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1. Introduction

Let P(x, D,) be a linear partial differential operator with analytic coefficients
defined in a neighborhood of a point x,€R". We shall call P locally approximable
at x, if for any distribution u for which Pu=0 in a neighborhood of x,, there is
a neighborhood % of x, and a sequence of distributions u; real analytic in %
such that

w~u in %,
Pu;=0 in 4.

The property of local approximability was studied by Baouendi and Treves [2],
who showed that P is locally approximable at x, if its complex characteristics at
X, are simple. Métivier [7] has proved approximability for a class of first order
nonlinear equations. Baouendi and the second author [1] showed that any left
invariant differential operator on a Lie group is locally approximable.

The class of locally approximable differential operators contains that of analytic
hypoelliptic differential operators. (Recall that P is analytic hypoelliptic at x, if
Pu real analytic in a neighborhood of x, implies that u is real analytic near x,.)
The notion of analytic hypoellipticity has been microlocalized in an obvious way,
but the notion of microlocal approximability is less clear. In § 2 we give a defini-
tion of microlocal approximability and also extend the definition of local approx-
imability to pseudodifferential operators. These definitions are based on the con-
stants for the Fourier—Bros—Iagolnitzer transform of a distribution (see e.g. [11]).
We show that when char, P is contained in a line then local approximability is
equivalent to microlocal approximability in all directions.
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In § 3 we follow the method of Sjostrand [10] and Helffer [4] (see also [3] as
well as the references to Gru§in’s work given in [ 10]) to study a class of differential
operators with symplectic characteristic variety. For these we show that the ques-
tion of microlocal approximability for P is equivalent to that of a system of analytic
pseudodifferential operators in one variable. In § 4 we use the machinery developed
by Métivier [6] to prove the analyticity of the operators defined in § 3. We refer
the reader to [12] and [6], respectively for the definitions of classical analytic pseudo-
differential operators of type (1/2, 1/2).

In § 5 we give the first example of a differential operator, not totally charac-
teristic at x,, which is not locally approximable at x,. This ogerator is

0? % .0
= 5};4‘ tz-a'?' +1i -a—}‘)"f— y
on R? with x,=(0, 0). The proof of non approximability uses the reduction to a
pseudodifferential operator in one variable given in § 3 and § 4, and the connection
between microlocal and local approximability proved in § 2.

P

2. Microlocal analytic approximability

We shall microlocalize the definition of analytic approximability. Recall that
for a distribution u defined near x,&R", an FBI (Fourier—Bros—Ilagolnitzer)
transform of u is an integral of the form

2.1 Fu(x, &) = fei(x—y)-f—(x—y)zlé‘l 1) u(y)dy,
where yeCy(R™), x=1 near x,, Then u is analytic at (xo, &), &#0, or

(X9, EQ)4 W F,u, if there is a conic neighborhood I' of &, a neighborhood % of
Xo and a constant C such that

2.2) 1 Fu(x, &) = Ce V€ for all (x, E)eUXT.

We shall write u~0 at (xo, &) if (%9, E)¢W Fu. If {u;} is a sequence of dis-
tributions, we write {u;}~0 at (x, &) if (2.2) bolds for all #; with the same C,
% and I.

(2.3) Definition. A classical analytic pseudodifferential operator @ defined in
a conic neighborhood of (x,, &) is microlocally approximable at (x,, &) if for
any distribution v for which Qv~0 at (x,, &,) there is a sequence of distributions
v; such that

ii) {QUJ}NO at (xo, 50)
iii) v;~0 at (x,, &,) with the conic neighborhood independent of ;.
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In order to show that these definitions make sense we need the following lemma.
For an analytic pseudodifferential operator (either classical or of type (3, 3)) we
write R~0 at (x,, &) if Ris of order — < in a conic neighborhood of (x,, &).

(2.4) Lemma. If R is an analytic pseudodifferential operator and {w;} is a se-
quence of distributions with {w;}~0 at (x,, &) then {Rw;}~0 at (xy, &). If R~0
and {w;} is any bounded sequence of distributions, then {Rw;}~0 at (x,, &)

Proof. The second statement may be proved by following the constants in the
FBI transform. The first is also refinement of the statement that an analytic pseudo-
differential operator does not extend the wave front set.

By abuse of notation we shall also write Q,~Q, at (x,, &) if O,—F,Q,F,
is of order —eo at (x,, &), where F; and F, are elliptic pseudodifferential opera-
tors. By the above it follows that Q, is microlocally approximable at (x,, &) if
and only if @, is.

We may also generalize local approximability to locally defined analytic pseudo-
differential operators as follows.

