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1. Introduction

Suppose B is a bounded convex symmetric body in R” and let |-| be the Min-

kowski norm associated with B, i.e.
|x| =inf{t>0: t"1xeB}, x€R"
Let mcL=(0, ). Denote by m, the function
m,(s) = m(ts) (t=0, s =0).
We define operators T, (1=0) on L*(R") by
T ) (©) = m(EDS(E).

If m&L=(0, ) and O<a=1, the fractional integral of order » of m is defined as

in [5] (see also [6]). That is, we set

C—0r*m(s)ds, if 0=1<aw,

1 ©
1) mmm=ﬁﬁﬁ

0 if tzow ;

and, if O<a<1 and I;"*(m) is locally absolutely continuous for every w=0, we
define the fractional derivative m® by

) m@(f) = lim [_d_a; IL-* m(t)] .
Moreover, by induction over the integer part [«] of «, we define for arbitrary a>0

d
(2) m@ (1) = — m@E=1 (),
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provided this makes sense, i.e. that I}7%, m(®, ..., m”~" are absolutely continuous,
where §=o—[«].
Notice that for m with compact support in R*

3 (m®)" (1) = (= ir)*m(),

where (—it)* is defined by the principal branch.
We will consider the localized Riemann— Liouville spaces RL(2, ) which are
defined (cf. [3]) by

RLQ2, a) = {meL=(0, ): |mlgpe =} 1if o>+,
where
Ml gLz, ) = sup 1Ger1) @l

Here 3€Cy (0, <) is an arbitrary fixed non-negative and non-trivial bump func-
tion. It is known [3] that the space RL(2, ) does not depend on the choice of x. For
convenience we will choose ¥ such that

7

5
@)  2€CF(0, =), x() =0, supr[—zl—,l], and y(®) =1 for T=!<%-

We will also consider the space of functions of weak bounded variation WBY, , in
the case g=2 and «=>0. By definition (see [7]) WBV, , is the space of all mcL™
C(0, o) for which m® exists in the sense of (2") and whose norm

2 dt\'®
© ol = b esup{ [, 1m0 51
is finite. From [3], Theorem 2, we know that for «=>1/2
(6) RL(2,5) =WBV, ,,
with equivalent norms.

Remark. 1f m is supported in a compact interval [a, b], 0<a<b<oe, then for
x<af2

m®(x) = T(_lﬁx—_a)f: (t—x)"*"1m(d)dt,

hence
(@ )| = C,llmjl=l(b—x)""—(a—x)7"
and

(fi/i | ([ )™ = Clm -

These estimates easily imply that for O=x<1, there exist constants ¢, C=0, de-
pending only on o and a, b, such that

M clmly,, = mjlw+imPl,; = Clnllg,,.
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Moreover, if a=1/2, by (6) we also have
(®) cllmirre,n = Im®, = Climl gz, » -

We denote by ¢ a function on [0, =] which is non-decreasing and satisfies the fol-
lowing condition:

)] 1 =¢2)=lep() forsome /=1.
We write throughout this paper
(10) u = log, 4,

where 1 is smallest possible to satisfy (9).
It is easy to see that
o) =)t if =1,
(11)

(p(st)é—}-s"(p(t) if =0 and O=s=1.

Corresponding to ¢ we define

41 2 1/2
W) = (p(1)+{f fgds} .

1

Then Y is also non-decreasing and satisfies (9), possibly with a different 2, and

1 —_—
v =~ Viog2 o(1).
Given ¢, we define the space L? by

Ly = {feL*R"): | fllz = =}
where

1z = {f ... 1F©RloGeDp ).
We shall prove the following results:
Theorem 1. Suppose o.>1/2, mé RL(2,«). If for some B>u and y=1
(12 I(xm)@), = O(#F) as t -~ 07,
(13) Iem)@ |, = O((log #)=7) as o,

where y is a bump function as in (4), then

sup T, flo (L)), =1t
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Theorem 2. Suppose o=1/2, mé RL(2, ). If for some B=>pu (12} holds, then

<<l

sup 1T, f10(4)| = sty

Theorem 3. Suppose mcWBV;,, for all O<a<+ and supp mc[+,1]. If

(14) HmﬁmdzO&H as & 0%

which holds in particular if m is of bounded variation, then

1 1
sup 1o ()Tl =i,
0<t<l 1 =

og[? +1]

L2+ L™
where
1A lLesr= = Iinf{igla+ il /= g+h}.

