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1. Introduction 

In this paper we investigate the continuity at a given point x0 of  the solution 
u of  a nonlinear elliptic variational inequality with a double obstacle constraint of  
the form ~kl <- u -< ~k2. The partial differential operators associated with our obstacle 
problem are quasi-linear and include operators with only L ~ coefficients. The 
obstacles in this context are to be regarded as quite general and irregular. In par- 
ticular, they may be discontinuous. Since the partial differential operators associated 
with our problem may have only L ~* coefficients, we can expect at most Htilder 
continuity for the regularity of  our solution. Indeed, we show that if both obstacles 
are locally H61der continuous, then the solution is also locally H61der continuous. 
We also show that if the obstacles are not continuous, but satisfy a Wiener-type 
regularity condition, the solution is still continuous. This work extends that of  
[MZ1] in which a similar investigation was undertaken for the case of  a single 
obstacle. This work also extends the recent paper of  [DMV] which is devoted to the 
double obstacle problem for linear operators with bounded measurable coefficients. 
Because their work involves linear operators, they are able to employ potential 
theoretic techniques to obtain many of  their estimates. These techniques are not 
available for us in our context of  nonlinear operators. 

Since the one-obstacle problem is a special case of  the two-obstacle problem, 
one cannot expect better results in this latter case. On the other hand, the two- 
obstacle problem is so similar to the unilateral case, that one would anticipate 
virtually identical results. However, we have not been able to achieve this with the 
general structure we consider. One significant difference between the single and 
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double-obstacle problem is that in the former case, the solution to the obstacle 
problem turns out to be a supersolution of  the corresponding differential equation 
whereas this is no longer true in the double obstacle situation. This does not allow 
the use of  the weak Harnack inequality for supersolutions, which was a critical 
tool in the analysis of  the unilateral problem. If  we impose more conditions on the 
structure of our nonlinear problem, then we show that the solution does become a 
supersolution of  the corresponding equation and in this case we obtain results that 
run parallel to the single obstacle problem. The conditions imposed on the structure 
are general enough to include the case of  linear operators. 

Let  A and B denote, respectively, vector and scalar valued Borel functions 
defined on f 2 • 2 1 5  ~ satisfying the following structure conditions for fixed n >  
p > l , / z > O ,  and v_~O: 

IA(x, z, h)l <= #lhlP-x+lalzlP-a+v 

(1.1) h . A(x ,  z, h) ~_ I h l ' - # I z l ~ - ~  

IB(x, z, h)l -~/11hlP-l+/~ IzlP-a+v 

for a.e. xEf2 and all zER 1, h~R' .  
The obstacles ~q and ~'2 are defined to be real-valued functions defined on I2 

with ~b 1 <= ~k~. In addition, we assume that ~bl is bounded above and that ~b, is bounded 
below. A bounded function u~ W~'~'(I2) is said to be a solution of  the double obstacle 
problem i f  ~kl<_-u<=~k~ and 

0.2) f Vu).V od +f (x, u, 0 

for all cp~Wol'v(f2) such that ~k~_u+~p<=~,~. 
Although we have made the assumption that 1 < p < n ,  it can be shown with- 

out too much difficulty that virtually all of  the results below are valid in case p=n .  

2. Preliminaries 

Throughout the paper, we will utilize properties of  the following classes of  
functions introduced in [MZ1] which are similar but not quite as general as the 
De Giorgi classes discussed in [LU]. I f  G c R  ~ is an open set, C > 0  and 2~_0, 
we let 

S'(G, p, C, ~) 

denote the set of  all nonnegative functions v~Wl"V(G) such that 

(2.1) f ~  [7(v(x)-k) '[~l(x) 'dx <= c fo [(v-k)*l ' t t l (x) '+lVtl(x) l ' ldx 

+ C (k v + ;t) ,t['(,~)-*)'>ol rl (x) p dx 
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for all k=>0 and all nonnegative Lipschitz functions ~ on R" with compact support 
in G. Here e stands for either + or - .  

The next two lemmas reveal the relationship between the solution u of  the 
double obstacle problem and the classes S '(G, p, C, 2). 

Lemma 2.1. Let u be a solution o f  (1.2) and let do>=O. I f  Idl <=do, then there 
exist constants C > 0  and 2 > 0  such that 

(i) I f  d>=~kl in G c D ,  then (u-d)+ES+(G,p ,C,  2) 

(ii) I f  d<=~/2 in G c f 2 ,  then ( u - d ) - ~ S + ( G , p , C ,  2). 

Proof. (i) Let 0<=q<=l be a cut-off function and let v = ( u - d )  +. For k ~ 0 ,  
let w = ( v - k )  + and t p = - w q  p. Then 

u+~p <= u <= ~kz 
and 

u+q~ >- u - ( u - d )  + = min (u, d) -> ~ol 

in G and ~p is thus admissible in (1.2). Since 

V q~ = - V wrl v -  pwrl p- 1Vrl 
it follows that 

(2.2) f tu-d+k} (IVulP--~lu[P--v)~ dx 

< p f _  (ulVl +/zlul +v)w~ IVrlldx ~-- U p--1 p--1 p--1 
, ' {  u>dq-k} 

+ f tu>d+k} (l~lVulP-l + plulP-X + v)w~V dx" 

Applying Young's inequality, we obtain 

(2.3) ftu>a+k} IVulP lV dx <- c f (ItlulP + v)~p' dx 

+cf{.>a+k} W"07" + IVnl")dx+pf{.>a+~} OzlulV-1 + v) w(n "-a IVn[ +qDdx, 

Since u > d + k  implies u = w + d + k  we have 

(~ lul'+v)np <- ((#w+pdo+pk)V+v)q ~ 

and thus the first integral on the right side of (2.3) is bounded by 

(2.4) clf{w>o J (wV+kV+2OqVdx where 21 = 21(d0, v). 

