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l inear measure 

H. Alexander 

1. I n t r o d u c t i o n  

Let A be one-dimensional Hausdorff measure in C. Let B be a continuum 
in C of finite linear measure, i.e., A ( B ) <  0o. Denote the components of  the com- 
plement of  B in the Riemann sphere by {Vj}; each V~ is simply connected. Let 
f j :  D-~Vj be a Riemann map, where D is the open unit disk. 

T h e o r e m .  

2~ �9 iO ZA(~) = 2j  fo I~ (~)1 dO. 

The problem of establishing this identity was raised by Ch. Pommerenke in a 
letter to the author. The proof has two parts. First we show that the jth integral in 
the theorem is equal to the integral with respect to A of  the multiplicity function 
off~;  this is (I). The second part, (II), is to show that the sum of  the multiplicity 
functions is equal to 2 a.e. on B with respect to A. 

After the proof of the theorem we shall indicate a generalization. This is a 
decomposition of the restriction of  A to B as a sum of  measures on the boundaries 
of  the Vj. 

Finally I want to thank Professor Ch. Pommerenke for writing to me about 
this problem. A related inequality had been treated in [1]. 
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. 

We begin with some general measure theory. For  a measurable set A ~ R  
we denote its Lebesgue measure by IAI. 

Lemma 1. Let u be a real-valued absolutely continuous function on an interval 
(a, b). Then, for  every measurable set AC=(a, b), u(A) is measurable and 

(*) lu(~)l<f= [u" (x)l dx. 
A 

In particular, i f  u ' = 0  a.e. on A, then lu(A)l =0.  

Remark. This is just a case of  Sard's lemma. For  completeness we shall indicate 
an outline of  a proof. 

Proof. Let  I be an open subinterval such that i <- (a, b). Then u (I) is an interval 
with endpoints u(c) and u(d) for points c and d in i. Hence lu(l)l=lu(d)-u(c)l= 
[f"c u'(x) dx[<- f, lu'(x)l dx. 

Now if W is an open subset of  (a, b), W =  U Ij where the Ij are disjoint open 

intervals. Hence lu(W)l<-z~lu(l~)l<=z~f, ~ lu'l dx=fw lu'l dx. From this it fol- 
lows that if NC=(a, b) is a null set then u(N)  is a null set. Standard arguments 
then show that u (=4) is measurable if A is measurable and then (*) follows easily. 

Next, we need the converse to the Sard lemma; cf. [5], p. 322. 

I_emma 2. Let  u be a real-valued absolutely continuous function on an interval 
(a, b). l f  K is a compact subset o f  (a, b) such that lu(K)l =0,  then u ' = 0  a.e. on K. 

Proof. Suppose not. Then, by replacing K by a smaller set, we may assume, 
without loss of  generality, that u' exists and is strictly positive at every point of  K. 
We denote the characteristic function of  K by ZK- Almost every point of  K is a 
Lebesgue point for lu'l and also for lu'l x~. Choose such a point cEK. Let J , =  
(c--e ,c+e) .  Set t /=u'(c);  t />0. Then 

A f [u'l dx Q(~) : -  25 +~\,< 

t = ~ f ,  l u l d ~ - l f ,  lu'lxKd~. 

Therefore, as e ~ 0, Q (e) ~ t / -  t /= 0. 
We have u ( t ) = u ( e ) + ( t - c ) q ( l + a ( t ) )  where a ( t ) -*0  as t~c .  Choose e so 

small that I~(c+~)l<�88 Then u(Y~)m=(u(c-e), u (c+e) )2 (u (c ) - eq (1 - - - } ) ,  u(c)+ 
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et/(1-~-)). Hence lu(J~)l=2e.r/.~. By Lemma 1 we have 

lu(J.\g)l f  o\ lu'l dx ~_ 2sO(e). 

Now u(KnY~) 2u(J~) \u (Js \K)  and therefore 

lu(gc~J,)l => l u ( J ~ ) l - l u ( J , \ K ) l  

=> 2~r/~-- 2eQ (~) 

= 2~ ( 2 . / 3  - -  Q (8)). 