A corollary of Theorem 2 includes the result of Chen Tian-ping [4] on gen-
eralized Bochner—Riesz means of positive order.

We remark that Theorem 1 has some overlapping with the results in [6], in
particular with Theorem 1 and Theorem 4 in that paper. However, in [6] Dappa
and Trebels are concerned with LP-estimates for maximal operators under no smooth-
ness condition whatsoever on the function f (but in the more general context of
quasi-radial multipliers), whereas we want to concentrate in this article on the rate
of convergence of T,, f as 0%, given f has a certain degree of smoothness, mea-
sured by some L2 -norm of /. Our main resuit is in fact Theorem 3, which deals with
the critical index of smoothness «=1/2 for m.

As to the LP-case, let us also mention some results due to Carbery in order
to give a slightly more complete picture of what is known on the subject.

Define D° by

(D)7 = 1EIF1 ),

where {f-] is the Euclidean norm on R". We introduce the global Bessel potential
space Li=LZ(R*) as in [1]: L2 is the completion of the C* functions of compact
support in (0, <) under the norm

s = {7 e () (222

1 1 1
Theorem (Carbery). Let |- |={ -| be the Fuclidean norm. If a=n (———5]+5
p

2 ds }1/ 2
- -
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1 1 1
Jor 1<p=2, or a=>n (————)+—— Jor 2=p<oco, then
2 plop
lsup 1T, Flflrcey = €l 1Ml 21D Vv
Furthermore, if n=1 or n=2, the above estimate even holds if 2=p<c and

o =>max (1/2, n (—21——;;—)]

Of course, Carbery’s theorem implies results on the pointwise convergence of
Bochner—Riesz means of LP functions, which will be stated later as a remark.

Throughout this paper ¢ will denote a constant which can take different values
from statement to statement.

2. Auxiliary results

Lemma 1. Let O<a<l1. If méWBY,,, then there exists a set EC(0,) of
one-dimensional measure zero such that for any B>1 and every uc(0,=)\E

__1 21, (a [(B—DuJ m(s)
15 m@) = T’—(a—)fu (s— )1 m@(s)ds + T (—2) f; G G=1) ds.

Proof. We first assume that m vanishes on (a, «<) for some O<a<<. Then we
have for u€(0, a)

f: [f: (s— " 1m@(s) ds] dt = f: [f: (s—1)*1 dt] m@(s) ds
1 pa
=— f (s —u)* m9(s) ds.
On the other hand, we have
(16) m@(s) = -4 II-*(m)(s), s=>0
ds ° ’ ’

and I'"*(m) is absolutely continuous on [e, a] for every O<g<a. So, by plugging
(16) into  [4(s—u)*m™(s)ds and integrating by parts, one obtains after some
routine calculations

‘i‘f:(s—u)am(a)(s)ds = F(a)f: m(t)dt.
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By comparison with the previous formula, we see that for almost every 7=0

(17) m(t) = 5 [T 6= () ds.

(Compare also [1], [7]).
Moreover, by partial integration we get from (16)

S =0 m®(s)ds = [(B— D= L= (m) (B)

—1 oo s = . [(B—D1* m(s) ds
+——————~F(1_a)fﬂt(s—t) fs (u—s)"*m(u)duds = T(— ft:(s DEEnR

So we have proved (15) if m(r) vanishes for ¢ sufficiently large.
For general m we define my, NEN, by

m(t), if 0=r= N,

"’”(’):{0, if 1= N,

and let m_=m. Define
1 8
ay(t) = mft‘(s—r)“‘lml(v“)(s)ds,

[(B—D]* e my(s)ds
T(@I'(1—a)Js (s—p*(s—1)°

with NéN or N=oc. Then we have

by() =

a.()—ay(t) = 'I’—za)—frﬂt (s—1)*~Y(m — my)D(s) ds.
By definition

(m—my)(s) = Jim — - m Ta—g . =97 On=my)( du.

For any fixed s=0 with N=s this implies

(m—my)®@(s) = ﬁﬁ(u—s)"‘lm(u) du,
so that

. 1 .
[(m—my) @ (s)] = c|lm||mm, if N=>s.

Therefore

¢ D .
(@ (D—ay(] = el [* =09 = Er = gl LEL e

(N= ,BI“’ N = ft.
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On the other hand, if N>ff, we also have

16 (0= by (0] = el(B= D11 7 =125 = el G
since s—t=s—ft. We conclude that for every =0
0 (1) (1) = Jim (ay()+ by(0).

