The smoothness of random Besov functions

David C. Ullrich

0. Introduction

Let {e,: n€Z} be a sequence of independent random variables such that
P(e,=1)=P(e,=—1)=1/2. If fis a function (or distribution) on the circle with

©) FO~ 2 ae™,
we define f* by
1) fEO~ 3. ena,e™.

The notation AZ" will have essentially the same meaning as in Chapter 5 of
IST] (with the circle in place of R"); a definition is given at the beginning of Section 1
below. We shall be considering the following question: Given f& A%", does it follow
that f*¢ A%* almost surely? Of course this depends on the values of the parameters;
Theorems O through 3 below suffice for all a, R and p, q, r, s€[0, 1] except for
the case 1<p<2, f=u+1/2—1/p, p’=q=<< and r=s==; here we do not know
the answer (see the note following the statement of Theorem 3).

It may be appropriate to point out that many extremely familiar objects are
included among the Besov spaces A", In particular, they are generalizations of
Lipschitz spaces: If 0<a<1 then A *=Lip,, while A= is the “L? Lipschitz
space” sometimes denoted Lip?. The class of holomorphic functions in A33 is the
classical Dirichlet space (A7} gives a weighted Dirichlet space), while the holomorphic
functions in Ay* form the Hardy space H?, and the holomorphic functions in A5»>
give the Bloch space. (In some contexts the term “Besov space” has a more special
meaning: The space denoted B, in [AFP] and elsewhere consists of the holomorphic
functions in Af;F; these are precisely the A" which are (uniformly) invariant under
composition with the holomorphic automorphisms of the disc.)

Indeed, our interest in the present question began with [CSU]. There it is shown
that the randomization of a Dirichlet function is almost surely a (pointwise) multi-
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plier for the Dirichlet space: First one notes that if fis a Dirichlet function (f¢ Af;g
then f*¢ AP} almost surely for p<e (cf. [BS], Prop. 19, p. 300); then one shows
that an element of Af;; must be a multiplier if p=2. Of course, various similar re-
sults may be found in [KA]; in particular Theorem 3 on page 89 of [KA] states that if
f€A2= then ffcAz»= almost surely for f<a.

It will be convenient to break the argument into four pieces, depending on
the methods needed: In Theorem O we see that the case f=a is trivial. The case
B=a is dealt with in Theorem 1; here the positive results follow from Khinchine’s
inequality and the negative results from fairly explicit counterexamples involving the
Rudin—Shapiro polynomials and the Borel—Cantelli lemma.

The case f<ua is treated in Theorems 2 and 3: Much of Theorem 2 follows
from Theorem 1 together with the inclusions among the various Besov spaces; the
rest of Theorem 2 is proved using arguments similar to those used in the proof of
Theorem 1. One boundary case which does not appear to be susceptible to arguments
of this sort is dealt with in Theorem 3, which involves estimates on the L? norm
of a randomized Dirichlet kernel (Theorem 4, inspired by [SZ] and [HA]).

The proof of Theorem 3 has very little to do with the techniques used in the
rest of the paper, because the corresponding Khinchine’s-inequality argument fails.
In fact we conjectured at first that Theorem 3 was false, because of our experience
to the effect that positive results here should be controlled by L2 estimates, while
Theorem 1 shows that the best possible L? estimates under the hypotheses of Theo-
rem 3 do not imply the conclusion.

We wish to thank the referee for finding an error in an earlier version of the
paper and for suggesting various improvements in the exposition.

1. Definitions and statements of results

Let pd=1 if |n|=1, u®=0 if |n|>1. For j=1,2,... let u) be the piecewise
linear function of n which vanishes for |n|=2/*! and interpolates the values 0, 1,
0, 0, 1, and O for n equal to —2/* —2J, —2/=1 2J=1 2/ and 2/*! respectively.
In other words, y is the n-th Fourier coefficient of

0 (2K(2J'“)_K(af))‘(ZK(zf)_K(zf-l))s
where K, is the Fejér kernel.