I f  we choose ~ so small that Q(e)<r//3 we get lu(KnJ~)l>2z@>0. This con- 
tradicts lu(g)l=0. Q.E.D. 

For  z=x+iy6C,  we have the coordinate projections: rct(z)=x and 7q(z)=y. 

I_emma 3. ("Projection lemma.") Let B be a continuum in C with A ( B ) <  oo. 
Let Kbe a compact subset of B with A (K)>0. Then either [rq(K)[ > 0  or [r%(K)l>0. 

Remark. Besicovitch ([2], [3]) has constructed sets o f  positive A measure whose 
projections on all lines have zero measure. By the lemma, these sets are not  con- 
mined in continua of  finite linear measure. A p roof  of  the lemma can also be ob- 
tained from [8], Corollary 3.15 and Theorem 6.10. 

Proof. First we consider the special case when B is a rectifiable Jordan arc. 
Let  F: [0, L]-~B parametrize B by arclength. Then IF(t~)--F(ta)l<--lt2--tl[ for  

< "  < t < r "  F is a Lipschitz function, therefore absolutely continuous; I F'(t)[ = 1 = ' i =  2 : J t ~ ,  SO 

a.e. on [0, L]. Let Ko=F-I(K) ,  then [KoI=A(K)>O. 
Write F=u+iv. Suppose that I~l(g)l=0 and I~(g)l=0. Then u(K0)= 

lq(K)  and so lu(g0)l=0. By Lemma 2, u ' = 0  a.e. on Ko. Likewise v ' = 0  a.e. 
on Ko. Hence F ' = 0  a.e. on K0. But [ F ' I = I  a.e. on K0 and Ig01>0. This is a 
contradiction and we conclude that I~I(K)I > 0  or 1=2(g)l >0.  

In the general case of  a continuum B of  finite linear measure, Besicovitch ([2], 
[3]) has  shown that B is a disjoint union of  a countable set of  Jordan arcs and a 
A-null set. Therefore KC=B must meet one of  these Jordan arcs in a set / (1  of  
positive measure. By the first part of  the proof, I=~(g01 > 0  or 1~2(KDI >0.  Q.E.D. 

Suppose that F: (a, b)-~C is continuous. For  z6 C, define q~(z)= 
~{t6(a, b): F( t )=z} ,  here t~ denotes the number of  elements in a set. This is the 
so-called crude multiplicity function. It  is known to be measurable under very 
general conditions; see [6]. For  completeness we shall give the proof  in our simple 
setting. 

Lemma 4. rp is a Borel measurable function on C. 
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Proof. Let 11 be a finite partition of (a, b) by intervals J which are disjoint, 
say all of the form (c, d] except the right-most interval. As each J is a-compact, 
F(J) is a-compact and so is a Borel set. Hence 

: -  Z : J 6 n }  

is Borel measurable. I f / 7 ,  is a nested set of partitions whose maximal interval has 
length converging to zero, it is straightforward that ~bn ~p on C. Q.E.D. 

Let V be a simply connected plane domain with A(0V)< ~ and let f :  D-~V 
be a Riemann map (one-to-one, conformal, onto). It is known that f is continuous 
on ~ and t h a t f f  is in the Hardy space H 1. Also f l0D is of bounded variation and 
its variation, denoted by var ( f ) ,  is equal to f ~  If'(d~ dO. Set ~o(z)=~{ei~ f(d~ 
=z}. By Lemma 4, ~p is Borel measurable on C. We shall see below (Lemma 8) 
that ~p<-2, A a.e. 

Consider a partition H of 0D consisting of a finite number of disjoint half- 
open subarcs L Fix an I61I with endpoints ~l and fli. Let J=f(I),  an arcwise 
connected subset of 0V. By an argument of Besicovitch ([2], p. 311) there exists a 
Jordan are in J connecting f(~i) to f(flr). Let gl: I ~ J  parametrize such a Jordan 
arc. Since gt maps I onto the Jordan arc gt(I), it follows that the variation of  gt 
on I, denoted var (gl), equals the length of  g~(I)=A(gi(I)). 