Also, the inequality 
(~ lulP-1 + v)w(,7"+ nm-1 lVql) 

= tt lulP-x w~/P-llVql + vwqP-llVql +~ lulP-lw,lP+ vwn p 

<= C (lulP + vp/<~- l) + wD qp + C (lulp qP + wPlVqlD + C (qp + wqVqlP j 
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together with the fact 

(/.t lUIP-I-vP/O-a))r/p ~ Ca(wPq-kP+2~)rl v where 2~ = 22(do, v), 

implies the estimate 

(2.5) Cz f~..0~ w,(np + tvnl p) dx + C~(k" + 4) f ~,~.o~ n ~ ax 

for the last integral of  (2.3). The estimates (2.4) and (2.5) yield 

f IVwln~ndx ~- c f  w.(,.+ IVy/In) dx+C(k" + 2) ft..o} n'd~ 

with 2=2(d0,  v). This proves (i). 
The proof  of  (ii) is similar. Write v = ( u - d ) -  and w = ( v - k )  +. Then 

r = wq p 

is admissible for the (1.2) Proceeding as in (i) we obtain the desired result. [] 

Lemma 2.2. With the same hypotheses as Lemma 2.1 and with v = ( u -  d) ~, there 
exists a constant C=C(I~, v, p, n, Ilull~; G) such that 

1 + r~_~] f B(xo, o lVvlO nV dx~- C(-Tf B(xo,~,) lVvl'-Xn'-' dx 

for every B(xo, 2 r ) cG  and every nonnegative cut-off function whose support is 
contained in B(xo, 2r). 

Proof. Consider the proof  of  the case v = ( u - d )  +. Let r/ be a cut-off func- 
tion such that t/= 1 on B(x, r) and whose support is contained in B(x, 2r). The 
desired result follows from a standard application of  Young's inequality in (2.2). 
The proof  in case v = ( u - d ) -  is similar. [] 

I.emma 2.3. Let u be a solution of(1.2) and let do>=O. I f  d<=do, then there exist 
constants C > 0  and 2_->0 such that i f  M=sup~(u-d) ' ,  then 

(i) d>-~x in G implies M - ( u - d ) + E S - ( G , p , C ,  2) 

and 

v = M - ( u - d )  + 

and 

(ii) d<=~ in G implies M - ( u - d ) - E S - ( G , p , C ,  2). 

Proof. It will be sufficient to establish (i), the proof  of  (ii) being similar. Let 
and let r /be a cut-off function. Fix k=>0 with k~_M. With 

w = ( v - k ) -  

q~ =--wr/p 
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we have 
•x _~ min(u, d) = u - ( u - d )  + <= u - ( k - v )  

~_ u+cp ~_ u ~_ ~ 

in G, whence q~ is an admissible test function for (1.2). Thus, proceeding as in 
Lemma 2.1, we obtain 

(2.6) f IVwl'~l'dx <= C f w'(n'+lVnl')dx+C(g'+a) ftw~.o ~ n'dx 

where 2=2(do, v). This proves the necessary estimate for the case k<=M. If k =  > 
supa v=M,  then 

(v-k)-  = k - v  = (k -M)+(v -M)-  

and (2.6) holds with w = ( v - M ) -  and k replaced by M. This implies that (2.6) holds 
with w = ( v - k ) -  since k - M  is nonnegative. [3 

The following results established in [MZ1] will be needed. 

Theorem 2.4. Let rE(0, 1], xoE R", and vE S'(B(xo, r), p, C, 2). Define 

w(y) = r-Xv(ry + xo) 
for all  yEB(O, 1). Then 

weS,(B(o, 1),p, c, ~). 

This is proved by a straightforward change of variables. 

Theorem 2.5. I f  vE S~(B(O, 1),p, C, 2), then 

v+22X/PES~(B(O, 1),p, 2C, (3). 

From these two results, one easily concludes the following. 

Corollary 2.6. I f  vES~(B(xo, r),p, C, 2) then 

v +22'~p rES'(S(Xo, r), p, 2C, 0). 

Finally we also recall the weak Harnack inequalities established in [MZ1] for 
functions in the classes S + and S - .  They play a central role in this paper. 

Theorem 2.7. Let pE(1, n), C>O and yE(0,p]. There exists a constant C'= 
C'(n,p ,C,  y) such that for xoER", erE(0, 1), re(0, 1), 2_~0, and 

vE S +(B(xo, r), p, C, 2) 
we have 

B(xQ, ~r) 
where ~=n/y. 
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Theorem 2.8. Let pE(1, n), aE(0, 1) and C>0.  There exist positive constants 
C', C", and ?C(0, 1) depending only on n, p, a and C such that for xo6R n, rC(O, 1), 
2~ ~_ 0, and 

v~ S-(a(xo, r), p, C, 2) 
with v>=O, we have 

inf v ~ C" { f  .,x.., v(x)" dx ~a'' n(x~ar) - -  ~ - C  ~' ~xlp r .  

Corollary 2.9. Let u be a bounded solution of  (1.2). 
(i) I f  d>=~l in Gcf2,  then ( u - d )  + is upper semicontinuousinG. 

(ii) i f  d~_~z in GcI2, then ( u - d ) -  is upper semicontinuous in G. 

Proof. This follows immediately from Lemmas 2.3 and 2.8. Indeed, for the 
first part o f  the corollary, we have p ( r ) - ( u - d ) + E S - ( G , p ,  C, 2) where p ( r )=  
sup~x,.,) ( u - d )  +, xoEG, and r sufficiently small. Hence, 

1/7 u 
I~(r)--p(r/2) m c'{ [ /~ ( r ) - (u -  d)*l'dx} - C  2V'r. 

Since u is bounded, this implies that 

f nc~ , ) [p ( r ) - (u -d )+]dx- -O  as r -*0 .  

Thus, it follows that ( u - d )  + has a Lebesgue point at each point of G and that 
the value of ( u - d )  + is equal to its upper limit at each point of G, which implies 
upper semicontinuity. A similar argument holds for the second part. N 

Remark 2.10. Theorems 2.7 and 2.8 are counterparts to the well-known weak 
Harnack inequalities for sub and super solutions of equations in divergence form 
[GT, Chapter 8]. While sub and super solutions are dements of the classes S + 
and S- ,  the greater generality of these classes do not yield results with the same 
precision as with sub and super solutions. For example, the exponent 7 in Theorem 2.8 
can be taken as any positive number less than n(p-1 ) / (n -p )  in the case of a weak 
supersolution (see [T]) whereas no such bound is available to functions in the class 
S- .  A similar phenomenon was encountered in [DT] where weak Harnack inequalities 
were established for quasiminima, but where the exponent in the weak Harnack 
inequality for super quasiminima is not quite as strong as for supersolution of 
elliptic equations. This slight difference will be a factor in some of our results below. 
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3. Regularity properties of the solution 

In this section we will initiate a study of  the regularity of the solution to (1.2). 
For  this we will introduce the following notation. We let IE[ denote the Lebesgue 
measure of  a set E c R " .  We will also need a more refined method of measuring sets. 

