply a smooth version of  "the sum of the terms in the Fourier series f o r f  
with ]hi ~ 2  a''. 
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The notation [1 flip will refer to the norm of  f i n  the space LP(T). For  1 ~p-<_~, 
~ o o  l = r =  , and ~CR we define A~'" to be the space of  a l l J s u c h  that [If lip .... <o% 

where 

(4) I I f l [ p  . . . .  = {Z~.o(2=YlIS~fll,)~} ~/" (1 ~ r <co), 

(4') l]fJIp, ~,~ = sup 2 "j  []SjfJlp. 
J 

See [PT] or [ST], Chapter 5 for background. Because we are working on the circle, 
it is clear that A~"cA~ 's i f  q<=p and s>=r. 

We will save a good deal of  ink by adopting the following notation: 

Definition. Suppose X and Y are two spaces of  distributions on the circle. 
We will write X=~Y i f  f ~ E  Y almost surely whenever fEX, and X ~ Y  otherwise. 

Note that X c  Y does not imply that X=~Y (for example, it is well known 
that LI~,L1).  However, it is clear that either of  the two conditions XcZ=~Y 
or X=*ZcY  is sufficient to imply that X::~Y; note as well that Zl,-2 ,::~Zl ,-~ ", so 
that in fact X c Y  does imply X:*Y if either of  X and Y is of  the form A~, ' '. In 
these terms our question becomes "Given p, q, r, sE[1, ~ ]  and 0c, tiER is it true 
that A~"~A~'~? '' The following four theorems give an answer in "almost every" 
case (see the note following Theorem 3): 

Theorem 0. I f  fl>~ then A~"7~.A~ '~, regardless of the values of p, q, r, ands. 

Theorem 1. Suppose p ,q ,r ,  sE[l, ~]. Then A~"=,A q'~ i f  and only i f  one o f  
the following holds: 

(i) p ~ 2 ,  r<o% q<o~, and s>-r, 
(ii) p ~ 2, r = o% q <- 2, and s = oo. 

Theorem 2. Suppose fl<~. 
(i) I f  f l < ~ +  1/2-- lip then A~"~Aqr '~, regardless of  the values of t ,  q, and s. 

(ii) I f  fl>o~ + l /2 -1 /p  then A~" #~, A q'~, regardless of the values oft', q, ands. # 

(iii) Suppose fl=~ + l /2-1/p .  
(a) I f  either r<oo, q<~o, and s ~ r  or q<=2 and r = s = ~  then A~"=~A~ "~. 
(b) I f  q---~ or s<r then aP . . . .  A~,~ 

Theorem3.  I f  q<:~ and / ~ = e - 1 / 2  then AI~'=~A~ "= 

Note. One may verify that Theorems 0 through 3 answer our question except 
for l < p < 2 ,  f l=e+l /2 -1 /p ,  q<~ ,  r = s = ~ .  I f  one supposes in addition that 
l<=q<p" then an interpolation argument shows that n P ' ~ A  q'=" we leave the 
details to the interested reader. (Here p" denotes the exponent conjugate to p;  our 
positive results lead to interpolable inequalities by Lemma 1 below.) We do not 
know how to settle the case p'<=q<~ here. 
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The proof  of  Theorem 3 is the hardest in the paper, which is to say both "most 
difficult" and "least soft". We begin by showing that Theorem 0 is quite easy: 

Proof o f  Theorem O. Suppose /~>~. We may choose a sequence cj_~0 such 
that Zj*=x2~Scj<~ while 2P~cj is unbounded. Let f ( t )=~Tf f ixc je~ ' .  Then 
(surely) IlSjf• for all p, since S j f ( t ) = c j e  '~'. Thus ZT=x2~JllSjflln<~, 
so that p.x p,, f~A~ c A ~  , although 2aJl[Sjf+[lr is surely unbounded, which is to say 
that f + ~  A~'**, so that f •  A~". II 

Similarly, one needs nothing more than a lacunary series to prove the fol- 
lowing: 