If f(t)~ > __ a,e™ we define

n= —co n

3 S;f()=23"__umae™;

S; fis simply a smooth version of “the sum of the terms in the Fourier series for f
with |n|~27,
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The notation | /|, will refer to the norm of fin the space L?(T). For 1=p=c-,
1=r=e, and acR we define A?" to be the space of all f such that [ f],,, <,
where

€] 1/ 1lp,r,a = {2’;0 (2% ”ij”p)r}l/r (1 =7 <o),
) | £l me = S8P 278, f1,-

See [PT} or [ST], Chapter 5 for background. Because we are working on the circle,
it is clear that AP"C AZ* if ¢g=p and s=r.
We will save a good deal of ink by adopting the following notation:

Definition. Suppose X and Y are two spaces of distributions on the circle.
We will write X=Y if f*cY almost surely whenever f€X, and X#=>Y otherwise.

Note that XC Y does not imply that X=Y (for example, it is well known
that L's>LY). However, it is clear that either of the two conditions XcZ=Y
or X=>ZcY is sufficient to imply that X=Y; note as well that A>"=A4%", so
that in fact XY does imply X=Y if either of X and Y is of the form A%". In
these terms our question becomes “Given p, ¢, r, s€{1, ] and «, BER is it true
that AL"=A%°?” The following four theorems give an answer in “almost every”
case (see the note following Theorem 3):

Theorem 0. If f>a then AP"7>A%S, regardless of the values of p, q, r, and s.

Theorem 1. Suppose p,q,r,sc[l,<]. Then AP"=A%* if and only if one of
the following holds:

(i) p=2, r<e, g<o, and sz=r,
(i) p=2, r==, g=2, and s=co,

Theorem 2. Suppose f<ua.

() If B=<a+1/2—1/p then AL'=AL*, regardless of the values of r, g, and s.
(ii) If B=a+1/2—1/p then AZ"5>A%%, regardless of the values of r, q, and s.
(iii) Suppose B=o+1/2—1/p.

(a) If either r<oo, g<oco, and s=r or q=2 and r=s=c then AP'=AY".
(b)Y If g=c= or s<r then AP"=>A%"

Theorem 3. If g<co and B=u—1/2 then A;~=A%~.

Note. One may verify that Theorems O through 3 answer our question except
for 1<p<2, B=ua+1/2—1/p, g<co, r=s=c. If one supposes in addition that
I=g<p’ then an interpolation argument shows that A?==A%>; we leave the
details to the interested reader. (Here p” denotes the exponent conjugate to p; our
positive results lead to interpolable inequalities by Lemma 1 below.) We do not
know how to settle the case p’=g<c here.
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The proof of Theorem 3 is the hardest in the paper, which is to say both “most
difficult” and “least soft”. We begin by showing that Theorem 0 is quite easy:

Proof of Theorem 0. Suppose p>a. We may choose a sequence ¢;=0 such
that 37 2%c;<e while 2¥c; is unbounded. Let f(t)=3.,c;e®". Then
(surely) ||S;f%l,=c; for all p, since S,f(t)=c;e'*'. Thus 2’;;12""|]ijllp<oo,
so that f€ AB*c AZ", although 2%|S;f*|, is surely unbounded, which is to say
that f£¢ A%, so that ff¢A2s. ||

Similarly, one needs nothing more than a lacunary series to prove the fol-
lowing:

Lemma 0. If s<r then AD"=>A%°.

It is known that the Besov spaces are independent of the particular choice of
the multipliers used in their definition, as long as the multipliers are sufficiently
smooth (e.g., [PT], Ch. 8). The following proposition is somewhat analogous; it
will serve to simplify various calculations later.

Proposition 0. (i) Suppose f~3,f; with f;(t)=27_y""a,e™. Then
1 lpre = {2 QUL

Jor 1=r<eoo; similarly for r=eco.
(1) Suppose in addition that f;=0 for j=2k+1, k=0,1,.... Then

1 pre = {2y @AY F
Jor 1=r<oo; similarly for r=eoo.
Proof. (i) It is clear that S,f=S;f;_,+S;f;, so the expression (2) for y} in
terms of the Fejér kernels shows that
1S5 £11, = 1S fi-all,+11S; fill, = 61 f5-all , +1£5ll,)-
(ii) The additional hypothesis implies that f;, =S _,f+Su/f, so that

Ifullp = Se—1 S+ 1S f1,- N

2. Theorem 1

In general, the letter ¢ will denote a finite positive constant the value of which
may vary from occurrence to occurrence. If 4 and B are positive quantities such
that 4=cB and B=cA we will write A~B. We will be making a great deal
of use of Kahane’s Banach space version of Khinchine’s inequality ([AG], p. 176 or
[LT], p. 74):
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If X is a Banach space, x,,x.,...,Xy¢X and 1=p<c then

