Linear measure on plane continua of finite
linear measure

H. Alexander

1. Introduction

Let A be one-dimensional Hausdorff measure in C. Let B be a continuum
in C of finite linear measure, i.e., A(B)=<-<. Denote the components of the com-
plement of B in the Riemann sphere by {V}}; each V; is simply connected. Let
fi: D~V be a Riemann map, where D is the open unit disk.

Theorem.

248)=3, [ : £/ ()] df.

The problem of establishing this identity was raised by Ch. Pommerenke in a
letter to the author. The proof has two parts. First we show that the j* integral in
the theorem is equal to the integral with respect to A of the multiplicity function
of f;; this is (I). The second part, (II), is to show that the sum of the multiplicity
functions is equal to 2 a.e. on B with respect to A.

After the proof of the theorem we shall indicate a generalization. This is a
decomposition of the restriction of 4 to B as a sum of measures on the boundaries
of the ;.

Finally T want to thank Professor Ch. Pommerenke for writing to me about
this problem. A related inequality had been treated in [1].
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2

We begin with some general measure theory. For a measurable set ASR
we denote its Lebesgue measure by |4].

Lemma 1. Let u be a real-valued absolutely continuous function on an interval
(a, b). Then, for every measurable set A< (a, b), u(A) is measurable and

) () = [ 1w ()] dx.

In particular, if W'=0 a.e. on A, then |u(A4)|=0.

Remark. This is just a case of Sard’s lemma. For completeness we shall indicate
an outline of a proof.

Proof. Let I be an open subinterval such that I=(a, b). Then u(J) is an interval
with endpoints u(c) and u(d) for points ¢ and d in I. Hence |u(I)|=[u(d)—u(c)|=
|few'(x) dx|= [ lu/(x)| dx.

Now if W is an open subset of (g, b), W=|J I; where the I; are disjoint open
intervals. Hence |u(W)|=2 [u(l)|=Z [ 1, W] dx= fw | dx. From this it fol-
lows that if NS(a,b) is a null set then () is a null set. Standard arguments
then show that u(A4) is measurable if 4 is measurable and then (*) follows easily.

Next, we need the converse to the Sard lemma; cf. [5], p. 322.

Lemma 2. Let u be a real-valued absolutely continuous function on an interval
(a, b). If Kis a compact subset of (a, b) such that |u(K)|=0, then u'=0 a.e. on K.

Proof. Suppose not. Then, by replacing K by a smaller set, we may assume,
without loss of generality, that #” exists and is strictly positive at every point of X.
We denote the characteristic function of K by yz. Almost every point of K is a
Lebesgue point for |4} and also for |¢/| xx. Choose such a point c€K. Let J,=
(c—¢, c+¢). Set n=1/(c); n=0. Then

0(e) = % f Ny || dx

1 , 1 ,
= 2_8flc|u | dx—zflslulx,(dx.

Therefore, as ¢—-0, Q(¢e)~>n—n=0.
We have u(f)=u(c)+(t—c)n(l+0(r)) where o(¢£)~0 as t—~c. Choose ¢ so
small that [o(cte)l<%. Then u(J)2(ulc—e), u(c+e)2(u(c)—en(1—3), ulc)+
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en(1—3)). Hence [u(J)|=2¢-n-2. By Lemma 1 we have
lu(N\K)| = [ s W1 dx = 260 ().
Now u(KnJ)2u(J)\u(J\K) and therefore
[u(RnJ)| = [u(T)|—lu (T N\K)I
= 267 2 —2:0(¢)
= 2(21/3-0 ().

If we choose & so small that Q(e)<n/3 we get |u(KnJ)|>2¢%=0. This con-
tradicts |u(K)|=0. Q.E.D.

For z=x+iy€C, we have the coordinate projections: =,(z)=x and 7,(z)=y.

Lemma 3. (“Projection lemma.”) Let B be a continuum in C with A(B)< co.
Let K be a compact subset of B with A(K)=0. Then either |r,(K)|=0 or |n,(K)|=0.

Remark. Besicovitch ([2], [3]) has constructed sets of positive 4 measure whose
projections on all lines have zero measure. By the lemma, these sets are not con-
tained in continua of finite linear measure. A proof of the lemma can also be ob-
tained from [8], Corollary 3.15 and Theorem 6.10.

Proof. First we consider the special case when B is a rectifiable Jordan arc.
Let F: [0, L]->B vparametrize B by arclength. Then |F(%)—F(t)|=|t,—1] for
0=y =t,=L;so Fis a Lipschitz function, therefore absolutely continuous; | F'(¢)| =1
ae. on [0,L]. Let Ky=F*(K), then [Kj|=A4(K)=0.