(2.5) Definition. If Q is an analytic pseudodifferential operator defined in a
neighborhood of x, then @ is locally approximable at x, if for every distribution v
for which Qv is real analytic in a neighborhood % of x, there is a sequence v; of
functions, real analytic in a neighborhood % of x,, such that

D) v;—>v
ii) {Qv;} extends to a convergent sequence of holomorphic functions in a neigh-
borhood of x, in C".

It is easy to check, using the Cauchy—Kovalevsky Theorem, that if Q is an
analytic differential operator not totally characteristic at x,, then this definition
agrees with that of Baouendi and Treves [2].

We write w~0 or {w;}~0 or Q~0 at x, if the equivalence defined above
holds for every A¢R™ 0. We note that if {w;}~0 at x,, then (see, e.g., [11]) there
is a neighborhood of x, in C" to which all the w; extend as uniformly bounded
holomorphic functions W;. Hence, by the well known theorem for holomorphic
functions, the W; have a convergent subsequence. This is the connection between
the two conditions (i) in the local and microlocal definitions of analytic approx-
imability.

In a special case microlocal approximability in all directions is equivalent to
local approximability.

(2.6) Theorem. Let Q be a classical analytic pseudodifferential operator for which
charx0 Q is contained in a line. Then Q is locally approximable at x, if and only if Q.
is microlocally approximable at (xy, &) for all £€R™{0}.
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Proof. We may assume that at x,, Q is elliptic away from {(0, ..., 0, £,), &, =0}
Suppose first that Q is microlocally approximable at (x,, &) for all ¢ and that
Qv~0 at x,. Then v is analytic at (x,, &), £#(0, ..., 0, 1) and by using appro-
priate cut-off functions we may write v=v,+v,, v;~0 except at (x,,0, ..., 0, &,),
&>0 and v,~0 except at (x;0,...,0,¢&,), &=<0. Since Qv+ Quv,~0 at x,
and Quv,~0 at (x,;0,...,0,1) we have Quv;~0. Hence we may assume v~0
at (x,, &), (0, ..., 0, 1). By assumption of microlocal approximability there is
a sequence {v}} such that vi—v, {Qv]}~0 and v;~0 in a conic neighborhood
UXT of (x;0,...,0,1). We claim first that {v] }~O at (x,, &), £#(0, ..., 0, £ 1)
Indeed, since Q is elhptlc at such points, there is an analytic pseudodlﬁ'erential
operator P such that PQ~1I at (xy, ). The claim then follows by Lemma (2.4).
Now we may find an analytic pseudodifferential operator ¥ (D) such that ¥(D)~0
at (xo, &) if {,<0 and Y(D)~I at (x,, &), {near (0, ...,0,1). Let v;=¥ D))+
(I-¥(D))v. Then v;—~v, since ¥(D)v) —T(D)v—»O Also ¥(D)v] ~0 for all j
and (I-¥(D))v~0, since ¥(D)v~v near (x,;0,...,0,1) and v~0 at (x,, &),
£#(0, ..., 1). Finally,

{Qv;} = {Q¥ (D)o} +{Q(1- ¥ (D))},
so it suffices to show {Q¥ (D)v;}~0. We have
OVPv; = POv;+[Q, ¥1v;
and since {Qvi}~0, {¥Qv;}~0 by Lemma (2.4), while {(Q, ¥]u7}~0 also by the
lemma, because [Q, ¥] is of order — o mnear char, (Q) and {v;}~0 away from
that set. Hence, O is locally approximable at x,.

For the converse, assume Q is locally approximable at x, and let v be such
that Qu~0 at (x,;0,...,0,1). We write v=v,+v, as above. Then Qv,~0 at
Xo, SO there exists a sequence vi—v, so that v}~0 at x, and {Quvi}~0 at x,.
Since v,~0 at (xp;0,...,0,1) we may take v, =v}+v, which proves Q is micro-
locally approximable at (xo, ., 0,1). The proof of microlocal approximability
at (x,;0, ...,0, —1) is the same, and it is clear that Qis microlocally approximable
at any noncharacteristic point.

3. A criterion of microlocal approximability for some differential operators

We consider here a differential operator of degree m=>n in the variables
(t, Y)ER"XR of the form

(3.1) 2\ +1p1mm Gas (5 5 Dy D) 1*Df1 D
where
@up(ts ¥ Di> D)) = 2151 2n 11612 9atrs (> P)DLDE
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is an analytic differential operator of degree =(m—|a|—|pl)/2 with a,5, constant
for [¢]+|fl=m and |y|=(m—Ia|—|B])/2. We let
Py=2, +|Bl=m apyo Dy #DJIDf.
lvi=(m*lal—lﬂl)/2
We shall assume the condition of transversal ellipticity, i.e., that

(3.2) 2+ 1p1=m Gepoo? “T7 2 0 for all (¥, 7)ER*\{0}.