I~mma 0. I f  s<r  then Ap.r-~.Aq.S 

It is known that the Besov spaces are independent of  the particular choice of  
the multipliers used in their definition, as long as the multipliers are sufficiently 
smooth (e.g., [PT], Ch. 8). The following proposition is somewhat analogous; it 
will serve to simplify various calculations later. 

f [t ~ - S ' ~  +~-1 aneint Proposition 0. (i) Suppose f "~z~=l fJ  with jj~ ~-~n=2~ . Then 

llfll, .... <-- c {~*=x ( 2~J IIfjllp)'} 1/" 

for  1 <= r < ~ ; similarly for  r = co. 
(ii) Suppose in addition that f j  = 0  for j = 2 k  + 1, k =0,  1 . . . . .  Then 

I[fllp,,.~ => c {ZT=x ( 2~j Ilfjll,)'} r'" 

for  1 <=r < ~ ; similarly for  r = ~ .  

eroof. O) It is clear that S j f = S j f j _ x + S j f j ,  so the expression (2) for /1~ in 
terms of  the Fej~r kernels shows that 

IIS~fllp <= [Iajfj-allp+llS~fjll~ <-- 6(llfj-xll~+ Ilf~[I,). 

(ii) The additional hypothesis implies that f ~ =  S~.k-xf+Szkf, SO that 

IIf~,[l~--< IlS~-xfllp+llS~fll~. II 

2. Theorem 1 

In general, the letter c will denote a finite positive constant the value of  which 
may vary from occurrence to occurrence. If  A and B are positive quantities such 
that A~_cB and B<=cA we will write A.~B.  We will be making a great deal 
of  use of  Kahane's Banach space version of  Khinchine's inequality ([AG], p. 176 or 
[LT], p. 74): 
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I f  X is a Banach space, x, ,  x., . . . . .  xNqX and 1 ~_p<~ then 

(5) E I [ ~ = I  e.x.[[~ ~ {EiIz~= 1 e.x.il2x} p/z. 

(Of course when Xis one dimensional this becomes the more familiar statement 

(5") e l Z L , ~ . x .  I. " x 2 ,,2 ~ { z . = l t  .t} .) 

The following lemma is immediate from two basic results in [KA]: 

I.emma 1. Suppose f is a distribution on the circle such that f+-( A~ '~ almost 
surely. Then 

(6) gllf+-ll~,,,a < 0% 1 -_< p < ~. 

(In fact much stronger results are known ([~:a] p. 23), but (6) will suffice for 
our purposes.) 

Proof. Let us define ~N(g)--z~)~0 Sig- It is easy to see that in general we have 

]lgHq, s,# ~ sNup [IZN (g)[]o,,,,. 
Now suppose that f+EA~ "~ almost surely; this says that the Fourier series for 

q'~ if S is the summation matrix defined by f •  is ahnost surely "S-bounded" in A a , 
the operators ~N. This implies that the partial sums for the Fourier series for f +  
are almost surely bounded in A~ '~, by [KA], Thin. 2.1 (p. 13), and this implies (6), 
by [KA], Thin. 2.4 (p. 2O). l 

The next lemma is a simple consequence of Khinchine's inequality : 

Lemma2. I f  f is a trigonometric polynomial and l<=p<o% l<_-r<o~, then 

Ellfill~, ~ IIfN;.. 

Proof. We  apply Khinchine's inequality in the Banach space LP(T), then Fu- 
bihi's theorem 'and the scalar version of  Khinchine's inequality: 

E(l lS+li ; )  ~ (e( l ls~l l ; ) }  ,;. = { e ( = ~ ) - i  f~" iS~ (,)i , at}" .  