We claim that vat (gi)<=var ( f [ I ) .  In fact, the construction of  gr proceeds 
as follows: Choose the largest subarc ~ = I  such that the values o f f  coincide at 
the endpoints of  V. Set g~ to be the constant value on 7 which agrees with f at the 
endpoints of ?. Continue inductively in this way to m o d i f y f o n  open subarcs until a 
one-to-one function is obtained. This is gl. It is then clear that var (g~)~var ( f [ I ) .  
We have 

(1) [f(fli)-f(~)[ <= A(gi(I)) <= var (f[ l ) .  

Now define fn: OD~OV by fnlI=g t for each 1611. Let ~0n (z) ----- 
~{ei~ fn(d~ Then fn is continuous and ~o n is Borel measurable. Since the git 
are one-to-one and the {I} are disjoint, it follows that ~on=~cn ;(g,(l). Hence 

(2) ZIA(gl(I))-= z ,  f zo,.)da = f (Z,Z.~,o)dA= f ~ondA. 

Summing in (1), using (2), we get 

(3) z~re n If(fl ,)-f(~,)l  <= f , .  dA <- var (f) .  

Denote the sum in (3) by var (f ,  11). 
Choose a sequence of  partitions H,  so that var (f ,  11,)-,-var ( f ) .  Set 

~n : r 
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and F,=fn .. Then F,-~f  uniformly on 0D. By (3), 

var (f, J'In) ~ f ~1 n dA <- var (f) .  

It follows that f ft, dA~va r  ( f ) .  Also, for any p a r t i t i o n / / a n d  IEH, gl(D~f([), 
hence Xg(~)<=Zycl). Summing over I we get q~n_-<~Xi(r)<=q~. Taking 1I=11, we 
get ~k,~ q~ for all n. We have proved the following 

Lemma 5. f ~, dA ~var  ( f ) .  

We set r = lira inf ~kn, then ~k =< r 

1.emma 6. ~k=tp holds A a.e. 

Proof. We suppose not, arguing by contradiction. Then there exists a compact 
subset K of 0Vsuch that A ( K ) > 0  and ~O<q~ on K. Let E=f-I(K)~=OD. Then 
IEI>0. In fact, by Lemma3,  we may suppose that I~I(K)I~-0, then lu(E)l>0 
and so, by Lemma 1, Sr lu'l dO>=lu(E)l>O; i.e. I/~1>0. By shrinking K we may 
assume also that the derivative f '  exists at each point of  E. Finally set N(t)= 

{zEOV: R e z = t }  for tER. Since A(OV)< ~,  it is known that f= N(t) dt< ~. 
Hence N ( t ) <  co a.e. Again by shrinking K, we may suppose that N ( t ) <  oo for 
each tE~I(K) ( I~(K)I>0) .  

Since ~o takes on only the values 1 and 2 on 0V, A a.e., we may assume that 
one of the following two cases holds: 

(a) ~k--0 o n K a n d  ~o--1 o n K o r  
(b) f f ~ l  on K a n d  ~o=2 on K. 

First consider case (a). Take ~EE and let z=f(OEK. Then ~k,~(z)=0 for 
some subsequence. Let fi be the distance from z to the nearest other point of  0Vn/, 
where l is the vertical line thru z; we know that OVnl is finite. Let A be the disc 
centered at z of  radius 6/2. Choose a connected neighborhood W of ~ in 0D such 
that f (W)~A. Since Fnj~ f uniformly on 0D, F,j(W)~A for j large. But 
zCF, j(W)C=OV and since OVnlnA = {z} it follows that the connected set F,s(W ) 
lies on one side of / ,  for largej. Therefore a l so f (W)  lies on one side of  L It follows 
that u = R e f  has a local maximum or minimum at ft. Therefore u'(~)=0. Hence 
u ' - 0  on E. By Lemma 1, O=lu(E)l=lzq(K)l. This is a contradiction. 