But we have proved that
my (1) = ay()+by(1), 1€(0, =)\ Ey.

where Ey is a set of one-dimensional measure zero. Let E=|Jy_, Ey. We get
A () + b () = m(1), if 2€(0, o)\ E. Q.E.D.

Lemma 2. If a€(y,1) and meRL(2, ), then

2 = CHmlle(z,z)Hfl!z-

Progf. Define operators P, on L?(R"), with s¢(1, 3), by

@ = (2] meinic.
By Plancherel’s theorem we have
[ JIBN@ dsax = [ [ (B ©Fdds = [ JOF [] ImE)PF dsae.
From (5) and (6) we see that for ¢=0
(18)

3 2 3t 2 2 > ds 3t ¥ 2 a ds - ' —
S im@ @ ds = [FlrmO )P — = ¢ [ s mO ) = = e, = clmlkie-

This shows that P, is well-defined for a.e. s¢(1,3). Now for s€(1,2) we define
two operators as follows:

1 .
Af = mﬁ (u—s¥'P f du.

(3—s) f°°
()l —u) (u— 3)“(u 5)

B, f=
Since o=1/2 we have

sup |4, fl=c¢ sup {f (u— sy 2d11}1’2U |P,,f|2a'u}1/2

l<s<?2
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So, using (18), we get

19 H1sugz ‘Asﬂne = cllmipre,olflz-
On the other hand we have

T Sl -
(20) | sup 1B, fl[}: = ¢ N ey W = clmle ST

For &30 and s€(1,2) one has

AT = 5 [ (sl P (e,

ey Bs)IET e m(t)dt .
B = r'(r-a) f3lé1 (1=31EY (t—slED f(©)-

3 .
If we write u=s|¢| and f=-—=1, then by Lemma |, for every u€(0,)\E, 1e.
s
1
for each |&j€—[(0, =)\ E] and s<(1,2)
s

(T, )" (8) = A, J(&)+ B, f(©).

T,

ms

This shows that
= As + Bs >

and so the estimate in Lemma 2 follows from (19) and (20).
Q.E.D.

Lemma 3. Suppose a€(%,1) and meRL(2,x). If supp mc[l,2], then

sup T, 16 () = clmhai st
Proof. We have
sup T /10 () = {Z7. L [s0p, T S0P
For j€Z define f; by

if 270 < g =279,
an fj()_{f(c) i 12

otherwise.
Since supp mcll, 2] we see that

m,g:f lzjfj for 1 <t<2.
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So, by Lemma 2 and (8) we get

2
= ¢ 2w mailieie,o 1l 02 )P = ¢ iim(“’H%Hf!!ii-

1
sup 1T, /10 (7]
>0
Q.E.D.
3. Proof of the theorems

Since RL(2, f) is continuously embedded in RL(2, %), if B>« (see [3]),
we may assume without restriction in the proofs of Theorem I and Theorem 2 that
12<a<1.

Proof of Theorem 1. Choose heCg (R) such that

i - . ,
supp h C [5, 2], 2,~=_w h22H=1 Vit=0.

Define
m;(1) = m()h(27 1)

(T7f)" (&) = my(t1EDF (), fELAR).

and

Then we have

m=27 _omp L= 25 T

and
1 el (!
(22) sup T o (4], = =5 |swpim 1o (2]
We write
(1) = my-3()h(1) = m;(2771),
and

(T1)7 (&) = (1 1EDF(Q).

Then we see that

sup (77 /1o (+] = sup 177 110 (%)

£>-0 4

Moreover, by (9) and (10)

J
()=l =0

So, by applying Lemma 3 to 7; we get

sw 1110 (1) = c29pmPl sty (=0,

>0
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By condition (12)
I, = 278 (j = 0).
Hence

(23) >,

On the other hand, if j<O0, then

sup 1o ()], = ¢ 350 270 m = 11

2

. 24|
sup [T/ flo (—]

>0 t

, 1
sup |T¢ flo (T)
t>0

=

~ (1l o
sup |77 /1 [7]“ = el fley s
t=>=0 2

once again by Lemma 3. Condition (13) implies

3y = (=77 (j=0),
hence

@4 2.

; 1 o g ‘
sup IT:’fI@[—t-]“2 =c 2 7 Ml =clflez

The theorem now is an immediate consequence of (22), (23) and (24).
Q.E.D.