The operators considered here are in a more restricted class than those studied
in [4], [6] and [10]. Following the approach of Gru§in and that of [4] and [10] (for
the C= case) we shall reduce the question of microlocal analytic hypoellipticity
and microlocal approximability to that of a system of pseudodifferential operators.

We first use a result from [3] applied to P,. We fix a point (0;0, ...,7,) in
char P,, (determined by #,>0 or n,<0) and let

P, = Zla ‘lazp‘yo”llml-‘"lyl ©*Df.
¥

+[Bl=m
=(n—la|—|BD)/2

Then P} (n) P, () has a kernel in L2(R") of finite dimension ¢, and P,(n) Pi(n) a
kernel of dimension ¢,. In [3] it is shown that there exist microlocal systems of
analytic pseudodifferential operators J;, J,, @, L defined

T &R~ D(RIEY), i=1,2
Q: &'RIEY) - 2" (RIY?
L: &'(R)" —~ 9'(R,)"

such that

P, J\(Q J 10
(-3) (Jl* 0)(.1; —L)’”(o Iql]
and

0 J\(P, J\ (I O
64 G 2 (% )~ (0 1)

near (0;0, ..., 7). Here the analyticity of the above systems means that if u€ &"(R} }*
and v,€6'(R,)% then
WF,(Qu) C WF,(w),

WEF,(Lv,) € WF,(v,),
WFa(Jivi) < {(t9 ys 1, ")!t =1= 09 (ya n)EWFa(U)}’
WE,(JF w) < {(, M|(0, y; 0, )EWF,(w)}-

By the construction of Helffer [4], following Sjdstrand [10], there exist
C=-microlocal operators E, E*, E~ and E* so that if

E E+ P U,
¢=(c £2) #=(% )
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then &#~1, #&~1 in the C* sense. In fact, these operators may be obtained

from
J.
a=(% %)
by a Neumann series: by (3.3) #&,=5+ ./, where
o = [ 0 0
and formally

(3.5)

= 1)Y((P— i > (1Y (P—P)OY(P—
(j_d),1=(2j=o( 1) (()(P PYQY —27,D ((PIPm)Q) (P -Pm)']l]

q1

80, §=8&,(F—f)~L. It is shown in [4] that the operators E, E*, E~, EX can be
obtained from (3.5) in this fashion and that they have the appropriate C* behavior.
In particular, E* is semiclassical and E is of type (3, 3). We shall show, using the
machinery of Métivier [6] that they are also analytic.

(3.6) Theorem. Let P be of the form (3.1), transversally elliptic and such that
Qupp0 1S constant for |a|+|Bl=m, |y|=(n—|a|—]p])/2. Let ©w=(0;0,...,0,%). Then
the operators E, ET, E~, E* are all microlocally analytic at w. P is microlocally
analytic hypoelliptic at w if and only if E¥ is at o' =(0; n)ERX(R\DO). Furthermore,
P is microlocally approximable at o if and only if E* is microlocally approximable
at o’'.

Proof. The first statement will be proved in § 4. We shall assume it here. The
statement about microlocal analytic hypoellipticity is proved by standard arguments
(see [1], [4] and [10]). For the statement about microlocal approximability, suppose
first that P is microlocally approximable at @ and that E¥yp~0 at o’. If w=E*v
then Pw~0 atwsince PE*+J,E*~0. Let {w;} besuchthat w;~w and {Pw};~0
at @, and set v;=Jfw;. Since E-P+E*J;j~0 and {Pw;}~0, {E*Jiw;}~0,
that is, {E*v,)~0 at «’. Finally, if vy=v—J}E*v then »,~0 at o, v;+0,~0
at o’ and v;+v,~o.

Conversely, if E* is microlocally approximable at @’ and Pu~0 at w, let
v=Jfu. Then Pu~0 at w and E-P+E*Jf~0 imply Etv~0 at . Let
v;>v, {E*p;}~0 at o', u;=E*v;. Then {Pu;}~0 at w since PE++J,E*~0.
Since EP+EYJ~I, E¥Jfu=u—u, with u,~0 at o so u;+uy=E*v;+uy—~u.
This completes the proof of theorem.
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4. Proof of the analyticity of E, Et, E—, E*

We shall base the proof of the analyticity of the operator & on Métivier [6],
where it is proved an operator of the form (3.1) (in fact, those in a more general
class) has a left analytic parametrix if ker P,(x) is trivial. In what follows we use
the material contained in Chapter IT and III of [6] and will recall only essential
definitions and results as needed to make this section readable.