) B2 el ~ {E[ 2 el
(Of course when X is one dimensional this becomes the more familiar statement
) E|Z el ~ {3, )

The following lemma is immediate from two basic results in {KA]:

Lemma 1. Suppose f is a distribution on the circle such that f ‘—*EA‘}," almost
surely. Then

(6) Elf*1§ss < 1=p=<e

(In fact much stronger results are known (IKA] p. 23), but (6) will suffice for
our purposes.)

Proof. Let us define >y ( g):Z}LO S,;g. Itis easy to see that in general we have

”g”q,s,ﬁ ~ SIlle HZN (g)”q,s,ﬂ'

Now suppose that f*¢ A%° almost surely; this says that the Fourler series for
f* is almost surely “S-bounded” in A%*, if S is the summation matrix defined by
the operators . This implies that the partial sums for the Fourier series for f*
are almost surely bounded in A%%, by [KA)], Thm. 2.1 (p. 13), and this implies (6),
by [KA}], Thm. 2.4 (p. 20). |}

The next lemma is a simple consequence of Khinchine's inequality :
Lemma 2. If f is a trigonometric polynomial and 1=p<co, 1=r<eo, then
E|f*15 =~ 1f15-

Proof. We apply Khinchine’s inequality in the Banach space LP(T), then Fu-
bini’s theorem and the scalar version of Khinchine’s inequality:

E(If£1) ~ (B 10y’ = {E@n— [\ f* (o diy’?

2z r _ 2r r ,
={en [ TEIrf@raf ~ {Qo [ I = 1115 1
The following explains why p=2 in Theorem 1:
Proposition 1. If' X=A%* then XC A%’s.

Proof. We need only consider the case g<oo, because if g=2 then X=A%°C
Ay* so that X-=A%%, and it is clear that this implies that Xc A3
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Suppose first that s<e and fcX. The hypothesis says that || /], <
a.s.; now (6) shows that E|| f*| ,<eo. It follows from Lemma 2 that
115,68 = 2 5o 22508, SIS
2o PP ENS £y = ENf* 558 <o

&

so that fecA%s.
The case s=oo is similar: Suppose X=>A4%~ and fcX. Then
1/ ilz, =, = sup 271IS; fll2 ~ sup 2IE|S; f*,
= Esup 27 S /%y = ENS*lg,m g <=
again by (6); thus fe 4y~ |
Lemma 3. If AP'=A%>> then p=2.

Proof. The hypothesis implies that AP'cA%>%, by Proposition 1, so that
Il fll2,,0=cll fll5,1,.- Now suppose that g is a trigonometric polynomial and let
SA()=eg(t). If k is large enough then

2%%lglle 2 1 f s, .2 = €] f 1.2 = €2 I8l

That 1s, |gl.=cligll, for any trigonometric polynomial g, which shows that
r=2. |

We have done everything we need to prove Theorem 1, except for the con-
struction of counterexamples in two ‘“‘endpoint” cases, which we postpone until
after the proof:

Proof of Theorem 1. The easy part is to show that either of (i) or (ii) implies
that A2"=A%S,

Suppose (i): p=2, r<oco, g=<eo, and sz=r. Let f be an element of A2". Then,
as in the proof of Proposition 1,

ENf*lsin = ELSEr s
= 2o 2T EIS; S = ST 278 e = W e = W Wra <=,

by Khinchine’s inequality. This certainly implies that || f¥|, ;<<= almost surely.
To show that (ii) implies that A?»"=A%* is even easier. Suppose that p=2,
g=2, s=r=c, Then

APT = AP C AR = gE = C AR = AR5,

so that A27= ADS,
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Now we suppose that A?"=A%* and we shall show that one of (i) or (ii) in
the statement of the theorem must hold. Proposition 1 shows that A2"=A%°; now
AP C AP = AP A2, sothat AP'=A2=, which implies that p=2, by Lemma 3.
Now Lemma 0 shows that s=r.