= { (2 . ) - ' f2"EI f+( t ) iodt } ' l '=  { (2. ) - '  fo " l l f l l f d t } " '=  I!fll~. II 

The following explains why p~_2 in Theorem 1 : 

Proposition 1. I f  X=~Aqd ~ then X c A ~ ' t  

Proof We need only consider the case q < ~ ,  because if q=>2 then X=~A~':~c 
A~ ' '  so that X=~A~ ,~, and it is clear that this implies that X c A ~ ' t  
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Suppose first that s<o~ and fEY .  The hypothesis says that []f-+llq, s,a<o~ 
a.s.; now (6) shows that E[lf+][~,s,p<o~. It follows from Lemma 2 that 

, d--~ j = 0  - -  

E l l f  ll~,s,p < r ZT=o2 JSEIlSjf• = • 

so that jr 2,sa . 

The case s = ~  is similar: Suppose X=e,A~ '~ and fCX.  Then 

Hfl[2, o~,a = su.p 2 M ]lSj.fll2 ~ su.p 2#J EIISj f+IJq 
J ./ 

<= E sup2  ~ ItSjf+-l[q = Etlf• a <o% 
.I 

again by (6); thus f6  Aa . I 

1 2 ~  ~ 2 .  Lemma 3. I f  A~' ~A~' then p 

p ,  1 2,  Proof The hypothesis implies that A= c A =  , by Proposition 1, so that 
I]fil2~,<=cl]fllp, a,,. Now suppose that g is a trigonometric polynomial and let 
f ( t )=ei2~g( t ) .  I f  k is large enough then 

That  is, Ilgll2<=cllg]lp for any trigonometric polynomial g, which shows that 
p ~ 2 .  l 

We have done everything we need to prove Theorem 1, except for the con- 
struction of  counterexamples in two "endpoint"  cases, which we postpone until 
af ter  the proof:  

Proof o f  Theorem 1. ']'he easy part  is to show that either of  (i) or (ii) implies 
that AP'r :e,A q's 

Suppose (i): p ~ 2 ,  r<oo,  q < ~ ,  and s=>r. Let f be an element of  A p'~. Then, 
as in the p roof  of  Proposition 1, 

Ellf• ..... --__: E]IJ'• .... 

7=0 2~J~E • " Y ~ 2~J . . . .  -- Z [ISjf  II ~ IlSJll~ --I]fll~ .... < Ilfllp .... < ~  q ~-~  j = O  ---~ 

by Khinchine's inequality. This certainly implies that [lJ-+]l~ .... < ~  almost surely. 
To show that (ii) implies that A~"~A~ '~ is even easier. Suppose that p_->_2, 

q ~ 2 ,  s = r = ~ o .  Then 

A~" = A~'~ c A~'~ ::~ A~'~ c A~'CO=A,q'~, 

so that AP,r ~ A q,s 
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Now we suppose that A~"'=aA q'~ and we shall show that one of  (i) or (ii) in 
A~' ::*A 2 ; now the statement of  the theorem must hold. Proposition 1 shows that , ,  2 s 

AmlcAp'r=a'A2'S~A2'~ SO that A~'I=~A~ '=, which implies that p_>-2, by Lemma 3. 

Now Lemma 0 shows that s=>r. 
All that remains is to show that q < ~  if r<oo and that q_<-2 if r = ~ .  In 

other words, we must show that A, , . . . . . .  ~e=~A~ and that A~'~#,,A~ "= if  q>2. 
But A~"=*A7 "s would imply A f ' I ~ A 7  "=, contradicting Proposition 3 below, 
and similarly A~ A~ , q > 2  would imply A ~ ' ~ A  q' contradicting Prop- 
osition 2. | 

Thus the proof  of  Theorem 1 will be complete when we have proved Proposi- 
tions 2 and 3 below. 

Lemma 4. Suppose q > 2  and k<o~. There exists a trigonometric polynomial 
g such that Itgl[ =1 while P(r[g• (Here "P'" denotes "probability".) 