After some analysis of the Neumann series expansion of (#8,)~! we see that
the only thing to do is find the sequence of operators Q;, j=0,1, ... defined by
taking Q,=0, 0;=—QFQ;_,, j=1, where P=P(1,y, D,, D,)—P,(D,)(t, D). If
this is done and we let E=XQ;, E¥=—EPJ,+J,, E-=J;—J; PE and E*=
E~ PJ, then using (3.3) and the definition of E one sees that at least formally the
matrix & thus obtained is a right inverse for 2. We shall show that E can be found
in this way and that it is an analytic operator.

We begin by recalling from [6] that for a nonnegative integer k, the space s#*(R")
consists of those u€H*(R") such that #¢H*(R"), where H* is the usual Sobolev
space based on L2(R"). In ##*(R") we have the norm || ||, given by {lull,=sup|T;ul,

where the sup is taken over all 7;=T,...T,, each T, being either a multiplication
by a t; or a partial derivative 8, . The dual of #* is #~*. For a positive real number
R and a nonnegative integer m ' % (R™) is the space of operators K: ' —~%’ such
that for p=0,...,m+y| (@dT) K: # P>z -P+tm+11 with norm =CRI"|y|! for
some C independent of y and p. The best of such constants C is denoted by | K|l .
In this definition, y is a multiindex (y,, ..., y5,), ad7” K=ad#... adfl» ad o+t ...
..ad (%n K and as usual (adT)(K)=TK—-KT.
One has (see [6])

lad T K g, = VIR | K] gy

With this one can show: If KeZ» then its left symbol o(K)(r, 0)=e~"2K(e"™)
satisfies

(4.1 Ir* 0?9103 (K) (r, @) = Co(CRYHFIFIHI Yo T 1y 151 | K| g

if |af-+[pl=m+|y|+ 6], for some C, and C.

Now let ¢;: R"XR">R be given by ¢t s)=+s> if 1,5=0, ¢;(t, s)=
|#—s2| if #;5,=0. For &¢>0 B, is the space of operators K: L*(R")~ L*(R")
whose Schwartz kernel, denoted as K(¢, s), satisfies

(“42)  [eOOKE, ) <, [ERIR(, —0) e <o, j=1,..,m

R(z, —0) is essentially the Schwartz kernel of K, the operator given by Ki=(Ku)".
The norm || K|, of K is the maximum of the numbers in (4.2).
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Proposition 2.10 of [6] states that if O<e&’<e=1 then K€B, implies
(ad T) KeB,,, where T is either ¢; or 3,’, and

Mo 1/2
o ) 1K1,

with M,=1 independent of ¢, ¢" and K. It follows from this, Plancherel’s theorem
and the fact that B,c.L?*(R*) with norm independent of ¢ that if K€B,, e=1
and &<eg, the left symbol

@3 lad T) K, =

a(K)(r, @) = e"i"’fe"sg K(r,s)ds
of K satisfies

(el +18D/2
) e+ g

95300 (K)ls = ¢ [ 20

with C independent of a, §, ¢, &’ and K. Therefore

n+1+(lal +]81)/2
) (o + B0 K,

@) o) ol = (2

with another constant C.

Let 2 be a complex neighborhood of (0, y)éR*XR and I,cR"XR\O0 a
conic neighborhood of (0, #,) such that (z, #)€ hy=|(t, 7)|~|n|. We shall assume
7o>0. For ¢>0 small let I'={(z, )€C"XC: Re (z, 7)€, |Im (1, n)|<c|Re (7, n)l}.
Modifying slightly the definition given in [6] we let G(Q2XT") be the space of holo-
morphic functions a: 2XI—B, such that

(4.5) la(t, y, o, ml. =CiRe(r,l* i (1, 3,7, NcQXI.

Similarly F&(QXTI) consists of the holomorphic functions a: QXI'~% such
that (4.5) holds with the #g-norm.

(4.6) Lemma. For j=0, 1, ... let A;¢ Fp~/*(QXT) (respectively G™~/*(@XT))
be such that

4.7 14;( y, 7, p)] = CoR{j/* [Re (z, )"~ 172

where the norm is that of %p (respectively B,) and let a;(t,y, T, 10,1, Q)=

o(4;(t, y, T, M)(r, @). Then there exist Cy, R such that for (t, y)€Q, (z, n)eI'ycc Ty,

(r, QJER™

(4.8) Ir* 0P 9103020k a;(t, ¥, T, m, 7, @)l = Cy Val Bly1610 p!
XRI1a+B+y+6+al+ul,,”m—flz-lol—u

for any o, B, ..., pn with |a+PI=|y+9| (respectively a=p=0). If y,cC~R:*
is a sequence such that 0=y;=1, x;(z, n)=0 if |(z, Pl</, x;(z. M=1 if |(z, |=2j
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and 10208 x;(r, HI=C1"* ¥ when 0|+ |pl=j for some C independent of j and if
a=J 1;((x, n)//l)aj then for some C,, A, R, and indices a, ..., i as above (respec-
tively a=pf=0)

(4.9) I+ 001030008 a(t, y, v, 0, 7, @)l = CyVal Bly18101u!
XRLa+ﬁ+v+6+elu[,1|m—lol—u

if (6, 9)€Q, (v, el and |(z, n)l>Ry(10]+ p).