Proof of Theorem 2. By Theorem 1 we can assume supp n1c[%, «]. We have
2

= CZ::olsup Tm,g—k-1f|2¢2(2k)-

|
<t=<2

1

osggl T S 1 0 (T]

Define f, by )
. fA(é), if 21 < ¢l < 2,
i@ =1

, otherwise.
Then for t€(1,2)

Dy n )™ (&) = m(27*4ED) 27, F3(2),
T"'tz“"—lf: Tmrz—k-l(zj;kfj)'

ie.

By Lemma 2 we get

500 1Ty £11R = clmlhue | 2770 Al
~<t<
hence
1 2 N P H oo - 2 .
l Osupl T Sl (—t—J”« =c2 4 “”7”%‘(2.1)”212,( fj“%@ (24).
Bt £ 2
Since

”2;;!(].‘7“% = Z;;k ”fAj”%a
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we obtain

5 £y k
= CH””H%QL(’Z,&() 2]‘:0 'f]”;. j =0 (”2(2 )

sup 1T, /10 (4,

0=<t<
Noticing that
1,02 = apr2),

the proof follows by another application of Plancherel’s thcorem.
Q.ED.

Proof of Theorem 3. Let us first notice that if m is of bounded variation, then
m(t)=0(|7|") as [t]—, which implies
1

[~ (m@leleepde =0 (_]

[

So, by (3), (7), m satisfies condition (14).
Now assume mcWBV, , is such that (14) holds. Definc operators P,=F;* by

kg A s d’ P
By @ = () m(ugele) S, we1,3)
By an argument similar to that in the proof of Lemma 2 we get
3 o : . .
25) WS, 1B P, = cimlosif e
And similarly we get for s¢(1,2)

(26) T f = AC*f+Be%f for every 2£(0, 3},

where
mE(s) = m(s27k+2),

A :—_—I‘éa) S =0 By du,

S et w T f
vf = F(at)l"(l~ot)f (u—3)* (u——!)
Define /; by f;(2)=f(&)ppx-s, -4 (1]) and

M) = 01351—1;;—[%:—)— o [ T S0
el7

We have

@) MR =e 3 (£ o@) sw i)

1<t<l
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1 : . : :
Take cx:ak:—z—-;, k=3, and split the integral of AX*/ into the following

two parts:

t+2~k(nn—l)

I \ ,
Dif = (@) f (u— 1y VPR2u S du,

t
Eff =
From (26), (27) we get

MUY = e S, (L o@) sup (B-f+IDEAR +IEEAP,

1<t~

‘ 33 .,
-[‘_({X—)—fy.pg—k(n-.—l) (u__r)ik—lj)uk. 'kf;( du.
k

hence

(9) My = e 2r, (E o) s qserEb]

<f-=2
- 1 2 1/2
velzm,(F o) swp iptanf
It is easy to see that )
(29) l '15“P2 By
<P~
Next, for a.e. uc(l1, 3)

% d | ‘fl £ ey pixE g2
B ) :f2*—4<i:z<z’<-2[7u_] " (ugz’:j] f@ede.

2 = cllmllo [ fill-

So, by applying Cauchy—Schwarz’ estimate and (14), we get the following uniform
estimate:

Bl fy ()] = 20 [T ImO () ds}* il = ¢ VE 2P £,
which implies
(30 fl sup 104 filll = e ¥k 27 @i filly.
1<t~2

Finally, estimating the integral in u defining E¥j, again by Cauchy—Schwarz, we
obtain

BEAl = VR {fS Bempa (1< 1=2),
which, by (25) and (14), implies
€2y HISUP LEE A
~<t=<2

From (28)—(31) we conclude

2 = cklfils.

2

23\1/2
WMl = [zfﬂ[%w(z*)knfkuz] ] = cifi,:
’ Q.ED.
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4. Applications

Now we can use the above estimates of maximal functions to get some results
on almost everywhere convergence.

Theorem 4. Assume n1 is a continuous fimction on R, contained in RL(2, o)
Jor some o=1/2. If condition (12) holds for the multiplier m~1 with f=u, then
. . y 2
Jor every feLy
1

o)

lx(m—Dlw = clllx(m,~DI?l, = O).

T, f(x)—f(x) = o ) ae as 1-0%

Proof. Since

we have
m(f)—1 =0 as t-~0".

l“§c{(p(-§~)]_l, 0=1t=<1.
]m(t)«—l]:O[[(p[%)]_l] as t—~ 0",

From this we conclude that the theorem is valid for those functions whose Fourier
transforms belong to Cg”(R™). Since such functions are dense in L2, the theorem will
be proved provided

We know from (11) that

Therefore

= ol fls.