Now consider case (b). I f  ~ = 0  on a subset of  K of  positive measure, then the 
argument of  case (a) carries over to show that u ' = 0  on a set of  positive measure. 
Just as above this yields a contradiction. Thus we may assume that ~O---1 on K 
and q ~ 2  on K. Fix zEK. Then f-~(z) consists of  two points ~' and ~". Choose 
a subsequence: ~,,~(z)=l for all j .  Then FZ.a(z)---~j, a single point of  0D. By 
passing to a subsequence we may assume that'{~i} converges in 0D. The limit must 
be ~" or ~" because F,j-~f uniformly and s o f m a p s  the limit point to z. Say ~j-~ ' .  
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Then F.j does not take on the value z near ~". The connectedness argument of case 
(a) then shows that u'(~")=0, just as before. 

Let A=Ec~{~COD: u'(~)=0}. By the last paragraph, f(A)=K. Hence [u(A)l = 
[zq(K)I>0. But u '=0  on A. This contradicts Lemma 1. Q.E.D. 

Lenuna 7. f ~0. dA ~ f ~o dA as n-~ ~ .  

Proof By Lemma6, ~p=liminf~,,  a.e. Also, since q/n<-q~ for all n, 
lim sup ~k,<=~o. It follows that lim r A a.e. The lemma then follows from the 
Lebesgue dominated convergence theorem. 

Now by Lemmas 5 and 7 we have 

(I) f aa = [f'l dO. 

. 

We now let A denote the restriction of one-dimensional Hausdorff measure 
to B. By assumption 0<A(B)<oo.  We have ~2N, B =  UV~ and f j :  D~Vj a fixed 
Riemann map. Let q~j(z)=#{~EOD: fj(~)=z} for zEB. By Lemma 4, q~j is Borel 
measurable and therefore 

is also Borel measurable. The second half of the proof of the theorem consists o f  
showing that 

(II) �9 = 2 holds A a.e. 

Lemma 8. ~<--2 except on a countable set. 

Remark. The case tpj<_-2 except on a countable set for any j was observed 
by Rudin [7]. We used this fact in the proof of Lemma 6. 

Proof Let P={pEB: ~(p)=>3}. We construct a triod T(p) at p as follows. 
There are three cases: 

(1) %(p)=>l, (pk(p)=~l and ~o~(p)=>l for some.L k and l distinct. 
(2) ~p~(p)-_>2 and q~k(p)_-->l for some j # k .  
(3) ~oj(p)=>3 for somej.  

In Case 1, there are points (j ,  (k, (l in 0D such that f~((/)=p, i=j ,  k or L Let 
T(p) be the union of the image byf~ of the half radius {r(/: ~_<-r<_- 1} for i=j, k, l. 

In Case 2, we repeat this for ( j ~ .  and (k in 0D and in Case 3 for distinct ( j ,  
~s, ~ in 0O. 
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We get in each a triod and as p varies over P, these triods T(p) are disjoint. 
It follows from a theorem of  R. L. Moore [4] that P is countable. Q.E.D. 

Lemma 9. ~ - 0  holds A a.e. 

Proof. Define Bo={zEB: O(z)=0}. Since q~j maps 0D onto 0Vj, r on 
0V i and so Bo=B\U OVj. Suppose A(Bo)>O. Then, by the projection lemma, 
[nl(B0)l>0 or %[(B0)[>0. We may assume that I=l(B0)l>0. Choose zEBo such 
that the vertical line 1 through z intersects B only finitely often (el. the proof of  
Lemma 6). Then some line segment contained in l lies in some Vj and has z as an 
endpoint. Then zEOVj, a contradiction. Hence A(B0)=0. Q.E,D. 

Let Bl={z :  O(z)=l}.  

Lemma 10. A(B1)=O. 

Proof. For  all j define 

A~ = {zEB: ~oj(z) = 1 and ~0k(Z ) = 0 if  k ~ j } .  

Then BI=UjAj. It suffices to show A(Aj)=0 for a l l j .  Without loss of  gen- 
erality, it suffices to show A(A1)=0. 

Suppose not. Take a compact K==A1 such that A(K)>0 .  By the projection 
lemma, we may assume that [tel(K)[ >0.  We may further assume that every vertical 
line which meets K intersects B only finitely often and that u~ exists everywhere on 
E=f l - I (K) .  Here f~=ul+ivl. We knowtha t  [El>0.  