For the proof of the lemma we only point out that (4.8) is a consequence of
(4.7), (4.1) (respectively (4.4)) and Cauchy’s integral formula, and (4.9) follows
from (4.8) by the argument given in the proof of Lemma 3.2 of [6].

(4.10) Lemma. If a: QXI';~C satifies (4.9) for some Cy, R, and all o, ..., u
with |o|+|B|=1y|+16| (respectively a=p=0) then there are constants Cy, Ry such
that for [z|+nl> Ry(16]+ )

(4.11) 102020203 a(t, y, T, 0, 2Pr, A=120)| = Cy V! 1 ! v!

XRL"'*‘”*‘"e"WI“/RS [’Ilm—"_o"'v_ldllz
if (4,y)Q, (r,n)ely, 2>0, reC* and |gl<cA for some small c. (Respectively

4.12)  19203a(t, y, 7, 0, 0'°r, 472 0)| = Gy Tl X R+ pllmritlal/Ro ypm—af2 o172

if (4, )R, (v,n)El, reC* and |Rer|<1). In particular, for (t,y, 7, )¢ Re QX T,
a(t, y, 7, 1, yM2t, n=Y27) is an analytic symbol of type (1/2,1/2).

This Lemma is a direct consequence of the estimates (4.9).
Let us now consider the operator

(413) Pm(ﬂ)(r» Dr) = Z)ul+Ig‘§m amoﬂlam’" I‘an
v[=(m—|a]-]8]/2

of the previous section with the ellipticity condition (3.2). It satisfies P,,(1)(r, D,)=
™2 P, (1)(n2r, n=22D,). Let II,: L*—~L* be the orthogonal projection onto the
kernel of P,(1) as an operator on L? and let I—II,: L*~L? be the orthogonal
projection onto the range, which is known to be closed; IT, and I, have finite range
(see [3] and references given there) because of the ellipticity of P,,(1), which implies
also the existence of an operator K: L2-#™ such that P,K=I—1II,, KP,=I—1II,.
Ke#g for some R=0 so KEB% for some &,>0 (see [6]) since m=n. Let k(r, o)
be the symbol of K. Then n~™2k(y'/2t, y~/21) is an analytic symbol of type (1/2, 1/2)
and order —m/2.

We will now begin the construction of the operators Q ; mentioned at the begin-
ning of this section. Let g(z, g)€C™ (R7+1) be supported in a conic neighborhood
of (0,7,) contained in I'y such that g(z,#)=1 if |(z, #)|=1 and (r, n)el,cc Ty,
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another conic neighborhood of (0, n,), vanishing near 0 and such that
(4.14) 10205 g (z, )| = COI+A(Jal/|(z, mtjedel+»

as in Lemma 3.1 of [6].
The operator Q appearing in &, in § 3 is given by

(4.15) 01(t, y) = @m)=r=1 [ - *+16=ng (z, yyy=mi2

Xkt n=Y20) f(s, y)ds dy’ dz dn
where g is as in (4.14) with 1)2<o<1. If P(s,y, D,, D)=P(t,y,D,, D)~
P, (D)(t, D)) its left symbol can be written as f(t, y, 7, 4, #*/2t, n~V21) where
Pt v, 1, n)(r, @) is a polynomial in (r, ¢) of degree =m with coefficients which
are holomorphic functions in a complex conic neighborhood QXTI of (0, ¥y, 0, %)
and bounded there by C|Re (z, #)|™*1.

Since the symbol of Q is of type (1/2, 1/2) and that of P of type (1,0) the
usual formula for the symbol of the composition holds (see [6]). Using it we obtain,
after some rearrangement of terms, that QF has a symbol of the form
h(t, y, t, 1, n¥'*t, n7/27) and for (¢, y,1,n) close to (0, y,, 0, 1,)

h(t’ Y, T, ", r, Q) ~ ijoa(Hk(tx Y, T ’7)) (r3 Q)

Hy(t, y, 7, n)(r, D,) = ’7_’”/2422u+101=1 Zféu'éu Co.unss
x[(ad (=ir)YL'K](r, D,)o D! D} p(t, y, T, 1, 1, D,).