All that remains is to show that g-<co if r<c and that g=2 if r=. In
other words, we must show that A2"#>A7" and that AP~ #>A2> if ¢=2.
But A2"=A7* would imply A '=AT =, contradicting Proposition 3 below,
and similarly A?»~=A%=, =2 would imply A7 *=A%*, contradicting Prop-
osition 2.  |j

Thus the proof of Theorem 1 will be complete when we have proved Proposi-
tions 2 and 3 below.

Lemma 4. Suppose q=2 and k<os. There exists a trigonometric polynomial
g such that ||g| =1 while P(|g*|,>k)>=0. (Here ““P” denotes *probability”.)

Proof. The construction of the Rudin—Shapiro polynomials (e.g., [KZ] p. 33)
shows that we may choose a sequence a,= +1 in such a way that | /| =¢, if
f(t)=271” ¥ g™ On the other hand, if h(r)=2""23* ™, then one
easily calculates that [[A],=c,2/*~Y®, so that [|hl|,>c,k if jis large enough.
Let g=c,f, choosing ¢, so that {g|l_=1. Note !lc;hl,>c;c,k=k. Thus

P(lgtl, = k)= P(g* =c;h) =2"¥>0. |

Proposition 2, I/ g=2 then A= #> A%,

Proof. For k=1,2, ... let g, be a holomorphic trigonometric polynomial with
gl .=1 and P(|gfll,=k)=5,>0 (Lemma4). We will choose two sequences of
positive integers j,<j;<j,<j,... and then define

0 S =35, 3k amertig ),

Let us set f;(t)=23%","f(n)e™, as in Proposition 0. If we choose the j,
in such a way that 2®/®'>deg (g,) then we will have f;=0 except for j=2v, j=v=
Ji» in which case f;(1)=2"*¢™®"g,(1). Now Proposition 0 shows that f€A;%,
because [[g.ll.. is bounded.

On the other hand, suppose we choose j, and j, in such a way that
Su Sk (Je—Jjie+D=oo. It will follow that 3, PQ2¥] f#|l,=A)=2 for any A<co,
since  PQ2Y| fill,=k)=P(lgtl,>k)=6, for j=2v, j=v=j;. This shows that
24 ffll., is almost surely unbounded, by the Borel—Cantelli lemma, and now
Proposition 0 shows that f*¢ A%> almost surely. |

Proposition 3. A7 55> A2,
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Proof. This is somewhat simpler than Proposition 2, in part because we are
taking g=-< here, but largely because much of the work has already been done
by Salem, Zygmund, Rudin and Shapiro:

As in the proof of Lemma 4 we may choose a sequence a,=+1 in such a
way that if g (£)=2-%2 3% 4.¢™ then |g,).=c. Now choose b,=0 so that

ey bi=eo but kV2p, is unbounded. Choose a strictly increasing sequence ()
with 2j,>k and define

8) £ = 2:;1 b, 2—u(2j) ei2(2jk)t g.(f).

Let f;(t)=27%",71f(n)e™, as before. This time we have f;=0 except for
=2, in which case f;(t)=b2 e *g (¢). It follows that ;24| f}l. .=
¢ 2k by=<o<e, so that fc A7, by Proposition 0.

However a classical result of Salem and Zygmund ([SZ] p. 278) shows that
almost certainly | gl =ck'/? except for finitely many values of k, so that
25@M|| £ |, is almost surely greater than ck/2b, except for finitely many values
of k. In particular 2| f£||_ is almost surely unbounded, so that f*¢ A=, by

Proposition 0. |

(The result of Salem—Zygmund cited here was refined considerably by Haldsz
[HA]; we shall have more to say about this in Section 4.)

3. Theorem 2

Much of Theorem 2 will follow from Theorem 1 together with the Besov em-
bedding theorem ([PT] p. 63):

Suppose q=p, f=a, and p—1/g=a—1/p. Then
C)] APT < AT,

The reader will have no difiiculty verifying the following lemma:

Lemma 5. If f<a then AD=C A%, so that AL ARS for allr, s.