Definition 3.1. For  l < p < n ,  the p-capacity of  a compact set K c R "  is de- 
fined as 

?,(K) = inf {JR-IVvlP dx} 

where the infimum is taken over all functions vCC~'(R") such that v_~l on K. 
The definition of  7p can be extended to all sets by standard methods. 

The p-capacity is a capacity in the sense of Brelot--Choquet and enjoys the 
following properties that will be needed later, cf. [AH]. If  q<p  then 

0.1) ~q(E) ~_ C[yp(E)] ("-q)/("-p) for every E c B(0, 1) 

yp[B(x, r)] = Cr"-P for every ball B(x,  r). 

Since we are concerned with point-wise regularity, we will consider a fixed 
point x0C ~2 throughout the remainder of the paper. Let 

(3.2) 

ffl(r) = p-sup 01 _~l(r) = p-inf01 
B(x o, r) B(x o, r) 

~i (xo) = ~im ~ ~, (r) ~1 (xo) : !ira o ~_x (r) 

I/]I(E1, F) = i n f  01 ~1(E1,  r) -~ sup  01. 
- Excl B(x o , r) ExCl B(x o , r) 

Here p-sup and p-inf are the essential supremum and infimum in the sense of p- 
capacity. Similar notation will be used for 02 and the solution u. 

Theorem 3.2. Let  u be a solution o f  (1.2) and assume i~l(xo)_<-_Oz(xo) where 
xoE f2. Then u possesses a Lebesgue point at xo. 

Proof. Let 
tt (r) = sup [ u -  ffl (r)l, 

B(x o, r) 

7) (X) = ]./(r) - -  [U (X) --  ~1 (r)] +. 

Lemma2.3 implies that v6S- (B(xo ,  r ) ,p ,  C, 2) and therefore we conclude from 
Theorem 2.8 that 

t , (r ) - ( , , (x ) -  1' 1` '-c'  Z "r C 7) 
BCXo, r13) 

C [p ( r ) -  fi (r/2) + ~1 (r)] = C [~ (r) - ~ (r/2)]. 
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Observe that the right-side tends to 0 as r ~  O. Thus, 

lim~ Z [lz(r)-(u(x)-~}x(r))+]~dx}l/~=O 
r ~ 0  t B(xo, r ) 

and since u is bounded, we obtain the same conclusion with ~= 1. Now let /*(xo)= 
lim,~ o #(r) and assume that #(xo)>0. Then we have 

Now write 

lira f,,x.., = O. 

f .(x~ [U(Xo)-(u(x)-~l(Xo)) +] dx 

= W (Xo, r) l - I  f.(xo,.~ n {. _~ ~,(~o~ IV (Xo) +/~,  (Xo) - u (x) l dx 

+tt(Xo) [B(xo, r)m{u < ~;l(xo)}l, 
IB(x0, r)l 

Notice that both terms on the right tend to 0 as r-~ 0 and since we are assuming 
# ()co) ~ 0, we have 

lim IB(x~ r)c~{u < ~,(Xo)}l = O. 
, .o  IB(xo, r)l 

Since u is bounded, it now follows that 

lira f ,  I,(Xo) + ff~(Xo)- u(x)lax = o 
r - o  B(xo, r) 

if  /,(xo) #0,  our desired conclusion. In case /~(xo) = 0, then we have 

ess lim sup u(x) = ~x(Xo). 
x ~ x  o 

In this situation, let 
v(x) = ~ ( r ) - ( u ( x ) -  0~(r))-  

where 2(r)=supn(xoo(u-~z(r))- .  Then as above, we find that u possesses a 
Lebesgue point at Xo if  lim,-.o 2(r)=2(xo)>0. If  2(xo)=0, we have 

ess lim inf u(x) = ~k2(Xo). 
x ~ x  o 

This, along with the case p(Xo)=0 and the assumption i~l(Xo)_-<_~(xo) implies 
that the essential limit of u at Xo exists and therefore u possesses a Lebesgue point 
there. [] 

This result immediately leads to our first conclusion on regularity. 

Corollary 3.3. I f  u is a solution of(1.2) and ~x(xo)~=u(xo)<=~_~(xo), then u is 
continuous at x o. 
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Proof. By the previous result, note that u has a Lebesgue point at xo and there- 
fore the theorem has meaning. If  d>u(xo), then d>~kx in a neighborhood of  xo. 
Moreover, by Corollary 2.9, v = ( u - d )  + is upper semicontinuous at xo and v(x0)=0. 
It follows that 

lira sup u(x) <= lim supv(x)+ d = d. 
X~X 0 X~X 0 

Now let d~u(xo) to obtain that u is upper semicontinuous at x0. A dual argu- 
ment shows that u is also lower semicontinuous at xo, thus establishing the desired 
conclusion. [] 

Now we have shown that u has a Lebesgue point under the assumption i~l(x0) ~ _ 
_~z(xo), we wish to use this result to prove more, namely, that u is finely continuous 
at xo. For  this purpose, we will need the following result. 

Theorem 3.4. Let p > l  and C > 0 .  There exist constants C'=C'(n ,p ,C)  and 
ot<p such that i f  vES-(G,p,  C, O) with v ( x ) > 0  for almost all xEG, then 

f o v  (x)-a IVy (x)l p r/(x)" dx <- c ' f a  v (x) p- a Iv/(x) p + [Vr/(x)lpl dx 

for every fl>o~ and every nonnegative Lipschitz function tl with compact support in G. 