Here L=1/2(Jr;ad?, i, adr;) and |Co,,, v, J=2mEEA S (u— )10 ). Since
Ke &y there exists Rl, C, such that (adr)? L’KE,?’"’ with norm bounded by
C./0! j1(C, R+ | K e and with this and the fact that P is a polynomial in
(r, 0) of degree =m whose coefficients satisfy specific bounds one shows
HFIR=H(@XT) with

where

(4.16) LH; (v, 7, Mg, = CoR§ VG IRe (z, )| 22
for some C,, R,. Let W;eG™~¥/2(QXT) be such that
(4.17) W, v, 7, m)ll, = CoREVit|Re (z, n)[™ ~ 312,

Let h;=0(H;), w;=0(W,) and set

h(t,y,t, 1.1, 0) = (T, 1) 2 Aj+1(t Mh; (4, ¥, T, 1, 75 )

(likewise w(t, y, T, %, 1, 0)) with x; chosen as in lemma (4.6) and g as in the defini-
tion of Q. For a symbol such as i or w let

op (f(t, y) = 2r) ™" [ =901, y, 2,0, 421, 0= 120) f(s, ') ds dy’ de .
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We also write op (2H;) for this operator. Of course different realizations of the
formal symbol ZH; yield operators differing only by an analytic-regularizing opera-
tor near (0, y,, 0, 7,)-

{(4.18) Proposition. Let h and w be as above. Then H=op (h) and W=o0p (w)
are analytic pseudodifferential operators in a neighborhood Q, of (0,y,) in R"+1.
If 9eCy(Q) and ¢=1 near (0,y,) then HpoW=C where C is an operator which
in a a neighborhood of (0, y,, 0, no) is of the form op (c) with

@m)—"

(4.19) e(t, p,t,m, q' 2t 7 Pr) = }:a————!ﬁ!y!&fe”‘f-s)(’—”)n“‘llz

X O~ O95 by (1, y, T, m, 2, =)
XDIDF T DEW)(L, p, 7, 0, nM%s, n~20) ds da.

Outline of Proof. The analyticity of the operators H and W follows from
Lemma (4.10) above and Lemma 3.3 of [6]. The expansion of the symbol of the
composition is obtained by taking the Taylor expansion of w(s,y’, 0,1, r, ¢) in
sat s=¢ andthat of h(t,y, 1, & EV28 E7120) intat t=0 and ¢ at &=y, After
carrying out the # derivatives in (4.19) we see that ¢~ > ¢ with ¢, (4, y, 1,9, 1, 0)
the left symbol of C,€G7 1 (¢'<g, see (4.3)) given by

1
(4.20) Co = 2 —+ Hopyy, (8, 3, 7, o D D+ (—iad 1) Wit, y, 7, 1)

where the sum extends over the indices «, 8, 7, 6, i, j such that [«]-+|B{+2(y]+[5])+
i+j=k and H,p,;;€ F{2**~1(3XT) for some R>0 with

(421) |Hpys,(t, 3, T, D)l g, = Vol J1 CPIFIPIHINHRIHIH L | Re (g, ) 222

in GX I, for some C,, because of (4.16). Here QX I is any sufficiently small
neighborhood of (0, y,, 0,1, in QXI.

Now Proposition 2.9 of [6] states that given R there are ¢, and C=0 such
that He %y and WeB, impliess HW¢B, and

(4.22) 1BEW [, ClH] gy | K],

Using this, the bounds (4.21) for the H; and (4.17) for the W; one shows easily
that the C; satisfy the bounds (4.17) also, with m’—1 in place of n?'.

The expansion (4.19) uses only ““(g, 8), (¢’, §") behavior” with ¢'<§, see
Lemma (4.10), and because of this, the estimates for the C, and Lemma (4.10)
again, the proofs of Propositions 3.6 and 3.7 of [6] give, with minor modifications,
the proof that C has the expansion stated.
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We will now find the operator ZQ; mentioned at the beginning of this section
by finding an operator W such that (I+QP)W=Q in a neighborhood of
0, 0,0,7). Q is given by (4.15). If QP=op (ZH,) where HcFz/*~}(QXTI)
satisfies (4.16) in aneighborhood of (0, y,, 0, 1,) and W=op (IW,) with W,c G ™2~ 2
satisfying (4.17), then (I+QP)W=Q if W, is given by

Wo(t, v, T, m) = n~"*K(r, D,)

and W, is the operator C, in (4.21) above, by proposition (4.18). These condi-
tions in turn determine the W, and we will show using standard techniques and
Propositions 2.9 and 2.10 of Métivier [6], that the W, obtained in this manner
satisfy (4.17) in a neighborhood QXTI of (0, y,,0,7,) in which the estimates
(4.21) already hold.