Proof of Theorem 2. We begin with part'(i): Suppose that f<a and SB<o+
1/2—1/p. We will consider separately the cases p=2 and. p<2; first suppose p=2.
Choose y so that f<y<z dnd y—f<1; now define t=(y—f)"1. 'We use a trivial
inclusion, Lemma 5; Theorem 1, (9) above, and another trivial inclusion:

AP C AZ” C AR = ALV C APt AR,

0 ABT=AGS.
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Now-suppose. f<o, f<ax+1/2=1/p, and p=<2. Let py=a+1/2-1/p, choose
psuch’that B<y<p, and y—fB<1, andlet r=(y—p)~'. Applying the same facts
as before but in a slightly different order,

APT C AP~ C AR C AR = A C ARt C AR,

so that AL"=A%".

We turn to part (ii) of the theorem: We suppose that A?"=A%*, and we shall
show that B=a+1/2—1/p. ‘The obvious inclusions and Proposmonl imply that
AP CAR=, so that |ffly o, p=cllfl,vs But let f(1)=3%"5e™ and suppose
p=1; then 1 fUe 0,5 =222 and | fll,,1,,=2%2" 1P, so that f+1/2=a+1—
1/p. (Proposition 0 may be of some use in estimating the norms in question.)
Similarly one sees that |'flly,,,~k2%, “which shows ‘that f+1/2=a if p=1.

Now for Theorem 2 (iii): We suppose for the remainder of this section that
B<o and B=a+1/2—1/p (so that p<2). The Besov theorem ((9) above) shows
that AZ"C A}"; if we suppose either that r<eo, g<eo, and sx=r or that ¢=2
and r=s=co then Theorem 1 shows that A} "=A%° so that A}"=AZ° This
gives (i) (2).

For ' (iii) (b) we need only show that A2 sA5~ and that A" =>A%* if
‘$<r. We'begin with the case: p>1 and the outline the modifications needed if
prp=1:

Choose a sequence c; so that ¢;2%| f;l,=1, where f;(r)= >l e Tt fol-
lows that ¢;2] f;f,~1, as in the proof of (ii). We will Jet

(10) )= 27, ac; fi(D)

for a suitable sequence a;=0.
If we choose a; so that 377, a;<e but j*?a; is unbounded then f€ Ant
but the argument used in the proof of Proposition 3 shows that a.s. f e A;;”“’; thus

ADT sz AT,
On the other hand, suppose that s=<r, and choose a;>0 so that 27, a} <=
but 377, aj=c> (with the appropriate change if r=oc). Then (10) gives a funcf

‘tion fw1th feA”’ but f& Az’s. By Proposition 1 this shows that AT > AT,

For p=1 one need merely take fto be a weighted sum of “translates” of Fejér
kernels rather than Dirichlet kernels. (Note that Kahane’s “‘contraction principle”,
[KA] p. 20, shows that the almost sure behavior of the L> norm is at least as bad
for a series of randomized Fejér kernels as for Dirichlet kernels, because the coeffi-
cients of the Fejér kernel of degree 2N dominate the coeflicients of the Dirichlet
kernel of degree N.) |}
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4. Theorem 3

We do not see how to prove Theorem 3 by a method anything like that used
in Theorem 2: Suppose that ¢=>2 and f=x—1/2. Then (9) shows that AyTCAR”,
but Theorem 1 shows that Az’“;b/l‘;;“. Similar problems arise if one attempts
this crude a proof of Theorem 2 (i), but in that case there is some “slack” in the
values of the parameters, which saves the day.

Theorem 3 will follow from the following result, which will be established by
the “method of subsequences”.

Theorem 4. Let Dy(t)=N"2 3™ ", and suppose q=<os. Then

lim DRI = I(1+49/2)

almost surely.

This is perhaps not surprising in view of the result of Salem: and Zygmund
([SZ], Theorem 3.5.2) which states that the distribution (on the circle) of the func-
tion Di almost certainly approaches a (complex) normal distribution; note how-
ever that convergence in distribution certainly does not a priori imply convergence
in mean.