Proof. Since v+tCS-(G,p,C,O) whenever t>0 ,  we may assume that v is 
bounded away from 0 on G. Observe also that (2.1) holds whenever r/EW01'P(G). 
Let  T > 0 ,  ? > 0  and set 

vr(x)  = inf {T, v(x)} 

tiT(X) = vr(x)~l(x). 

Now replace r /by  r/r in (2.1). This yields 

P P? l ip  - ~ P  V Tpy P P 1 lp  f o IV(v-k)-lPv r lPdx <= cl f o t(v-k)-] lVvrl 
+v~YlVtl]P]dx+fxk" f . . . .  v~.Yrl'dx 

�9 " ' t r y - k ) -  >u l  

where CI=CI (C, p). Let fl=>p and multiply both sides of  the previous inequality 
by k -pr-a-~ and integrate with respect to k over (0, ~)  to obtain 

1 fo v-p'-av~.~ IVvlP,/p dr pr+# 

2C1 
V [V T ~] ~- '~  V T ilVvTI /~ AVUT IVF/IP]dx. --p+p?+fl  f a  -p-pr-a .pr p p,-p+~y , p p .p~ 

By letting T ~  oo and observing that 

p?+ f l  p 1 
= 1+ <= l + - -  

~ p ~ p ~  ~ ~ 
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we obtain 
t 1 

s *,-' lWl',l' a~ ~_ 2c,/1 + 7J s v, - '  [n' + IVnl'] ax 

A suitable choice of  ~ now yields the required inequality under our assumption of  
~_~p. However, it is possible to make a suitable choice of  ~ under a slightly weaker 
constraint on 8. For a certain range of  ~ less than p, we need ~ >0  such that 

(3.3) 0 < (Y)'(PV +/~) < e p~+~-p 

for arbitrary ~>O. Clearly, such a y exists, say Yt, in case fl>=p. Under the assump- 
tion that fl<p, there exists 72 such that 

("+q f"+'/ p ~  / - ~-. 

Now let y0=min (71, Va) and place an additional constraint on /~ by requiring 

# - p  1 
p ? 0  l 2 " 

Then, p ? 0 + / ~ - p > 0  and because of  (3.4), it is easy to see that (3.3) is satisfied. [] 

We now proceed to prove continuity of  u at points xo where the obstacles ~1 
and ~ possess some regularity. The amount of regularity required is given by the 
following definition. 

Definition 3.5. A point x0 is said to be an upper (p, ~l)-Wiener point for ~1 if 
there exists a set E1 such that 

gl f yp[glon(xo, g ) ]  ]1/. dr 
0 " 5 )  ~ 0 t I ~ 11 r I = 

and 
lira inf~q(x) => i~t(xo). 

x ~ x  o 
xE El 

Similarly, Xo is said to be a lower (p, rl)-Wiener point for ~z if there exists a set Es 
satisfying the same condition as (3.5) and such that 

lim sup ~k2(x) _~ ~k,(Xo). 
X~X@ 
xEEs 

A set Ex satisfying (3.5) is said to be not thin at x0. 
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Remark 3.6. In the usual definition of  the Wiener integral for nonlinear prob- 
lems, the exponent I/r/ is replaced by 1/(p-1), cf. [MA], [GZ]. As suggested in 
Remark 2.10, we are forced to work with a slightly weaker Wiener condition because 
of  the greater generality of the classes S + and S - .  This will manifest itself in 
our main result below where a crucial role is played by the weak Harnack inequality, 
Theorem 2.8. 

Theorem 3.7. Let xoC f2 be both an upper (p, ~)-Wiener point for ~k x and a 
lower (p, ~)-Wiener point for ~ where 1/~ is the exponent that appears in Theorem 2.8. 
I f  ~1 (xo)~2(x0), then a weak solution u of  (1.2) is continuous at xo. 

Proof. Recall Theorem 3.2 which states that u of  (1.2) is defined at x0. I f  

(3.6) ffx(Xo) -~ u(xo) <= 0z(Xo) 

then u is continuous at x0 by Corollary 3.3. Thus, it will be sufficient to prove (3.6). 
In fact, it is sufficient to prove 

(3.7) iffl(Xo) ~- U(Xo). 

Since the other inequality in (3.6) will follow by a dual argument. Let 

v = ( u -  d)-  where d < ~;x(x0) = U(Xo). 

Since d<f2(2r )  for all small r > 0 ,  note that 

~Es+ (a(xo, 2~),p, c, ~). 
Also, let 

re(r) = sup ( u - d ) -  
n(x o, r) 

w = m(2r) -vSS-(B(xo ,  2r),p, C, 2) 

.4 = {u > d}. 

I f  E1 is a set which is not thin at x0 and has the property that 

lim inf ~kl(x ) _~ ffl(Xo), 
X ~ X  O 
xE E l 

then since u_~Ox q.e. we have 

(3.8) Elan(Xo, r) c Ac~B(xo, r) 

for all small r > 0 .  Let r /be  a cut-off function supported in B(xo, 20 such that 
r/= 1 on B(Xo, r). Then, 

m(2r)P~p[Ac~B(xo, r)] _~ IV(~/w)lOdx 

~_ c {f~(=.,~,) IVwl~n p+w,lv,/I pdx). 
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Now let w'=w+221/Pr and refer to Corollary 2.6 to find that 

w'~ S - ( ~  (xo, 20, p, C, 0). 
Thus, we obtain 

ivwl .e  + w.tv, , .dx) = ivw'l ,e  + w,Lv, j, ax) 

dx+  

(by Lemma 2.2) 

c (L L,xo.~,, (rl(w')(-a'/PlVw'l)'-l((w')(tJ(P-l"/')dx + l(r)) 

where fl<p is obtained from Theorem 3.4 and 

1(0 = r'-P f B(xo. m wP dx + f'-~ 

_<-C (L (L,x..~,) (w')-elVw'l, riPex)('-l'/'(L(~..2,,(w')a(,-1)dx) 1'" +I(r)) 

C (r 1-- (L(xo,2r) (wP)P-fl[~] p Ai-[VtllP]dx) (p-1)/p (L(xo, g 0 (w') p(p-1) dx) I/p q- I(r)) 

(by Theorem 3.4) 