Let My=1 be the constant in (4.3), z,=(0, y,), O<g,=1 such that KeB,,
let 0<r<1/M, be such that the polydisc with radius gyr and center z,, D(zy, &),
is contained in Q and let Q,=D(z,, er). Suppose that

(v2+ ’)v/2+l[ Mye

vi24-1
@23 Wl = 1 3, LI (R Re oy e

holds for some M, all e<g,, all (¢, y, 1, 7)EQ XTI when i=k. (4.23) is already
true if i=0. Using Proposition 2.10 of [6] (outlines in (4.3) above) we get

l9¢+205(ad ry Wi,

=M [+ 181+ 291 +10D)/2 + o] + 1]+ 12201+ 19072 e +1
= M12v+l§i P2 \BIE2 (Ja] + [y] + |1+ o1+ 1o

IRe (z, p)| =21

( M,e )(v+lﬁl+2(h’l+15[))/2+1¢|+1
80"—8

m QXTI if e<g,. Using now the definition of W,.,, Proposition 2.10 of [6]
(equation (4.22) here) and the estimates (4.21) we obtain

Mye ]ums (/2 + s)2+s

k+2
[Wirel, = M 2u+s§k[ Eo—¢ 5572

- S2(2C,) @I +IBI+ 171 +181 47 pri-k—2 ( M, )—il2
XlC | =12 172 | BB (o] +- [y] + S PITF IO+ T gy —¢
where the inner sum extends over the indices «, 8, y, 6, i, j, v, / such that v-+|g]+
2(yl+10D+j=p, lal+i=s, v+i=si=k—|a|—|B]—j—2(y|+]|5]). The inner sum,
divided by

M,e 0/2+P(0/2+p)e/2+p
20+p§k+2 ot R
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will be less than - 1/C if M, is large compared with C,, since

ss/2 pp/2
[ 2 (B2 + p)T P

I

if s=la|+1! (=k), p=s and O+p=k+2, and M,e/(s,—&)=e. This shows that
W, satisfies (4.23) for all k.

Now let W=op (37 W,). Because (I+QP)W=0 we have W=Q—QFW
and P,W=(I—I)(I— PW) near (0,y,,0,n,), where II=J,J}, because of (3.3).
With these properties of the operator W and (3.3) one verifies that if E=W, E*=
Ji—WPJ,, E-=Jf~JfPE and E*=—E~PJ, then & is a right inverse for 2
near (0, g, 0, ). These operators are compositions of analytic operators (in the
sense of the previous section) so they are analytic. Finally, £#* also has an analytic
right inverse near (0, ¥y, 0, #,) which is then given by &* npear that point. This
completes the proof of Theorem (3.6).

5. An example of a locally nonapproximable differential operator

(5.1) Theorem. The operator
(5.2) P = ot +126/0y*+i0]0y+y

is not locally approximable in any neighborhood of 0. In fact, a solution v of Pv~0 is
approximable at 0 if and only if v~0 at 0.

To prove the theorem we first use Theorem (2.6) to reduce the problem of
approximability at 0 to that of microlocal approximability in all directions at 0.
We claim that P is not microlocally approximable at w=(0, 0; 0, — )¢ T*R*\0.
By Theorem (3.6) this will follow if E* is not microlocally approximable at
w’=(0; —1)eT*R. We shall show that E* is equivalent, in a neighborhood of
o', to the operator with symbol y via conjugation by elliptic analytic operators.
Assume this has been done. The following lemma will then complete the proof of
the first statement of the Theorem.

(5.3) Lemma. Let Q be an analytic pseudodifferential operator on R with total
symbol y on n<0. If Quv~0 at o’=(0; —1) and there is a sequence of distributions
{v;} such that v;—~v, v;~0, {Qv;} ~0 at " then v~0C at ®’. Hence Q is not micro-
locally approximable at o.

The proof is given below. To prove the second statement of the theorem we
observe that if Pv~0 and vis approximable at 0 then Jyv~0 at o’ by Lemma (5.3)
so v~0 at w. But v~0 also at all points (0, 0; 7, ) with 720 or #>0 since P
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is analytic hypoelliptic at these points (see Métivier [6] for the points with 7=0).
Thus, v~0 at 0. This completes the proof of the theorem.