Proof. The construction of  the Rudin--Shapiro polynomials (e.g., [KZ] p. 33) 
shows that we may choose a sequence a , =  • in such a way that IjJlt=<=q, if  
f(t)=2-Jlz~=/=la, e~"t. On the other hand, if h(t)=2-J/2~J=~d "t, then one 
easily calculates that IlhJ]q>=c,e2 m/2-~/q), so that J[hll~>ct/r if/" is large enough. 
Let g=caf,  choosing c 3 s o t h a t  llg]l =1.  Note [[cahl[q>CaCtk~k. Thus 

P([lg• > k) => P(g+- = csh) = 2 -2~ > O. | 

Proposition 2. I f  q > 2  then Af '=  r  A~ "~ 

Proof. For k =  1, 2 . . . .  let gk be a holomorphic trigonometric polynomial with 
jlgkl[==l and P(llg~llq>k)=6~>O (Lemma4).  We will choose two sequences of  
positive integers j'~ <Jl<J'2<j';... and then define 

, t  

J k  

(7) f( t)  = ~ = 1  ~,=j~ 2-2"" e'~"' gk(t)" 

,( t)=yaS+l-l?tn ~i"t in Proposition 0. If  we choose the Jk Let us set f j _ ,  ~,=2J j~  j~ , as 
in such a way that 2(2J~)>deg (gk) then we will have f j = 0  except for j=2V,jk<=V_<= 

. p  _ _  _ �9 - "  ~ o o  

j~, in which case f ~ ( t ) - 2  ~Je'~ Nmv Proposition 0 sho'a,s that f~A=" , 
because [[gkI[= is bounded. 

On the other hand, suppose we choose ./"k and ,& in such a way that 
_a~k~k(J'~--J'~+l)=~. It will follow that ,~j P(2~JHf~• for any A<o% 
since P(2~Jllfj~llq>k)=P([lg~llq>k)=g~k for j=2v, ./.k~V~j'k. This shows that 
2"Jllfj:jlo is almost surely unbounded, bv the Borel--Cantelli  lemma, and now 
Proposition 0 shows that J•  '~  almost surely. | 

Proposition 3. A~ #=, A~ '~. 
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Proof. This is somewhat simpler than Proposition 2, in part because we are 
taking q = ~  here, but largely because much of  the work has already been done 
by Salem, Zygmund, Rudin and Shapiro: 

As in the proof of  Lemma 4 we may choose a sequence a, = + 1 in such a 
way that i f  gk(t):2--k/2~2nk=l a.e i"' then [Igkl[~<--c. Now choose bk>:O SO that 
~ ' = ~  b~<~  but k~lZbk is unbounded. Choose a strictly increasing sequence (Jk) 
with 2.]k>s and define 

(8) f( t )  = ,~'~*= 1 bk 2-'~J~) e i~A2j~h g: (t). 

Let f i ( t )=Z~_+~Zlf(n)e '"t, as before, th i s  time we have Jj .=0 except for 
j=2jk ,  in which case f j ( t )=bk2- 'Je- iVtgk( t ) .  It follows that ~,j2=JllfjII <-- 
C~k b , < ~ ,  SO that fCA'~ "~, by Proposition 0. 

However a classical result of Salem and Zygmund ([SZ] p. 278) shows that 
almost certainly IIg~[[>=ck~/'- except for finitely many values of k, so that 
2"~2Y~)][ f~[ t  = is almost surely greater than ckalZb k except for finitely many values 
of k. In particular 2 ~ i l l f ~ l l  ~ is almost surely unbounded, so that f~:~A~ '~, by 
Proposition 0. I 

(The result of Salem--Zygmund cited here was refined considerably by Hahisz 
[HA]; we shall have more to say about this in Section 4.) 

3. Theorem 2 

Much of Theorem 2 will follow from Theorem 1 together with the Besov em- 
bedding theorem ([PT] p. 63): 

Suppose q ->_-p, fl <= ~, and fl - 1/q ~- ~ -  1/p. Then 

(9) Ag'" c A~". 

The reader will have no di~2culty verifying the following !emma: 

Lemma 5. I f  f l<~ then A~'=cA~'  1, so that A~"=A~'~ /bra l l  1", s. 