Fix ~EE and let z=f(OEK. Let l be the vertical line through z. Then I meets 
B only finitely often. Let/1 and l~ be the segments of l \ B  which have z as an end- 
point. Then l~ lies in some Vj for i=1 ,  2. Since qh(z)=0 for j r  we conclude 
that ll and/2 are both contained in V~. Let p~ be an interior point of  l~ for i =  1, 2. 
Let /3  be the closed line segment joining p~ to P2. Then lzC=V1u{z}. Let 70 be a 
Jordan arc joining Pl to P2 in the simply connected domain t'~,13. If  7 is the Jordan 
curve 7oW13, then 7==Vlw{z}. 

Consider a=fl- l (7) .  Since ~ol(z)=l, f11(z)={~} and a is a Jordan curve 
in Dw {~}. The inside of ~r is mapped by f~ onto the inside of  7. Hence the inside 
of ? is disjoint from B. It follows that locally, near z, B lies on one side only of  L 
This means that u~ has a local maximum or minimum at (. Hence u~(0=0.  Hence 
u [ - 0  on E. As [El>0 and [u~(E)I=In~(K)[>O, this contradicts Lemma 1. We 
conclude that A(A~)=0. Q.E.D. 

Now (II) follows from Lemmas 8, 9 and 10. 

Let Zj be the characteristic function of 0Vj. 
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Proposition. 1 ~ j  Zj<=2 A a.e., and hence A(B)<=~ A(OVj)<=2A(B). 

Remark. The second inequality on measure was obtained in [1]. 

Proof Clearly Zj<=~oi for al l j  and therefore ~ Zj= < qO=2 by (II). If z~B'x,,Bo 
then zCOVj for s o m e j a n d  so l<=~Z~(z). Hence I<=~Xj, A a.e. by the proof 
of Lemma 9. Q.E.D. 

4. Proof  of the theorem 

Integrating (II) w.r.t. A we get 

2A(B) = f ~ dA = ~ j  f q~ i dA, 

by the monotone convergence theorem. Applying (I) to the last integrals gives the 
theorem. 

. 

We now consider a refinement of the theorem. Let f :  D ~ V  be a Riemann 
map as in Section2 with A(OV)<~ and ~p(z)=~{~COD: f(~)=z}. Define the 
"push-forward" measure/1 = f ,  (I f ' ]  dO) on OV by f g (z) d/~ (z) = fad g~ f'l  dO for 
every bounded Borel function g on OV. By definition 9A is the measure on B given 
by (cpA)(E)=f~ 9(z) dA(z) for every Borel set Ec=OV. 

Lemma 11. cpA~u. 

Proof For SC=OD define, for zEOV, ~ps(Z)=~{~ES: f(~)=z}. I f J  is a subarc 
of 0D then the arguments of Lemmas 4, 5, 6 and 7 show that 

f, [f'l dO = f ~v q~s(Z) dA(z). 

Let W be an open subset of OV, write f - x ( W ) = U Y  i where the J j  are disjoint 
subarcs of OD. Then fy-l(w) lf'l dO=~fs~ If'l d O = ~ f g s j d A = f Z g s d a =  
f 9y-,(w) dA. It is clear that q~i_l(w)=~0 �9 Xw. Hence we get 

I~(W) = f I_1(w ) ]/'l dO = f w q~ dA, 

for every open Wc=OV. This gives the lemma. 
Now for every component V~ of C~x,,B we have f j :  D~Vj and a qgj. Define 

/ t j=fj , ( [f j [  dO). By Lemma 11, 9j A=# j .  Summing over j  and applying (II) gives 
the following decomposition of A on B: 

2A = ~ j  ~j. 
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In  this equal i ty  o f  Borel  measures ,  the  sum is t aken  in the  s t rong  n o r m  sense. This  

decompos i t i on  is equiva lent  to  saying tha t  

2 f g dA = ~ j  foDgofjlfj'l dO 

fo r  each  b o u n d e d  Bore l  func t ion  on  B. O u r  t he o re m is j u s t  the  case g =  1. 
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