Write F=u+iv. Suppose that |z,(K)|=0 and |r,(K)|=0. Then u(Xy)=
n,(K) and so [u(Ky)|=0. By Lemma2, #'=0 a.e. on K,. Likewise v"=0 a.e.
on K,. Hence F’=0 a.e. on K. But |F’|=1 a.. on K, and |K,}=0. This is a
contradiction and we conclude that |, (K)|=>0 or |rn,(K)|=0.

In the general case of a continuum B of finite linear measure, Besicovitch ([2],
[3]) has shown that B is a disjoint union of a countable set of Jordan arcs and a
A-null set. Therefore K&B must meet one of these Jordan arcs in a set K; of
positive measure. By the first part of the proof, |z;(K)|=0 or |7.(Kp|=0. Q.E.D.

Suppose that F: (a,b)~C is continuous. For z€C, define ¢(z)=
¥{tc(a,b): F(t)=z}, here # denotes the number of elements in a set. This is the
so-called crude multiplicity function. It is known to be measurable under very
general conditions; see [6]. For completeness we shall give the proof in our simple
setting.

Lemma 4. ¢ is a Borel measurable function on C.
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Proof. Let IT be a finite partition of (g, b) by intervals J which are disjoint,
say all of the form (c, d] except the right-most interval. As each J is o-compact,
F(J) is o-compact and so is a Borel set. Hence

Yn=2 {XF(J)3 Jell}

is Borel measurable. If II, is a nested set of partitions whose maximal interval has
length converging to zero, it is straightforward that ¥, t¢ on C. QE.D.

Let ¥ be a simply connected plane domain with A(9V )<< and let f: D>V
be a Riemann map (one-to-one, conformal, onto). It is known that f is continuous
on D and that f” is in the Hardy space H'. Also f|0D is of bounded variation and
its variation, denoted by var (f), is equal to [3*| /(¢*)| df. Set ¢ (2)=#{e”: f(€*)=
=z}. By Lemma 4, ¢ is Borel measurable on C. We shall see below (Lemma 8)
that ¢ =2, A a.e.

Consider a partition IT of 6D consisting of a finite number of disjoint half-
open subarcs I. Fix an J€IT with endpoints «; and §,. Let J=f(I), an arcwise
connected subset of V. By an argument of Besicovitch ([2], p. 311) there exists a
Jordan arc in J connecting f(o;) to f(f,). Let g,: I-~J parametrize such a Jordan
arc, Since g; maps I onto the Jordan arc g;(I), it follows that the variation of g,
on I, denoted var (g;), equals the length of g;(I)=A(g(])).

We claim that var (g)=var (f|I). In fact, the construction of g; proceeds
as follows: Choose the largest subarc yCS1[ such that the values of f coincide at
the endpoints of 7. Set g, to be the constant value on y which agrees with f at the
endpoints of y. Continue inductively in this way to modify f on open subarcs until a
one-to-one function is obtained. This is g;. It is then clear that var (g;)=var (f|I).
We have '

M | (B —f ()| = A(gy(D) = var (f1).

Now define fy: 0DV by fgpll=g, for each I€ll. Let o¢uz(z)=
#{e": fu(e®)=z}. Then f; is continuous and ¢ is Borel measurable. Since the gy
are one-to-one and the {I} are disjoint, it follows that ¢p=>cn Xg,- Hence

(2 ZIA(gI(I)) = Zlflg,(l) dA = f(ZI Zg,(I)) dA = fﬁ”n dA.
Summing in (1), using (2), we get
3 2renlf(BD)—flap] = f<pn dA = var (f).

Denote the sum in (3) by var (f, II).
Choose a sequence of partitions IT, so that var (f, II,)-»var (f). Set

l//n = (pll,.
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and F,=f; . Then F,~f uniformly on D. By (3),

var (f,I1,) = ft//,,d/l = var (f).

It follows that [ v, dA--var (f). Also, for any partition I and I€I1, g,(1)Sf(I),
hence y,=xsq). Summing over I we get op=2 x,;y=¢. Taking II=II, we
get ¥, =¢ for all n. We have proved the following

Lemma 5. [, dA—var (f).
We set y=liminfy,, then Yy=o.
Lemma 6. y=¢ holds A ae.