Proof o f  Theorem 2. We begin with par t '0) :  Suppose that fl<c~ and f l < ~ +  
l / 2 - 1 / p .  We will consider separately the cases p_->2 and p < 2 ;  first suppose p->2. 
Choose ~ so that f l < 7 < ~  and: 7 - / 3 < I  ; now define t=(7- /3)  -1. We use a trivial 
inclusion, [_emma 5, Theorem l, :(9) above, and another trivial inclusion : 

A~'" ~ A~ '~ c A.Z, '1 =~ At,, '1 ~ A ; ' X =  A~", 

A P  r ~  4 q  s 
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NOw,suppose, f l<cqf l<e+l /2=l /p ,  and p < 2 .  Let fl~=z~+l/2=l/p, choose 
?,such'that f l<y<flx and ? - f l < l ,  and let t=(7- f l ) -L  Applying the same facts 
as before but in a slightly different order, 

A~ ,~ c A~'" ~ A~i= ~ A~ '~ =~ A~ "x ~ A~ '~ ~ A~", 

so that Ap,,'~Aq,s ~,-e --r . 

We turn to part (ii) Of the theorem: We suppose that A~'"=*A~" ~, and we shall 
show that fl>='o~+l/2-1/p. T h e  Obvious inclusions and PropoSition 1 imply that 

.~,x x~2~+~ ~,t and suppose A~'I, cA~  '~, so that ltfij2,=,~_C[jfil[,,~,~i But let yt,,=~,,=2~e 
~v>l; then []f]]~,=,~2~k2 */2 and t]fl[v,~,,~2"k2 ko-~/p), so that fl+l/2=<z~+l-- 
1/p. (Proposition 0 may be of  some use in estimating the norms in question.) 

+ i ~tk Similarly one sees that [ ] f [h , l ,~k2  , which shows that f l+l/2~ct if p = l .  
Now for Theorem 2 (iii): We suppose for the  remainder of this section that 

f l<~ and f l=ct+l/2-1/p (so that p<2) .  The Besov theorem ((9) above) shows 
that ~,~P'r~-~2:"~--,~, if  we suppose either that r<o~, q < ~  and s ~ r  or that q ~ 2  
and r--s=oo then Theorem 1 shows that ,,~A ~'~=~.~Aq'~, so that A~"==~A~ '~. This 
gives (iii) (fi). 

For ~ (iii) (b) we need only show tha t  AP,~#,A~ ;~ and' that ~AP"-~Aq'~., . . . .  P if  
S~zr: We~begin with the ,case  p>!l  and the, outline the modifications needed if 
p = l :  

Choose a sequence cj so that cj2J~[[Jflv=l, where f~, , - ~ = ~  e i't. It fol- 
lows that c~2~ftfj(iz~ll, as" in the pro'of of  (fi). We will l'et 

(lO) 

for a suitable sequence a~=>0. 
If  we choose ai so that ,~ j==la j<~ but ./I/2af is unbounded then fCA~ "1 

but the argument used in the proof of Proposition 3 shows that a.s. f •  g; A~='=; thus 
A~,~ C .A~  ,~. 

On the other hand, suppose that s< r ,  and choose aj>O so that Z]~ a~< .oo 
,but ~'T=I a~. = ~  (with the=appropriate change if  r=oo). Then (10)gives a fune- 
'tion f with ,f~ A~'" but f~ A~'~. By Proposition 1 this shows that A~ '~ ~-~*A~'~. 

For p =  1 one need merely t a k e r  to be a weighted sum of "translates" of Fej6r 
kernels rather than Dirichlet kernels. (Note that Kahane's "contraction principle", 
[KA] p. 20, shows that the almost sure behavior of the L ~ norm is at least as bad 
for a series of randoinized F, ejdr kernels as for Dirichlet kernels, because the coeffi- 
cients of the Fej6r kernel of degree 2N dominate the coefficients of the Dirichlet 
kernel of  degree N.) | 
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4. Theorem 3 

We do not see how to prove Theorem 3 by a method anything like that used 
in Theorem 2: Suppose that q > 2  and f l = ~ -  1/2. Then (9) shows that A~d =cA~ '= ,  
but Theorem 1 shows that A~'=~,A~ ,~. Similar problems arise if one attempts 
this crude a proof  of  Theorem 2 (i), but in that case there is some "slack" in the 
values of  the parameters, which saves the day. 