C (1  rn(p_l,/p [f~(x,,=., (w ' ) , - '  dx)('-l)/P.r "w [f.,~.., (W') p(p-I, dx) I/p'~ l(r)) 

<= c {,*-, (f,,~o.=., (w'),-' ax) ('-1,/" (f,(~o.,, (w')e,p-, dx)l/P--~ - I(r)) 

~_ ce-.({f.,,.~., (wt)p-fldx) (p-I,/p (f.,xo..) (w')'dxiVP+ f.(,o.=ow'dx +rP-X} 
(with /~(p-1)>? and from the fact that w' is bounded) 

[fB (w')rdx+ fB  wVdx+rP-1) Cr~-P C~o,~,) (~o,~) 

~_ CrY-P(( inf w')~'+( inf w)~+rP-q 
" B~x o, r) BCx o, r) " 

(using the fact that w is bounded and from Theorem 2.8) 

<-- Cr ~ - '  [(m (2r) -- m (r) + 2)~ 1/p r) ~ + r v - 1] 
(since inf w 

B(x o, r) 
That is, 

(3.9) m(2r) p (Yp[Ac~/_(; ~ r ) ] / -~  C[m(2r)-m(r)+ 2),llPr] ~ 

is < 1 for small r). 

for 0 < r <  1, 
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which implies 

Referring to (3.8), we obtain 

~' : aol,'f' f ,,[E,~(xo,~ r)].) '/' drr 

yp[Ac~B(xo, r)])x/~ dr 
. , ~ .  

r n - p  r 

f~ ( ?p[Ac~B(xo, r)] ) x/y dr 
- - ~ -  r n-v r 

it follows that m(r)~O as r ~ 0 .  This implies that lim,-.o _u(r)=>d; that is, u_(xo)>=d. 
Recall that this is proved for any d < ~ ( x 0 ) .  Thus, we have that 

U(Xo) = l i m f  u(x)dx >- _U(Xo) -> D 
r~O B(xo, r) 

Remark 3.8. It is easily seen that the hypothesis i~x(Xo)=<_~2(x0) is necessary 
for a solution to be continuous at xo. Indeed, since u ~ k :  q.e. and u<=~/2 q.e., it 
follows 

~l(x0) = inf p-sup ~'1 ~- inf p-sup u = u(xo) 
r>O B(xo, r ) r>O B(xo, r ) 

-- sup p-inf u ~_ sup p-inf ~'2 = ~(x0) .  
r>-O B(Xo, r) r>O B(xo, r) - 

4. Modulus of continuity 

Inequality (3.9) is fundamental in establishing the continuity of  the solution. 
However, it is not strong enough to establish a meaningful bound on the modulus 
of  continuity. For this purpose, one might employ a substitute for Vp. The capacity 
needed is V~ where 

p(n-p)  q = n  

where ~ is the number that appears in Theorem 2.8. Referring to (3.1)it is easily seen 
that (3.9) becomes 

[' r)] )'/" 
(4.1) m(2r)~(  ~ <=C[m(2r)-m(r)+2).l/pr] ~ for 0 <  r <  1. 

That is, 

(,,[Ac~B(xo, r)]) 1/" 
(4.2) m(2r) r " - ~  ~_C[m(2r)-m(r)+221/Pr] for 0 < r < l .  

Now that we have (4.2), it follows immediately from [GZ, Theorem 2.7] that re(r) 
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satisfies the following growth condition: 

where 
{ I: re(r) <= Clexp - C a  A(t  for every 

A(O = ( y~[E,c~B(xo, t)]) '/" 
t t"-~ " 

s -<= r/2 

From this it would be possible to obtain a modulus of continuity. The difficulty with 
this argument is that in the definition of the number q, we have no estimate for the 
number 7 and therefore q might be negative. 

In order to obtain a modulus of continuity under the general structure (1.1), 
we require the following assumptions on the sets E: and Ea that appear in Defini- 
tion 3.5: 

lira inf [E:c~B(xo, r)l > 0 
�9 -o IB(xo, r)l 

(4.3) 
and 

(4.4) lim inf [E,c~Bfxo, r)l > 0. 
�9 -o [B(x0, r)l 

Theorem 4.1. I f  u is a solution of(1.2), El, E2 respectively satisfy (4.3) and (4.4), 
and iffl(X0)_<-_~z(x0), then u is continuous at xo and its modulus o f  continuity is esti- 
mated by 

o~(r) ~_ C[r~+Ml(r)+Ma(r)] 
where 

u~ (r) = sup (ff~ (xo) --_~, (El, r), _~a (Xo) -_~a (2 r)) 

Ma(r) = sup (~z(E2, r) - ~Pa(Xo), ~;: ( 2 r ) - ~ :  (x0)). 

Proof. We know from Theorem 3.2 that u is defined at x0 and that (4.3) im- 
plies ~l(xo)<=u(xo). Likewise, (4.4) implies that u(xo)<=~_a(xo). Hence, by Theo- 
rem 3.7 it follows that u is continuous at xo. I f  

ff:(x0) < u(x0) < Oa(Xo), 

then u is a solution of the associated equation in a neighborhood of Xo and is there- 
fore HSlder continuous there. This establishes part of our conclusion. 

Next we assume 

(4.5) ff:(xo) = U(Xo) < O. , (xO 

and consider the function w defined in the proof of  Theorem 3.7 with d=d(r)= 
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_~1(E1, r ) - r  where _~a(Ex, r)=infn(xo.,)nn ' ~bl. Because of assumption (4.5), note 
that d(r)<_~2(r ) and that ExnB(xo, r)cAnB(xo, r) for all small r>0 .  Then, the 
functions v and w introduced in Theorem 3.7 belong to the classes S § and S -  
respectively and by Theorem 2.8 

m(r) [.lE1nB(xo,.r)l.] I/' ~/~ 
t W(x0,,)l ) ~-[f,,x..,, (w(x)l'axl 

_~ C inf w+C',~lpr ~_ C[m(r)--m(r/2)+C'2~/Pr]. 
~(xo, rl~) 

Because of  (4.3), this implies 

m(r) <= C" [m(r)- m( r/2) + C" 2Xlp r] 

for all small r>0 .  This implies 
m (r) _~ Cr ~ 

for some 0 < ~ <  1 and for all small r>0 ,  ef. [GT, Lemma 8.23]. Now 

u (Xo)--_u (r) = m (r) + ~x (Xo) - ~ 1  (El ,  r) + r 
so that 

(4.6) ,o(r)  - U(Xo)-u_(r) ~_ f f~(xo) -  r r ) + C : .  

