Interval estimates

V. Nestoridis

§ 1. Introduction

In this paper we prove that there exists an absolute constant /=0 such that,
for every univalent H! function f in the open unit disk D and every z,&D, there
are 9€R and g, [(1—|zp])=e=mn, such that

fz) = 5 [* e dr.

Let f be a holomorphic function in the open unit disk D which belongs to
the Hardy class H' ([4]). According to [1] and [2], every value f(z,), |zo|<1, is of
the form

f(z) = ﬁfl 1) ds,

where I is an interval on the unit circle with length [I], 0<|I|=2n. A sketch of the
proof is given in Prop. 1, § 2 below. The proof does not provide information on
the size or the location of the interval . Extensions of the previous result in [3, 6]
are related to BMO, measures and holomorphic mappings in several variables;
still they do not contain quantitative information on the size of 1. Some preliminary
quantitative results concerning univalent functions can be found in [7] and [8].
Their proof makes use of the classical distortion theorems and especially of the
1/4-Koebe theorem.

The purpose of the present paper is to furnish a brief and complete presenta-
tion of the above quantitative results on univalent functions; the general H? case
is, as far as I know, still open.

The main result, thus, states that if /is H! and univalent then |I|=2[(1—|z,|),
where /=0 is an absolute constant independent of f and z,. In the particular case
where f(z)=log (1—z), the length |I| is exactly of the order of (1—|z,|); however,
1 do not know the best value of the constant /.
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In the special case of a function univalent in a larger disk D,={z€C: |z|<r}
with r>1 we have |[I|=2C,(1—|z,|)'/* with C,;>0 a constant independent of
z¢€D. An easy calculation with the function f(z)=z shows that |7| is exactly of
the order of (1—|z|)2.

§ 2. Proofs

Let f be an H! function in the open unit disk D. For ¢, 0<e=n, and z, {z{=1,
we denote

fi(2) = —fls—f;f ze) dt.

We also denote f,(z)=f(z) for all z¢ D and for almost all z in the unit circle |z|=1.
We prove first the following version of Theorem 1 in [2] (see also Theorem 8 in [6]).

Proposition 1. Let f be an H! function in the open unit disk D and let J be a
Jordan curve in D the closed unit disk. For every point z in the interior of J and for
every ¢, 0=¢=m, there are 2¢J and &, e=&=m, 0<E&, such that f,(z)=f;(2).

Proof. We distinguish three cases.

i) e=0 and f,=f, is constant; then f,=f=constant for all £ and the result is
obvious.

il) 0<e=n and f, is constant; then the result holds with &=¢ and Z any
point of J.

iii) f, is non-constant in D. We argue by contradiction and thus we suppose
that f,(2)#f,(z) for all &, e<&=nr, and Z¢J (in this case e<m, because f, is
non-constant). The curves f;;, e<&=n, are homotopicin C— {f.(®)}; therefore,
Ind (fyy,£.(2))=Ind (£, £,(2) for all & e<&=m, where Ind denotes the winding
nu'mber.v Since the function f, is constant, we have Ind (fy;, f,(2))=0 for all &,
e<&=mn. We observe that each function f; is continuous on D and holomorphic
in D. The argument principle implies that f,(w)#f,(z) for all §, e<&=m, and all
w in the interior of J.

We also observe that f;—f, uniformly on compacta in D, as &§—&. Hurwitz’s
theorem states that either £, is constant or f,(w)#f,(z) for all w in the interior of J.
In our case f, is not constant; therefore, f,(w)=#f.(z) for all w in the interior of J.
This contradicts the fact that z is in the interior of J and the proof is complete.
Q.E.D.

Proposition 2. Let O<A<1. Then, there exists a constant 1,=0, such that
Jfor every univalent function f in |z|<1 the following holds:
If z,, z and & are such that |zy|=1-0, 0<d=1, |[z—zy| =40, O<e=n and

f(z0)=f,(2), then e=l,6.
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Proof. Let pbe such that A<p<1. We denote D(z,, ud)={weC: |w—z,|=us}
and I, ,={ze": —e=r=e¢}
The distortion theorems (Ch. 2 in [3] or Ch. 1 in [9]) imply that for w€ D(z,, ud)
we have
6 1

» — 2 ’ 7” - [l <4
O = g I Gl and 11700 = 2o 1 )l

The 1/4-Koebe theorem ([3], [9]) yields the following
1 , 1 e .
7M1 @)l = 1f(2)—f (2 = 1D/ = )2—8 f _ @) —f(2)d.
We set g(t)=f(ze"), which defines a C* function: thus, we have the Taylor devel-
opment g(t)—g(0)=tg’ (0)+7%2-u(t), which implies

L1 = | [ T80 O] = £ sup u(d] = & suplg” (0
4 T2 g & -6 [t|§ps ~ 6 mgpe & )

Since [z—z,|=Ad, one can easily verify that I, ,cD(zy, ud) or &/d=p—2.