Theorem 3 will follow from the following result, which will be established by 
the "method of  subsequences". 

Theorem4. Let D N ( t ) = N - ~ / 2 Y  "~ e i"t, and suppose q < ~ .  Then 

l i m  • q == N~= HONI!q F(1 +q/Z) 

almost surely. 

This is perhaps not surprising in view of the result of  Salem and Zygmund 
([SZ], Theorem 3.5.2) which states that the distribution (on the circle) of  the func- 
tion D~ almost certainly approaches a (complex) normal distribution; note how- 
ever that convergence in distribution certainly does not a priori imply convergence 
in mean. 

Let us begin by showing how Theorem 4 implies Theorem 3 : 

Proof o f  Theorem3, Suppose we know Theorem4,  and suppose fCA~ '~, 
f l=a- -1 /2 ,  q < ~ .  Let dj=D.,j+2-.i/~+D2~. Theorem 4 shows that [!dfllq is almost 
surely bounded, so that 

+1 [If-IPq. =,r = sup 2 ~j Ilgjf~l!q 
J 

= sup 2(a+1/~)j II(Sj f +) , dj+lllq = su.p 2:J tl(Sif ) �9 (d)Gl)ll,, 
d 3 

-~ su.p 2 ~ IlSjflll f -~+ ~ fit -< = , - ; + 1 ~ .  --< U i l a , = ~  sop lld q 
3 l 

almost surely, which is to say J-+EA~ ,~ ahnost surely. I 

+ ! ~ q .  Theorem 4 will follow from the following estimate on the variance of ]{P,~llq. 

Proposition 4. Let DN be as in Theorem 4, and suppose q is an even positive 
integer. Then 

a2(llDffllg) = E(t[D~I]~-E [I PKi]q)-+'q ' ~z ~ c  log (N) 

(Here c depends on q but is of  course independent of N.) 
Supposing this for now, we prove Theorem 4: 
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Proof o f  Theorem 4. If  X~r is a sequence of  functions defined on the circle, 
X N ~ X  in distribution, q<r<=~, and I[X,~,[[~ is bounded, then !ix~Ilq~-llxI}q (by 
uniform integrability of [X~]0. Hence the central limit theorem of Salem and Zyg- 
mund mentioned above ([SZ] Theorem 3.5.2) shows that we may assume that q 

I + is an even integer in Theorem 4, and that it is sufficient to show that ,[D~ilq is almost 
surely bounded. 

Let Nj be an increasing sequence of  positive integers such that 

(I 1) Z7~1 log ( ~ ) / N j  < ~. 

Proposition 4 shows that 

Z7=1 g(ll Offjll g -  EII O~ll g)2 _< ~ 
so that 

Z~=x (IID~:I[g-E IID~v!lg) 2 < 

almost surely; thus 

(12) lim ([}D~:]I~-EI}D~j[[~) = 0 almost surely. j ~  

But it is immediate from Khinchine's inequality that EIID~+-IIq q is bounded, so (12) 
shows that 

(13) IlD~jllq is almost surely bounded. 