Let us begin by showing how Theorem 4 implies Theorem 3:

Proof of Theorem 3. Suppose we know Theorem4, and suppose f€Al™,
B=a—1/2,q<e. Let d;=D,;+277*+ D,;. Theorem 4 shows that ||df], is almost
surely bounded, so that

L/ g e, = sup IS, f*,
= sup 28HUDIS; fE)* djyaly = sup 2*7(S; /) * (df il
= SIJJP?-’" 185 Fluhdfially = 170, .0 sup ldilly <<
almost surely, which is to say fiEA‘,’,""’ almost surely. |
Theorem 4 will follow from the following estimate on the variance of [|D5{l!:

Proposition 4. Ler Dy be as in Theorem 4, and suppose q is an even positive
integer. Then

‘ I
*(ID§1D) = E(\D# 15— E | D[ = =50 O%V(N) '

(Here ¢ depends on ¢ but is of course independent of N.)
Supposing this for now, we prove Theorem 4:
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Proof of Theoren: 4. If Xy is a sequence of functions defined on the circle,
Xy—X in distribution, g<r=e, and [ Xy, is bounded, then [Xyl,~IX1, (by
uniform integrability of |Xy|9). Hence the central limit theorem of Salem and Zyg-
mund mentioned above ([SZ] Theorem 3.5.2) shows that we may assume that ¢
is an even integer in Theorem 4, and that it is sufficient to show that | D5 |, is almost
surely bounded,

Let N; be an increasing sequence of positive integers such that
{1 ;"zllog(Nj)/Nj << oo,
Proposition 4 shows that

2 1 E(IDF |4~ E | DF,|3? <= ==,
so that
i  (IDFIE—E[DF |19 ==

almost surely; thus
12) J}i»n; (tDF ¢ —E|ID% 1) =0 almost surely.

But it is immediate from Khinchine’s inequality that E HD,‘\T‘HZ is bounded, so (12)
shows that

(13) D%\, is almost surely bounded.

(In fact (13) would suffice to prove Theorem 3.)
Now let us suppose that the sequence (N;) satisfies

Nyoi=N;
ARE

in addition to (11). (One might take N,=;%.) Supposc that N;=N=<N,,,. It fol-
fows that

(15) Il D&%l ~ID# | = I(Dy,—Dy)*1,

(14)

=g,

—~ — N; i 1/ N i
= ”(NJ 1/2—N 1/2) Z,}_—legnemr_ N vy 1 E”emf

RERTS

g
= leﬁjilq+(Nj)_1;2(f\rj+1— -'\'fj)a
so that [|Dyll, is almost surely bounded, by (13) and (14). |

We can postpone the proof of Proposition 4 no longer. The basic idea comes
from [HA], where extremely precise estimates on the almost sure behavior of | Dy ..
are obtained using the “characteristic function” (the Fourier transform of the dis-
tribution). The key to Haldsz’ argument is the fact that the two random variables
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Di (¢) and ‘D (s) are close to independent unless ¢ is close to +s (modulo 27).
Here “close to independent” means one thing in Haldsz’ paper; for us it shall mean
the following:

Lemma 6. Suppose q is a positive even integer and define Dy(t) as above. Let
on(H)=EIDE(1)I%. Then

(16) |E|DZ (019105 ()17 — o (1) @n (s)|
= cmin (I, N71(|t —eC= |71 4|1 —¢ /9]~ 1))
Jor s, tcR.

Proof. Note first that the left side of (16) is bounded, by Khinchine’s inequality
(together with the Schwarz inequality). We need to show that the left side of (16) is
no larger than.

cN=(J1 — gD =1 |] — i8] 1),
We use a “characteristic function” argument. It seems. to be necessary to re-
gard e as an element of R? rather than C. Fix s, f, and N. For ¢=(&;, &,)€R? define
) 21(8) = E exp (i[¢; Re (DF (5))+ &, Im (DF (5)))),
and define x,({) similarly, .with ¢ and ¢ in place of s and ¢.

For (is C):(éls 529 Cl, C2)6R4 define
(18) v(£, () = Eexp(i[¢, Re(DF () +&, Im (DF () +{; Re (DF (1) -+, Im (D5 (1))}).

If &, and @, are non-negative integers, it follows that

olertaz)

19 i— (a3 +a3)
)( ) 4 ! 36;1 36%2 X1

(0,0) = E((Re (Dx ()™ (Im (D5 ())™*),

with similar formulas for y, and v.
Now let g=2k; we are supposing that k is a positive integer. It follows from
(19) and the corresponding formulas for y, and v that