We consider the case I, ,C D(z,, ud). Since g"(t)= —ze'f’(ze")— 2 f"(z€e"),
using the above mentioned bounds for | f’(w)] and [f”(w)| in D{z,ud), we have
the inequality

1 , — g2 2 6 1 J)
TR =5 [t e 5 Ul

Since 0<d=1, O0<u<1 and f’(z,)®0 by the univalence of f, we obtain &/6=
C,,,=>0.

If I, . is not contained in D(z,, ud), then &/6=p—A. Therefore, we always
have ¢/6=1, ,=min (C,,,, n—4)>0. Now the result follows with /,=sup, 1) /1.

: 142
or I,=l,, with p,=—. QED.

Theorem 3. There is an absolute constant =0 such that the following holds:
For every univalent H* function fin D={z¢C: |z|<1} and for every z,D,
|zgl=1=0, 0<d=1, there exist 3cR and e, ld<e=m, such that

fz) =5 [ S .

Proof. Let J be the circle with center z, and radius /4. Then, according to
Prop. 1, there are £€J and & O<&=n, such that f(z)=f,(z,)=/:(£). Prop. 2
implies now that £=/,,- 6. We use Prop. 1 once more and we obtain 3R and s,
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n=e=&xl,-6>0, such that
PP 5
[ =£@) =5 [ fle®e)ar
Therefore, we have the result with /=/,,. A slight modification in the proof
gives the result with /=sup, /- Q.E.D.
In the particular case of a function univalent in a larger disk we have:

Proposition 4. Suppose that f is univalent function in a disk D,={z€C: |z|<r}
with r>1. Then thereis a constant c;=>0 such that, for every z,, |zo|=1-9, 0<d=1,
and for every S€R and g, O0<e=mn, related by

1 e o
f(z0) = Zf_sf(e'se") d,
we have e=c, 62

Proof. We set g(t)=f(e®¢"), which defines a C*= function g. Since f is holo-
morphic in D, with r>1, it follows that [g”(t)|=M;< +< for all #€R. The
Taylor development of g gives g(¢)—g(0)=tg’ (0)+7%/2-u(t) with [u(t)|=M,.

This implies

2_18‘/'; f(ePe")ydt—f(e®) = 12_13-[5_2 [tg’(O)-}-t; u(t)] dt‘ =M, %

On the other hand the 1/4-Koebe theorem yields

e~/ @) = 1l - (1= 12D = 1 .

. 1., "y é & . ,
Since f(zo)=zf_8f(e'3e“) dt, we find I'f’(zo)léMf%" As min, |, | f'(z9)|>0
we find e=c,- Y2, with ¢>0.

Q.E.D.

§ 3. Examples

Let f(z)=z and z,, |zol=1-96, 0<d=1. If f(z;)=f,(¢"®), then we easily
sin ¢

obtain 1-90= ; this implies that ¢ is exactly of the order of §V2, as §-0.

We see, therefore, that the exponent 1/2 is best possible in Prop. 4.
Next let us consider the function f(z)=log(1—z), which is univalent and
H'in D. Let 9¢R, ¢€[0, 1] and z4€D, zo=1-6, 0<5=1/2, be such that f(zy)=
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(). Tt is easy to see, e.g. geometrically, that ¢*=1; it follows that

1 pe .t
f(z)) =1logé =—8-f0 logZSlnjdt.

2
This implies that —1+log ——sélog 6=—1+loge, which gives ed=g=ne/2.6.
T

Therefore, the exponent 1 is the best possible in Theorem 3. Finally the exponent 1
is the best possible in Prop. 2; this can be seen by the examples f(z)=log (1—z) or
f@=(1—-2)"2% as well.
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