. 1
sup ITim—l)t‘fl @ ('—‘)
0<t=1 £l
But this is a direct consequence of Theorem 2 applied to the multiplier m—1.
Q.E.D-
As a corollary of Theorem 4 we get the following result on Bochner—Riesz

means of positive order, which includes the result of Chen Tian-ping [4], who only
deals with the case where |-| is the Euclidean norm.

Corollary 1. Let «=>0, />0, m(1)=(1—¢)". If jeL*R") satisfies the con-
dition

(32) [ TR dy <o, =0,
then for a.e. x¢R"

i o(t*), if /=y,
(33) 1)1 =S it 1

as t—-07%.
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Proof. First, one easily estimates
(=D = O) as ¢—-07.
Since RL(2,1)cRL(2,9), if 1/2<d=<1, we get
Iz (m~ D)), = O() as 07,
for every 1/2<d8<1. Moreover, one checks easily that m¢RL(2,0) whenever

$<0<4+a. Notice that the condition d=<-+« is forced by the singularity of
mat t=1.

So, if /=pu, the required result is a direct consequence of Theorem 4 with
p()=1+1"

Now assume =y, @(¢)=14r* Choose a function hcC=(0,e) such that
h(y=1, if 0=t=5

34
9 {h(r)zo, it t>3/4.

If we define
m(t) = m()+ ot h(1),

then MERL(2,6) for 8¢(5,5+«), and
(= DIy = O(*),
by a similar argument as before. So, by Theorem 4, we have
Ty, f(x)—f(x) = o(t*) ae. as (-0
for every feL?. We write A(t)=ar’h(r). Then

(Ts, £) (&) = 2t h(1 [ [EI J(Q)-
For feL? let f be defined by

7 = 1817
‘We see that
10T, f = 17;.,]‘:

and so there only remains to prove that

(35) | sup. T8l = cllgl,, geL*R").
<t

To this end, write A(|¢])=v(||E]})+w(S), where v is smooth, v=1 on [0, 1/4] and
supp v<[0, 1/2].

Clearly, the maximal operator g-—-sup, ., IT,, ;. ., &l is dominated by the Hardy—
Littlewood maximal operator, hence bounded on L2(R"). Moreover, one checks

easily that w satisfies the condition (1) of the proposition in Section 3 of Carbery {2],
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and so also the maximal operator associated with w is bounded on L*(R"). Together
this implies (35).
Q.E.D.

Corollary 2. Let m(t)=j, 1,(t). Then for every fcLi with @(t)=1+1* or
o(t)=log"* (e+1)(u=0) the following estimates hold, respectively:

(36) T, f(x)—f(x) =0 [t" log %] ae. as (-07",
37 T, . f(x)—f(x) =0 ! I ae as t—~0t.
logh —

Proof. We take heC™(0, =) satisfying (34). Define Am=m—h. Then supp mc
[%, 1], and 7 is of bounded variation. By Theorem 3 we conclude that for f& L}

(38) T, f(x) = o(log-:———(ll—)—) ae. as - 0%,
w —_—

t

On the other hand the multiplier 4 satisfies the condition of Theorem 4. So for
fer;
1

(39) L. f(x)—f(x) = o(—-——l—) ae. as t—~07.
o(7)

If o(t)=1+1t*" (u=0) then we have

() ~ Y ().

Hence, the combination of (38) and (39) yields (36).
If @(t)=log"(e+1?), then Y (t)=clogh™*(e+t). Hence for fELf ui1(oyy
(38) and (39) imply (37).
Q.E.D.

5. Remarks

(a) Since we only consider convergence of T,, f as 7-0%, it is clear that we
P(21)
T oen
(b) We do not know whether the weight function y in Theorem 2 could even be
replaced by ¢.

could even replace A in (9) by ;' =Tim
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(¢) If one choses m(t)=(1+r)h(1), h as in (34), then obviously for every
SEL? with suppfc{¢: [¢]=1/4)

Tnf=f=vT. 0<i=1),
where ()™ ()=18F(&).

This example shows that the condition B>u in Theorem4 is necessary for
such a theorem.

(d) By Carbery’s theorem, in the case of the Euclidean norm (33) is also valid
for those fcL?(R") for which ID*f1lo@ny <= for the range of p’s described in
Carbery’s theorem.
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