This provides an estimate for the lower oscillation of u under assumption (4.5). 
We now proceed to obtain an estimate for the lower oscillation in case 

ff~(Xo) = U(Xo) = r 

The proof in this situation proceeds exactly as the one above except that now we take 

d(r) = inf {_~x(Ex, r), _d/z(r)}- r < _~.,(r) 

which will ensure that the functions v and w are in the appropriate classes and that 

E~nB(xo, r)cAnB(xo, r). We then obtain 

U(Xo)-U_(r) ~_~(Xo)+ m(r)-d(r) ~- C[ :  + Mx(r)I. 

This shows that under assumption (4.3) 

co(r) ~_ Ctr'+M~(r)] 

for all small r>0 .  A dual argument establishes 

~(r) =-- a(r)--u(xo) ~-- Ctr~+ Mz(r)] 

under the assumption (4.4). [] 
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Corollary 4.2. I f  u is a solution of  (1.2) and both ~l I and ~2 are locally H61der 
continuous with tpl <-~2 on 12, then u is locally H6lder continuous on 12. 

In order to obtain stronger results, we modify the structure (1.1) of  A and B 
as follows so that in addition, we require 

A ( x , u , h ) . h  >=O 

(4.7) A(x, u, O) = 0 

B(x, u,O) = o 
whenever uER 1 and hER". 

Although this structure is more restrictive, it nevertheless includes a wide class 
of  interesting equations. For example, the p-Laplacean 

-div(lVulP-2Vu) = O, 

and the uniformly elliptic linear equations 

Zu = - Z  n i , j=l  (aiJ(X)Uxj) x, 

considered in [DMV] where dJEL ~. Also, the equations 

with A(x, h) .h~lhl  p, 
these assumptions. 

(i) 

(ii) 

- d i v  A(x, Vu) = 0 

associated with a nonlinear potential theory [HKM] satisfy 

The key lemma which results from these extra assumptions is the following. 

Lemma 4.3. Suppose that A and B satisfy (1.1) and (4.7). Then 
I f  d>-~l in G, then v = m a x  (u, d) is a subsolution of(1.2) in G; that is 

f A(x, v, Vv). Vq~+ B(x, v, Vv)q)dx <= O. 

for every nonnegative test function q~. 
I f  d~ -~  in G, then w=min  (u,d) is a supersolution of  (1.2) in G. 

Proof. Let ~pEC~(G), q~>=O. Fix ~>0  and write 

Then 

r/ = - e m i n ( ~ o ,  ( u ~  d ) + ) .  

u+~<=u<-~2 and 
( u - d )  + 

u + ~/~ u - e  = min (u, d) -~ ~b I �9 
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Thus, t/is admissible for (1.2) and it follows that 

0 = > E f A ( x , u ,  V u ) . V m i n ( 9 ,  (u~d)+)dx 

( ( u -d )+)  
+ e L  B(x, u, Vu) min ~o, 

=~ fc~ o:(,-,,*-~.~ A(x, u, vu). Vudx +~ f~x~ ~:(,-~,*-,~, A(x, u, Vu). V~dx 

Thus, assumption (4.7) implies 

f e n  A (x, v, Vv). V(o dx {(.-d) + 

fo B(x,v,  Vv)min (go, ( u - d ) + )  dx <- 0. + n {(u- d) + > o} ~ 

Now with e ~ 0  we obtain 

-~/-n((.-d)* :-o) A (x, v, Vv). V~o dx+f  B(x, v, Vv)~o dx <= 0 ~N {(u-d) § >o} 

and, since by assumption (4.7), we have A(x, v, Vv)=0 and B(x, v, Vv)=0 in 
the set 

a ~ { ( u - d ) +  = O} = an{~ = O} 
we have 

f A(x, ~,w).v~dx+fomx, v, W)~dx ~ 0 
as desired. 

The proof of  (ii) is similar with q defined this time as 

q = ~ m i n [ 9 ,  ( u - d ) - l e  " . [] 

Theorem 4.4. I f  u is a solution (1.2) with structure (1.1) and (4.7), xo is a point that 
satisfies Definition 3.5 with t l=p-1 ,  and i~l(Xo)-<__O2(xo), then u is continuous at 
xo and its modulus of continuity for all small r > 0  and all s<r/2 is given by 

where 

Ai =_ ~( ~p[Ei~B(xo,~ t)] .)1/O-1) i = 1 , 2  

and where Mi(r ), i = 1 , 2  are as in Theorem 4.1. 



100 Tero Kilpel/iinen and William P. Ziemer 

Proof. We proceed as in the proof of Theorem 4.1 and thus first prove 

(4.8) ~l(Xo) <= U(Xo) <= ~.,(Xo). 

Let d=d(r)=O_~(E1,2r)-r and note that since d<~l(xo),  we have d<_02(2r) 
for all small r>0 .  Consequently, we infer from Theorem 4.3 that rain (u, d) is 
a supersolution in B(x o, 2r) of an equation of type (1.1) and (1.2). Let f = m i n  (u, d). 
Recall from [MZ1, Corollary 4.4] tha t f i s  finely continuous at all points of B(xo, 2r). 
Thus there is a set EocE1 such that f_->min (~1, d) on E0 and that 

lira f (x)  =f(x0). 
~ x  o 
xE~  

Then since f is approximately continuous 

U(Xo) >-f(Xo) = lira f (x)  >= lira infmin (~bl(x), d) = d 
X~X 0 J c ~ X  0 
xEE o x~E o 

and by letting r ~ 0  we have 
U(Xo) ~ ~l(Xo). 