Proof. We suppose not, arguing by contradiction. Then there exists a compact
subset K of gV such that A(K)>0 and y<¢ on K. Let E=f"1(K)SdD. Then
|E|=0. In fact, by Lemma 3, we may suppose that |[m,(K)|>0, then [u(E)|=0
and so, by Lemma 1, [;l#/|d0=|u(E)|>0; ie. |E|>0. By shrinking X we may
assume also that the derivative f” exists at each point of E. Finally set N(¢)=
#{z€0V: Rez=t} for t€R. Since A(V)<eo, it is known that [=_ N(t) dt<-e.
Hence N(t)<e a.e. Again by shrinking K, we may suppose that N(t)<e< for
each r€m (K) (I, (K)|=0).

Since ¢ takes on only the values 1 and 2 on 9V, A a.e., we may assume that
one of the following two cases holds:

(a) ¥=0 on Kand ¢=1 on Kor
(b) ¥y=1 onKand ¢=2 on XK

First consider case (a). Take (€E and let z=f({)€¢K. Then 1//,,,(2)=0 for
some subsequence. Let 6 be the distance from z to the nearest other point of ¥V nl,
where [ is the vertical line thru z; we know that 9Vl is finite. Let 4 be the disc
centered at z of radius 8/2. Choose a connected neighborhood W of { in ¢D such
that f(W)ES4. Since F;,j—»f uniformly on gD, Fnj(W)g 4 for j large. But
z@E,j(W)gaV and since AVnInd={z} it follows that the connected set E, (W)
lies on one side of /, for large j. Therefore also f(W) lies on one side of /. It follows
that u=Ref has a local maximum or minimum at {. Therefore #'({)=0. Hence
#'=0 on E. By Lemma 1, 0=|u(E)|=|r;(K)]. This is a contradiction.

Now consider case (b). If y=0 on a subset of K of positive measure, then the
argument of case (a) carries over to show that »’=0 on a set of positive measure.
Just as above this yields a contradiction. Thus we may assume that y=1 on K
and ¢=2 on K. Fix z€K. Then f~1(z) consists of two points {* and {”. Choose
a subsequence: ¥, (z)=1 for all j. Then F,'(z)={;, a single point of dD. By
passing to a subsquuence we may. assume thatJ{C ;} converges in gD. The limit must
be {’ or {” because F,,j—»f uniformly and so f maps the limit point to z. Say {;—{".
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Then F, does not take on the value z near {”. The connectedness argument of case
(a) then shows that #({”)=0, just as before.

Let A=En{{€oD: v'({)=0}. By the last paragraph, f(4)=K. Hence |u(4)|=
7, (K)]=0. But #'=0 on A. This contradicts Lemma 1. Q.E.D.

Lemma 7. [, dA—~[ ¢ dA as n—>es.

Proof. By Lemma 6, ¢=liminfy,, a.e. Also, since ¢,=¢ for all n,
lim sup ¢, =¢. It follows that limy=¢, A a.e. The lemma then follows from the
Lebesgue dominated convergence theorem.

Now by Lemmas 5 and 7 we have

0y foda= [, |f1db.

3.

We now let 4 denote the restriction of one-dimensional Hausdorffl measure
to B. By assumption 0<A(B)=<o. We have C\B=UYV, and f;: D~V; a fixed
Riemann map. Let ¢;(z)=#{{€dD: f;({)=z} for z¢B. By Lemma 4, g; is Borel
measurable and therefore

=2 0;

is also Borel measurable. The second half of the proof of the theorem consists of
showing that

{1n @& =2 holds 4 a.e.
Lemma 8. $=2 except on a countable set.

Remark. The case ¢;=2 except on a countable set for any j was observed
by Rudin [7]. We used this fact in the proof of Lemma 6.

Proof. Let P={pcB: ®(p)=3}. We construct a triod T'(p) at p as follows.
There are three cases:

() ¢;(»)=1, ¢, (p)=1 and @,(p)=1 for some j, k and I distinct.
(2) ¢;(»=2 and ¢, (p)=1 for some j=k.
3) ¢;(p)=3 for some j.

In Case 1, there are points {;, {;, {; in dD such that f({;)=p, i=j, k or L. Let
T(p) be the union of the image by f; of the half radius {r{;: +=r=1} for i=j, k, L

In Case 2, we repeat this for {; #C} and {, in 0D and in Case 3 for distinct {j,
{5, {j in OD.
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We get in each a triod and as p varies over P, these triods T'(p) are disjoint.
It follows from a theorem of R. L. Moore [4] that P is countable. Q.E.D.

Lemma 9. ¢=0 holds A a.e.