(20) EID% (5)I*1DE (D19—px(s) oy (1) = 4545¥(0, 0,0, 0),
if we define
V(¢ oy G0y G = v(Eqs Eon Gy )~ (G SR oLy, ),

and. 4, denotes the operator (9/0¢,)*+(9/0&,)% with 4, defined similarly.
We shall obtain an upper bound on the right-hand side of (20) by using ‘“Cauchy’s
Estimates”: Extend ¥ to an entire function in C* using (18), (17), and the corre-
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sponding formula for y,({;,{,): We shall show that
1) ¥ (&, & Gy L)l = O(NTH(1 —e0=0] 7 |1 — 6+ 7))
(&5 GG I 14 = 1/2).
Cauchy's Estimates lead from (21) to.
22) 4545 (0, 0,0, 0)] = O(N ({1 == 1| Lo ]y — et nj=1)),

and (22) proves the lemma, by (20). (In (22) the notation 4. refers not to the Laplacian
in C?, but rather to the operator 4,=(9/0¢,)*+(2/d<,)%.) We begin the estimates
involved in (21).

Note first that

(23) |2 BUDT(s)| = e(|1—ef- 07 |1 =0,

where T, and T, each denote either of the functions sin or cos (So that (23) mncludes

four inequalities.) One may prove (23) by expressing the trigonometric functions ;in

terms of exponentials and adding several geometric series.
Second, note that if z,€C with->" |z,|?=c and IZ"‘Y:I Z,

(24) I (=z)=1-3"_ 2,30(ZY_ z}+ 3., 213,

Wwhere the constant implicit in the notation “O” is independent of N. (Write “IT=
exp (2 log)” and do some calculus.)
Independence shows that

=c¢ then

(25) n (&, &) = J7_, cos (N=12[¢, cos (ns) + ¢, sin (ns)])
and similarly for y,, while
(26)

v(&y, &y 01y G) = ]]nNzl cos (N“lfz [y cos (ns)+ Za sin (ns) -+ £ cos (at) + {ysin (ne)])

‘We apply the “addition formula” for the cosine in (26), divide by (25) and the
corresponding formula for y,, and then apply (24) to see that

(<&, Say 8, 3o)
27) V,19u.2 bl: .5,’
¢ 71(C15 € 22(Lh, &)

= ]];Ll {1—tan (N=12[¢, cos (ns)+ &, sin (ns)]) tan (N~ 12 [{ cos (n1)+y sin (nr)])}
= ]]:’:1 (1 —tan tan) = | —2;’:;1 tan tan -%—O(’Z'::l tan tan* -+ Z:‘:I [tan tan|?};

here we have omitted the arguments of the. function *“tan”.
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Now the fact that tan (z)=z-+0(|z%) (Jz]==]) shows that

(28) >N tantan = 2’:;1 [N=12(&, cos (ns)+ &, sin (ns))]

n=1
X [N ~V2(¢, cos (nt)+ Ly sin (ng)] + O(Z_, N™¥2N-1R)

for the values of ¢; and {; under consideration; the error here is of course O(N ~1)-
If we apply (28) to (27), along with easier estimates on the term ZX [tan tan|?
we obtain

V(&1 Cay 015 Cp)

@) A1 ((;11, 55 22261 fTJ

= 1—- N1 3V [& cos (ns)+&,sin (ns)] [ cos (n)+, sin (n1)]+ O (N-Y).
Now the sum in (29) is equal to the sum of four sums of the sort considered in

(23) above; thus, for [;],[(;]=1/2 we have
V(s €a5 6h5 L

G0 2 <( EATAIA )L)

= 1+ NTTO(1 D714 |1 =+ )+ O(NY) = 1+ 9,

where the Iast line is an abbreviation for the preceding.
If we rearrange (30) and recall the definition of ¥ we obtain

(€2)) Y(&rs &an Gs 8) = Ia(ers S (e o)

But note that cos (z2)=1+0(|z|?) for z=0(1); now (24) shows that x;=0(1),
by arguments like those above. Hence (31) implies that ¥ =0(9), whichis (21). |}

It is easy to see that Lemma 6 implies Proposition 4:

Proof of Proposition 4. A few standard manipulations and Fubini’s theorem
show that

2n 4 .
(2 (DFIY = @02 [T [ (EIDE ()IIDF (D17 9 (s) (1) ds d,
where @yn(r)=E|Dg (r)I% as in Lemma 6. Now that lemma shows that

(IDFIY = c [ [ min (1, N-1(11 0]~ 1=l 7)) s di

= cf;n min (1, NVl —€"|71) dt = ¢ log (N)/N. |1
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