Thus, the first inequality of (4.8) is established and the second is obtained by a dual 
argument. Now let 

(4.9) re(r) = sup ( u - d ) -  
B(x o, r) 

Y : ( u - d ) -  

w = m(2r) -v  

w" --- w+).r 

where ). is a number that dominates the sum of all the coefficients that appear in (1.1). 
We now collect some often used estimates that arise when dealing with sub 

and supersolutions of (1.2). Since v is a subsolution of an equation of type (1.2), 
one may use ~p=qPv as a test function and employ standard estimates to obtain 

(4.10) c-, f B(xo,5,) q'lVvlP dx <= m(2r) f n(xo,~,) r/P-alVql IVvl'-a dx 

+ m(2r) f,(xo.5,) "' + I V, l 'ax.  

Also, since w is a supersolution, so is w" and because of the definition of  2 one ob- 
tains the following estimate, cf. [GZ, equation (23)]: 

(4 .11)  w'(x)-alVw'(x)l'q(x)Pdx < -  c" f w'(x),-a[,(x),+ IVn(x)l'] dx 
B(x o, 2r) 

for every f l> 1 and every nonnegative Lipschitz function r/with compact support 
in B(xo, 2r). Finally, we will need the following weak Harnack inequality for 
supersolutions: 

i f  '"' ('4.12) inf v >= C' v(x)~ dx't -C")::Pr 
B(xo, ar ) t-" B(xo, r) ] 
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for any ?<n(p-1)/(n-p) and any aE(0, 1), cf. [T]. Proceeding as in the proof 
of Theorem 3.7, we let .4= {u>d} and since ElnB(x o, r)=AnB(xo, r) for small 
r > 0  we obtain 

m(2r)P?p[Exc~B(xo, r)] 

_~ m(2r)P?p [Ac~B(xo, r)] 

f . Iw (rlw)l p dx 
(x o, 2r) 

~_ c (f~(~o,=,, IVwlP~P+wPlV~lPdx ) 

= ( f . ,xo, , ,  IVw'lPqP+wPlwlPdx) 

fm(>) f iVw, lp_lqp_adx+:_p fB wPdx+m(2r)r~_ 0 <-- C ~ - - - r - -  o n(Xo, 20 (x o, zr) 

(by (4. lO)) 

~_ C[ m(2r_______~) f (~(w')-(~-~'lVw'l)'-'((w')(~-~)(P-~')dx + l(r)) 
k r B(xo, 2r) 

where 0 is such that l < ( 1 - O ) p < n / ( n - p )  and 

l(r) = r~-P f n wP dx + m(2r)r "-p 
(X O, 2r) 

<- c ( m(2r) ( f ) r J n(Xo, m (w')-(x-~)PlVw'lPqPdx (P-~)/P 

~(f B(xo,2r, (Wt)(I'O)(P-I)Pdx) I~p d i - I ( r ) )  

C f m(2r) f: (w,),,[n,+lvnl,ldxP_,/,f: (w')"-"c,-',&] ~" +I(,)) 
K r x~ B(xo, gr) ........ -" KdB(x0,2r)- - " J 

(by (4.~ l)) 
N C m(2r) r~(p_m p (w)aPdx 

r (x o, 20 

xrn/'(f,,xo, m(w')"-')"-"dx)V'+l(r) ) 
f .,(,.)} <= C fm(2r)rn-P (L(xo,2, (w" dxJV'-x"" "" "(xo, 2,) - J'~ll" 

<-C(m(2r)r"-P( inf Wt~(P--1))( inf w'(1-o)tP-1))+I(r)) by (4.12) 
B(x o, r) B(x a, r) 

<--Cm(2r)r "-p inf (w')p-l+Cm(2r)l*-P( inf w+C't) p-I 
e(x O, r) B(x O, r) 

<-- Cm(2r)(r~-P)[m(2r)-m(r)+2r]P-X+r ~-p for 0 < r < 1. 
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That  is, 

(4.13) 
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m(2r)p_ll~,[Elc~B(xo , t  r)]/~ < C[m(2r)-m(r)+2r] p-1 for 0 < r < 1, 
t ~ } = 

which implies 

f'J01 mr'2 r)[.'( v"[Elc~B(x~ r)]) I/(p'I) ' rdr < oo. 

Now refer to [GZ, Theorem 2.7] to see that this implies the existence o f  constants 

Cx and C2 such that for sufficiently small r > 0  

( :: m(r) <= CI exp - C 2  A l ( t ) - -  

whenever s<-r/2 and where 

Al(t) = ( 'P[Elc~B(x~ t)] ) It(v-l) "-p 

As in the proof  of  Theorem 4.1 we have 

o9 (r) = u (x0) - u (r) _<- m (r) +_~1 (Xo) -_~2 (El, r) + r 

( <= C1 exp - C2 (t + M1 (r) 

for every s<=r/2. This is the desired conclusion under (4.8). In case 

~(x0)  = U(Xo) = ~_,(Xo) 

an estimate for the lower oscillation is obtained in the same way except that d(r) is 
taken as 

d(r) = inf {_~1(E1, r), ~_ z(2r)}- r. 

An estimate for the upper oscillation is obtained in a similar way. [] 

5. Sharpness of results 

In this section we show that the Wiener conditions for the obstacles ~1 and ~02 
assumed in Theorem 4.4 are necessary for a non-trivial class of  equations, including 
the linear equations of  [DMV]. For  this we assume that A: R"• is a Borel 
function satisfying the following assumptions for almost every x, all h, and for 



Pointwise regularity of solutions to nonlinear double obstacle problems 103 

some 0 < y ~ # <  oo: 

(5.1) lA(x, h)l ~/~lhl p-1 

A(x,h).h => ylhlP 

(A(x, h l ) - A ( x ,  h2)).(hx-h~) > 0  for = hi r h2 

A(x, 2h) = ]).IP=22A(x, h) 2CR ~. 