Proof. Define By={zcB: #(z)=0}. Since ¢; maps D onto d¥;, ¢;=1 on
dV; and so B,=B\lJ 0V;. Suppose A(By)=0. Then, by the projection lemma,
(73 (B)|=0 or m,|(By)l=0. We may assume that |n,;(B,)|=0. Choose z€B, such
that the vertical line / through z intersects B only finitely often (cf. the proof of
Lemma 6). Then some line segment contained in / lies in some ¥} and has z as an
endpoint. Then z€dV;, a contradiction. Hence A(By)=0. Q.E.D.

Let By={z: #(z)=1}.
Lemma 10. A(B,)=0.
Proof. For all j define
A; ={z€B: ¢;(z2) =1 and ¢, (z) =0 if k # j}.

Then B;=|]J; 4;. It suffices to show A(4;)=0 for all j. Without loss of gen-
erality, it suffices to show A(A4;)=0.

Suppose not. Take a compact K& A, such that A(K)=0. By the projection
lemma, we may assume that |n,(K)|=>0. We may further assume that every vertical
line which meets K intersects B only finitely often and that ] exists everywhere on
E=f7'(K). Here fi=u;+iv,. We know that |E|=0.

Fix {€E and let z=f({)¢K. Let I be the vertical line through z. Then / meets
B only finitely often. Let /; and /, be the segments of I\ B which have z as an end-
point. Then /; lies in some V; for i=1,2. Since ¢;(z)=0 for j#1, we conclude
that /, and [, are both contained in ¥}. Let p; be an interior point of /; for i=1, 2.
Let I; be the closed line segment joining p; to p,. Then LEVu{z}. Let y, be a
Jordan arc joining p, to p, in the simply connected domain V\/;. If y is the Jordan
curve y,ul;, then yEWu{z}.

Consider o=f1(y). Since ¢,(z)=1, f{'(z)={(} and o is a Jordan curve
in Du{{}. The inside of ¢ is mapped by f; onto the inside of y. Hence the inside
of y is disjoint from B. It follows that locally, near z, B lies on one side only of L
This means that u; has a local maximum or minimum at {. Hence u;({)=0. Hence
u;=0 on E. As |E|=0 and (4 (E)|=|m,(K)|=0, this contradicts Lemma 1. We
conclude that A(4,)=0. Q.E.D.

Now (I1) follows from Lemmas 8, 9 and 10.

Let x; be the characteristic function of 9¥;.
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Proposition. 1=2; y;=2 A a.e., and hence A(B)=23 A(V,)=2A(B).
Remark. The second inequality on measure was obtained in [1].

Proof. Clearly y;=¢; for all j and therefore 2 x;=®=2 by (II). If zé B\ B,
then z€oV; for some jand so 1=2y;(z). Hence 1=2y;, A4 a.e. by the proof
of Lemma 9. Q.E.D.

4. Proof of the theorem

Integrating (II) w.r.t. 4 we get

24(B) = [@dA =3, [ ¢;dA,

by the monotone convergence theorem. Applying (I) to the last integrals gives the
theorem.

5.

We now consider a refinement of the theorem. Let f: D—¥ be a Riemann
map as in Section 2 with AV )<< and ¢@(z)=#{{coD: f({)=z}. Define the
“push-forward” measure u=f, (| 1’| d6) on ¥ by [ g(z) du(z)= [,pgof1f’| dd for
every bounded Borel function g on 9¥V. By definition ¢ A is the measure on B given
by (pA)(E)= [ ¢(z) dA(z) for every Borel set ESoV.

Lemma 11. ¢pA=pu.
Proof. For SSD define, for z€dV, @s(z)=#{{cS: f({)=z}. IfJ is a subarc
of 0D then the arguments of Lemmas 4, 5, 6 and 7 show that
[0 = [ 9i(2)dA(2).

Let W be an open subset of oV, write f~1(W)={J)J; where the J; are disjoint

subarcs of 9D. Then [y .y, |f'1d0=2 [; |f'|d0 Z’fq), dA= fZ'go, dA=
J @s-1m)dA. Ttis clear that @, _,p,=¢ - xw. Hence we get

wy=[__ 1d0= [ oada,

-1w)
for every open WSOV, This gives the lemma.
Now for every component ¥; of C\B we have f;: D—~V; and a ¢;. Define
#;=f+(1f{| d6). By Lemma 11, ¢; A=p;. Summing over j and applying (II) gives
the following decomposition of A on B:

24 = 2y 1
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In this equality of Borel measures, the sum is taken in the strong norm sense. This
decomposition is equivalent to saying that

2fgdA=3;[, gof;\fj1d

for each bounded Borel function on B. Our theorem is just the case g=1.
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