(In fact (13) would suflSce to prove Theorem 3.) 
Now let us suppose that the sequence (N~) satisfies 

(14) NY+I- -NJ  ~ c, 
( N.)X/2 3 

in addition to (11). (One might take Nj_-j312.) Suppose that :X)~-N<Nj+~. It fol- 
lows that 

(15) ]]]DN~,Iq-IIDt~tIa} ~ ll(O,.j-O.~.)+ll, 

II(Nf 1 / 2  N-x~2) g 2 ' ~  ~.,,e'"'- ...,,,=,,~ ~ 

< V --[lO~j[lq+(Nj)-~/"-(,\)+~--~ j), 

so that I!DN[lq is ahnost surely bounded, by (13) and (14). 1 

We can postpone the proof  of Proposition 4 no longer. 3-he basic idea comes 
from [HA], where extremely precise estimates on the almost sure behavior of  IlD~:,i 
are obtained using the "characteristic function" (the Fourier transform of the dis- 
tribution). The key to Hal~isz' argument is the fact that the two random variables 
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D~(t)  and 'D~(s) are close to independent unless t is close to :ks (modulo 2n). 
Here "close to independent" means one thing in Hal~isz' paper; for us it shall mean 
the following: 

Lemma 6. Suppose q is a positive even integer and define D~,(t) as above. Let 
r r Then 

'(16) [e [D~ (t)] q D + [ ,q (s)lq-cP~,(t)cP~.(s)l 

<= c min (i, N --1 (1t - e its" ')1-1 + l l  - ei('+t)l--1)) 

Jor s, t6R.  

ProoJl Note first that the left side of (16) is bounded, by Khinchine's inequality 
(together with the Schwarz inequality). We need to show that the left side of (16) is 
no larger ' than 

cN- l ( I  1 - e  ir -~ +11 -e" '+~ 

We use a "characteristic function" argument. It seems', to be necessary to re- 
.~_~ard e as an element of R 2 rather than C. Fix s, t, and N. For ~ =(~1, ~2)CR 2 define 

(17) 7.1(~) = E exp (i[r Re (D~ (s))+ ~2 Im (D~ (s))]), 

and define X2(~) similarly, :with t and ( in place of s and r 
For (~, ~)=(r ~ ,  ~1, ~2)E R4 define 

(t8) v (~, ~) = E exp (i[~i.Re (D~ (s)) + ~2 Im (Dff (s)) + ~1 Re (Dff (t)) + ff~ lm (D~ (t))]). 

If  el and e2 are non-negative integers, it follows that 

(19) i -('~+',) 0('1+'2) 
~1 ~2 7.1 (0, 0) = E((Re (D~v (s))) "1 (Ira (D~ (s)))'2), 

with similar formulas for 7.2 and v. 
Now let q=2k ;  we are supposing that k is a positive integer. It follows from 

(19) and the corresponding formulas for 7.2 and v that 

(20) EIDeN (s)l q [Dev (t)[q-~ou(s) ~ox(t ) = A~_A~ 7/( 0, 0, 0, 0), 

if  we define 

~1/(~1', ~2, ~1, ~2) = V(~I, ~2, ~1, ~2)--Z1(~1,  ~2)~2(~-1, ~2), 

and: Ar denotes -the operator (0/0~1)"+(0/0~2)"-, with A~ defined similarly. 
We shall, obtain an upper bound on the right-hand side of (20) by using "Cauchy's 

Estimates": Extend 7 j to  an  entire function in C 4 using (18), (17), and the corre- 
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sponding formuia'for Z2(~1, ~,,): We shall show that 

(21) ] 7~(~1, ~,, (1, (2)l = O(N-~(II  -e'(*-~ +l l  -d(~+')l-1)) 

(~j, ~j<c, [4jl, I~jI ~- 1/2). 

Cauchy's Estimates lead from (21) to. 

(22) k k " " ' IA~A~'(0,0,0,0)I  = o ( ,~ - - ' ( l l -d ' .~ -" l  ~ l l - e ' ' ' l - %  

=and (22) proves the lemma, by (20). (In (22) the notation A~ refers not to the Laplacian 
in C ~, but rather to the operator A~--(O/i)~a)z+(b/O~.,)e.) We begin the estimates 
involved in (21). 