Lemma5.1. Suppose that p > n - 1  or:that p = 2  and the equation 

- d i v  A(x, Vu) = 0 

is linear. I f  xo is not a p-Wiener point o f  ~l, then there is a solution v of  the unilateral 
obstacle problem in a neighborhood U Of Xo such that v is not continuous at xo. More- 
0 1 J e r  , 

ess lira infv(x)  < iffl(x0). 
x ~ x  0 

Proof. The cases p > n - 1  are proved in [HK~ Theorem 1.16]. The linear case 
is done by Mosco [M, Thin. 52]. This linear case can be easily treated without 
using Green's function by using arguments of  [HK, Theorem 1.16] and [HKM, 
Theorem 3.2]. [] 

Theorem 5,2. Suppose A satisfies (5.1) and that p > n -  1 or that - d i v  A (x, Vu)=0 
is linear ( p = 2 ) .  Suppose, further, that there is a (quasicontinuous) Sobolev func- 
tion uo such that Ol<=Uo~_~b2 in a neighborhood U of  xo. I f  xo is neither an upper 
(p, p -  1)-Wiener point for ~k x nor a lower (p, p -  1)-Wiener point for Ca, then there 
is a solution u which is discontinuous at xo. 

Proof. Let us assume that xo is not a regular point for _~1. I f  u is a continuous 
solution of  the double obstacle problem, t h e n  U(Xo)>=?~l(Xo), (see Remark 3.8). 
Thus, it is enough to show that for some solution u 

ess lim inf u(x) < ~l(Xo). 
x ~ x  0 

To this end, let v be the discontinuous solution to the single obstacle problem given 
by Lemma 5.'1 with 

ess lira infv(x) < i~l(x0). 

Let u be a solution to the double obstacle problem with 

u - m i n  (v, uo)E Wol, v ( U): 

To conclude the proof, we show that u<_-v in U. For  this, let 

r / =  min ( v - u ,  O)~Wol,V(U). 
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Then, u+q~_u~_~ka and u+~=min(v,u)>=~. Thus, 

o ~_ fo (A(x, Vu)-A(~, Vu)). v,lax 

= -fco-.~(A(x' Vu)-a(x, w)). (Vu-W) ax = 0. 

Thus, 7=0  by (5.1), thus proving that u~_v a.e. as desired. [] 

Remark 5.3. By refining the argument of [HK] we could dispense with the 
homogeneity assumption in (5.1). 

6. Monotone operators 

In this section we study operators that satisfy (1.I) as well as the following: 

(6.1) (A(x, tl, h l ) -A (x ,  rl, hz)).(hx-ha) > 0  for hx ~ ha 

IB(x, rl, h)l ~- #lt / l ' - l+v.  

These operators are not covered by the structure imposed by (4.7). The object of 
this section is to prove the following result. 

Theorem 6.1. Suppose xo is a (p, p -  D-Wiener point for both obstacles ~/x and 
~k 2. Then, i f  i~t(x0)a~,(x0) and (6.1) holds, the solution u to the double obstacle 
problem is continuous at xo. 

Before proving this result, we will need the following two Lemmas. Note that 
since u is bounded, the operator defined by 

X(x, h) = a(x,  u(x), h) 

~(x) = a(x, u(x), Vu(x)) 

satisfy the same structural assumptions. 
The following is a special case of a result proved in [MZ2]. 

Lemma 6.2. Let wEWI'P(f2), w~_~k I (or w~_~kz). Then thereexists v~WI'P(f2) 
such that v-WEWot'P(I2), v~_~k 1 (or v~_~k~) and 

fo  X(x, vv). v ~ + f .  B(x)~ ax _~ 0 

whenerer q~Wool"P(I2), q~-~kl-u (or q~-~a-u) .  

The following lemma is crucial in establishing Theorem 6.1. 

Lemma 6.3. Suppose that xo is a (p, p -  1)-Wiener point for ~t and ~ and that 
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~x(Xo)~_~2(xQ). Then for each d>~2(xo), 

l i m f  . ( u - d ) + d x  
�9 ~ 0 ~" B ( x ~ ,  r )  

and for each d<~x(x0) , 

= 0  

l i m f  ( u - d ) - &  = 0. 
r~O ~" BCxo, r )  

Proof. We will prove only the first assertion, the proof of the second being 
similar. 

Let d>f_2(xo). Then, for some e>0, 6 l < d - a  q.e. in some neighborhood U 
of xo. Furthermore, the set 

E = U~{r ~_ d} 

is not (p, p-1)- thin at x0. Choose a compact set KcEw {x0} such that K is not 
(p,p-1)-thin at x0 and let G = U - K .  Let w be a quasicontinuous function in 
WI'P(f2) such that w-U~WoX, P(U) and w=d in K. Let v be the solution to the 
single obstacle problem in G with obstacle ~9~ and with v-w~WoX'P(G); the exist- 
ence ofv being assured by Lemma 6.2. We claim that v~_u in G. Indeed, let 

)7 = rain (v -  u, 0). 

Then ~/EW0~,P(G) is nonpositive and admissible for (1.2) since ~Oa<=u+)7_-__qz in G. 
Thus, 

o _<- f (A(x, ~(x), W(x))-.C(x, w)).Vqdx 
G 

+ f ~ (B(x, ~(x), W(x))-~(x)~dx 

= -f~.~o~ (A(x, u(x), Vu(x))-A(x,u(x), Vv(x))). (Vu-Vr) dx 

~_0. 

Thus, r/=0 by (6.1) and hence v~_u which establishes our claim. 
Now v is the solution to a single obstacle problem and is therefore a super- 

solution in G of the associated equation. Since v-w~WoX'P(G) and w=d in K, 
it follows from [GZ, Theorem 2.2] that 

lira infv(x) _~ d, 
x ~ x  o 

whence v ~ k l + e  q.e. in B(xo, r)c~G for some r>0.  This implies that v in fact is 
a solution of the equation 

-d iv  X(x, Vv) +/7(x) = 0 

in B(xo, r)c~G. Now since v is a solution, we may employ [GZ, Theorem 2.2] 
again to obtain 

lira v(x) = d. 
x ~ x  0 



t06 Tero Kilpel~iinen and William P. Ziemer: Pointwise regularity of solutions to nonlinear... 

Thus, 

lim,.oSUpf., B(Xo.,) (u - d)+dx <= lira,_0 fB,x.,,, (v- d)+dx = 0 

which completes the proof. [] 

We now return to the proof  of Theorem 6.1. Under the hypotheses of this 
theorem, we know from Theorem 3.2 that u has a Lebesgue point at x0. The result 
above implies that ~l(Xo)<-U(Xo)<-$2(Xo). Now appeal to Corollary 3.3. [] 
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