Proof of Lemma (5.3). Let v and v; be as stated, w=yv, w;=yv;. Then
{Qv;} ~0 at o’ and Lemma (2.4) imply {w;}~0 at o so there is a neighborhood
% of 0in R and a>0 such that w and the w; extend as holomorphic functions W
and W; to Q=%+i(0,a)cC, and |W;(z)|=C|Imz|~" for all j and z€Q and
some C, N independent of j. Passing to a subsequence we may assume that the
W ; converge uniformly locally in €, to W since v;—~». Now each v;, being analytic
at ', is the boundary value of a holomorphic function defined on a set 2+i(0, a)),
a;>0, and yv;=w; implies zV;=W; on the common domain. Thus the ¥; can
be taken to be defined on @, the sequence {¥;} converges uniformly locally there
and we have estimates of the form [V;(z)|=C|Imz|~"-%, C, N independent of ;.
Thus the limit ¥ also satisfies such an estimate, and has as boundary value at Im z=0
the distribution v, again because v;—~v. Thus v~0 at ’. This proves the lemma.

(5.4) Lemma. E< is a classical pseudodifferential operator with symbol y-+r(, n)
on <0, where r is of order —1.

Proof. The analysis of the operator P in the C= category carried out using
the techniques of Helffer {4] and Proposition 3.2.2 there give that £+ is a classical
pseudodifferential operator, since 0?—*5n*—n is a selfadjoint second order opera-
tor for n real and the eigenvectors, for <0, are even. It only remains to find the
principal symbol. For our operator P we have J,=J,=J, Jf=Ji=J* where

Jo(t, y) = Qm)~m= [ Oyt =t/ y(y") dy’ dy

n<0
J*fy) = (2n)—1n-1/4fq<0 fn o= |y |td g=t2In1/2 £, y7) dt dy’ dy

if v€Cy(R) and fECy (R?. Since P=y, E¥=J*yj—J*yEyJ. But J*yEyJ has
order —1 while J*yJ=y+[J* y]J and [J* y)J has order —1. Thus Ef=y+
op (r) with r classical of order —1 as stated.

(5.5) Lemma. Let R be a classical analytic pseudodifferential operator of order
—1 in a neighborhood of 0 in R. Then there exist analytic elliptic pseudodifferential
operators F,, F, such that

(5.6) Fi(y+R)F; ~ y.

Proof. 1t follows from a known result [8] in R” that one can find F;, F; with
F{(y+R)F,~op (y+cn™), c constant (see Lebeau [5], Théoréme 1.4). Hence it
suffices to take R=op (cn~%). Now take F; with symbol y~* and F,=F;! to get
(5.6). This proves the lemma.



10.

11.
12.

Analytic approximability of solutions of partial differential equations 303

References

. BAOUENDI, M. S. and RoTHSCHILD, L. P., Analyticapproximationfor homogeneous solutions of

invariant differential operators on Lie groups, Asteristigue 131 (1985), 189—199.

. Baouenpl, M. S. and TrevEs, F., Approximation of solutions of linear PDE with analytic

coefficients, Duke Math. J. 50 (1983), 285—301.

. Gricis A. and RorscHILD, L. P., A criterion for analytic hypoellipticity of a class of dif-

ferential operators with polynomial coefficients, Ann. of Math. 118 (1983), 443—460.

. HEL¥FER, B., Sur I’hypoellipticité des opérateurs pseudodifférentielies a caractéristiques multi-

ples (perte de 3/2 dérivées), Bull. Soc. Math. France, 53—52 (1977), 13—61.

. LeBeAU, G., Sur les systémes holonomes & caractéristiques complexes, thése de troisiéme cycle,

Orsay, France (1982).

. METIVIER, G., Analytic hypoellipticity for operators with multiple characteristics, Comm.

Partial Differential Equations 6 (1981), 1-—90.

. METIVIER, G., Uniqueness and approximation of solutions of first order non linear equations,

Inventiones Math. 82 (1985), 263—282.

. SaTo, M., Kawar, T. and KAsHIWARA, M., Microfunctions and pseudodifferential equations,

Lecture Notes in Math. 281, Springer, Berlin—Heidelberg—New York (1973).

. RotscHILD, L. P. and TARTAROFF, D., Analyticity of relative fundamental solutions and projec-

tions for left invariant differential operators on the Heisenberg group, Ann. Sci. Ec.
Norm. Sup. 15 (1982), 419—440.

S3OSTRAND, J., Parametrices for pseudodifferential operators with multiple characteristics, 4rk.
Mat. 12 (1974), 85—130.

SIOSTRAND, J., Singularities analytiques microlocales, Astérisque 95 (1983).

Treves, F., Introduction to Pseudodifferential Operators and Fourier Integral Operators I, Plenum
Press, New York, 1980.

Received May 21, 1987 Gerardo A. Mendoza

Instituto Venezolano

de Investigaciones Cientificas
Caracas

Venezuela

Linda Preiss Rothschild

University of California, San Diego
La Jolla, CA 92093

US.A.