Note first that  

(23) , v  . �9 ~ , 1.2.=1 r,( j0 &(is) I ~ c(l l  - e  '(~- ~ +lJ - , " "  "I 9, 

where T~ and ~ each denote either of  the functions sin or cos (so that (23) includes 
four inequalities,) One may ,prove (23) by expressing the trigonometric functions .in 
terms of exponentials and adding several geometric series. 

�9 N 9 <  Second, note that if z,,(C wath-~1=1 I Z n [ - = C  and [~',,x 1 z.l~c then 

( 2 4 )  H U=a (1 _ z,,)  . ,', ., .v ., -- Z; ,=,  Iz.l'), 1 - Z . = l  z , , . O ( ] Z , , = : t  z.12 + v 

Where die constant implic!t in the notation "O" is independent of N. (Write "H = 
exp (Z log)" and do some calculus.) 

Independence shows that 

(25) z~(~, ~,) " = ] / . = ,  cos (N -1/e [~, cos (m')+ de sin (us)l) 

and similarly for Zz, while 

(26) 

" = /'-Zn=l COS (N -1,'a [~1 cos (us) + ~: sin (us) + ~, cos (nt) + ~a sin (nt)]). 

We apply the "addition formula" for the cosine in (26), divide by (25) and the 
corresponding formula for Z2, and then apply (24) to see that 

{27) v ( ~ , ,  ~ 2 ,  '~1, ~2)  

z1(~1, G)z~(~,, ~) 

= ]],,~1 {1 - t a n  (N -~/' [~, cos (,,s)+ C:2 sin (ns)]) tan (;',-li~ [~, cos (nt)+ G sin (nt)])} 

N V 
= H .  , ( 1 - t a n  tan) = N t a n + O ( I 2 ;  , t an tanp-a  " = 1 - .~, ,=~ tan = ' ~;,=1 Ran tanle); 

here we have, omitted the arguments of the function "tan".  



336 David C. Ullrich 

Now the fact that tan (z)--z+O(]z3]) ( Iz[~l)  .~hows that 

(28) N =~ ~,,,=1 tan tan = ~ '  =1 [ N-~/2 ({1 cos (ns) + 42 sin (ns))] 

. , 0 ~" N-3/~-a12)  X[N-1/z(~tc~ ( X ; , = I  �9 

for the values of  ~i and ~i under consideration; the error here is of  course O(N-~)  �9 
I f  we apply (28) to (27), along with easier estimates on the term 2; [tan tanl 2 
we obtain 

(29) v (~1, Cz, ~,, r 

= 1 - N -1 ~'~=1 [~-1 cos (ns)+ ~-2 sin (ns)] [~1 cos 070 + ~2 sin (nt)] + O (N-l) .  

Now the sum in (29) is equal to the sum of four sums of  the sort considered in 
(23) above; thus, for I~jl, ]~j]=<l/2 we have 

(30)  ~ 

= t + N-10(I1  -eU~-')]-~+ll -e~<~+'~l-~)+O(N-t) = 1 +~,  

where the last line is an abbreviation for the preceding. 
I f  we rearrange (30) and recall the definition of  ~ we obtain 

(31) 7J(~, ~.,, ~1, ~.,) = OZ~(~a, ~)/~2(~1, ~2). 

But note that cos ( z )= l  +O(Iz] 2) for z = O ( l ) ;  now (24)shous that 7~j=O(1), 
by arguments like those above. Hence (31) implies that 7~=O(0), which is (21). 1[ 

It is easy to see that Lemma 6 implies Proposition 4: 

Proof of Proposition 4. A few standard manipulations and Fubini's theorem 
show that 

2 2~ 2rr + 
(32) ~(]rDN~Hg) = (2';)-~ fs  fs (ElD:v (s)lq]D.~(t)l q -(pN(S) 9gs(t)) dsdt, 

where ~oN(r)=ElD+(r)] ~, as in Lemma 6. Nox~ that ]emma shows that 

f2 = f2  min(1, N-l(}l-e~(~-"!  -t+ll-e'(~+~ 

e f ~  min (l,  ,~\'-~ll--e"l-~)dt~clog(N)/N. | 
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