Removable singularities of CR-functions

B. Joricke

0. Introduction, statement and discussion of the results. There are well-known
theorems concerning removable singularities of analytic or harmonic functions
from various classes in planar domains, see for example [11]. There are also generali-
zations to higher-dimensional domains and general elliptic differential operators
instead of the 9 or Laplace operator [4]. The description of removable singularities
depends on the class of functions and is usually given in terms of capacity or Haus-
dorff measure. For operators appearing in the theory of several complex variables
such as the Cauchy—Riemann system or the 9, operator (the boundary Cauchy—
Riemann operator for smooth domains in C") we have to expect new phenomena
so that the complete description cannot be given in the terms mentioned. This is
suggested, for example, by the well-known Hartogs theorem ([5], Theorem 2.3.2,
[8], 16.3.6): every function f analytiz in the connected set Q\E, Q being a domain
in C* (n=>1) and E a compact subset of @, is the restriction to Q\E of a func-
tion analytic in the whole of Q. So for the Cauchy—Riemann system a ‘“‘removable
set of singularities” E is not necessarily small in measure or capacity, it can even
have a nonempty interior.

Suppose now that a closed set E is situated in Clos Q (not necessarily in Q!).
What the Hartogs theorem suggests in this case is that the removability of E (with
respect to the class of all functions analyticin @\ E) depends only on the behaviour
of E near the boundary Fr @ or maybe depends only on EnFr Q@ (Clos 4 means
the closure of the set 4, Fr A its boundary). This fact must imply Hartogs type
theorems for the boundary Cauchy—Riemann operator. That means that we have
to expect the existence of sets AcFr  which are removable singularities for the
boundary Cauchy—Riemann operator and are “large” in some sense. So they
are not necessarily removable for arbitrary differential operators of first order.

Now we shall give precise statements of the mentioned results. In the state-
ment and proof of the results we restrict ourselves to the case of the unit ball B(=B")
in C* although it is not hard to see that the main results are true for strictly pseudo-
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convex domains Q with sufficiently smooth boundary (as a rule of class C2). (For
weakly pseudoconvex domains the complete description becomes more complicated,
see, for example, [17] and the references there and also [12].) We assume that EnFr B
is contained in some open manifold M, McFr B, (or that the singularities of
solutions of the boundary Cauchy—Riemann operator are contained in M, respec-
tively) and give the answer to the questions raised above in terms of M,

We shall even get more general results. We consider a domain of the form
QnV, Q being strictly pseudoconvex with smooth boundary and V being a neigh-
borhood of M. The functions are supposed to be analytic in (2nV)\E with
En(Fr Q) n'VcM (respectively, the singularities with respect to the ,-equation
on (Fr Q)nV are contained in M). For suitable M we shall continue the func-
tions analytically into Q@nV;, ¥, being another neighborhood of M (respectively,
we shall show that there are no singularities of the 9,-equation on (Fr Q)nV).

Definition 1. A manifold* McFr B (B=B"cC") is called removable if the
following is true: for an arbitrary closed set EcClos B with EnFr BcM and
B\E connected the envelope of holomorphy of B\ZE is B, i.e. every function f
analytic in B\ E is the restriction &F|(B\\E) of a function & analytic in B.

Definition 2. A manifold McFr B is called (L*, d,)-removable if every func-
tion feL”(Fr B) with @,/=0 in (Fr B\ 4 (in the sense of distributions) for
some A=Clos ACM satisfies 9, /=0 on the whole of Fr B.

For the case of distributions on Fr B we have to change the definition a little
bit (for example, the Dirac measure 6, on Fr B at a point p€Fr B satisfies the
equation 9,6,=0 on Fr B\{p} but not on the whole of Fr B, so even points are
never removable in this sense).

Definition 3. A manifold McCFr B is called (&, 9,)-removable if the following
holds: for every distribution fon Fr B with 9, f=0 in (Fr B)\ 4 for some closed
set ACM there exists a distribution g on Fr B with support contained in M and
such that 9,(f—g)=0 on the whole of Fr B.

There is no obvious relationship between removability, (L™, 9,)-removability
and (&”, 9,)-removability.

We need also the following “local”

Definition 4. A manifold McCFr B is said to be locally removable at a point
PEM if there exists a neighbourhood % of p (in C”) such that #NM is removable
in the seénse of Definition 1.

* In this work manifold (of dimension m) always means a topological space, every point of
which has a neighborhood homeomorphic to an open set of R™.
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In an analogous way local variants of Definitions 2 and 3 can be given. Note
that, as we will see below, a manifold M which is locally removable at all points
need not be removable.

Theorem 1. Suppose M CFr B* is a manifold of class C?, peM. If
€] T,(Ft B\T,M # 0,
then M is locally removable at p.

(T,M is the tangent space of M at the point p and T5(Fr B) is the complex
tangent space of the sphere at the point p (see [8], 5.4.2).)

If condition (1) fails, M is not necessarily locally removable at p as the fol-
lowing example shows.

Example 1. p=(1,0,...,0)¢Fr B", V is some small neighbourhood (in C")
of p and M={z=(z, ..., z,)EVNFrB": Inz,=0}. Here T,M=Ty(FrB")=
{z€C": z,=0}. Suppose g, is a bounded analytic function in the planar domain
{zeC: |z|<1}\[1—¢, 1] for some small ¢>0 which cannot be analytically con-
tinued to the whole unit disc {z€C: |z]<1}. The function f,(z, z,, ..., 2,)=g.(21)
is then defined and holomorphic for z=(z, ..., z,)¢ B\ {Im z;=0, Re z;=1—¢},
but is not holomorphically continuable to the whole of B". The singularity set
E={z¢Clos B": Im z,=0, Re z; =1—¢} reaches the sphere Fr B" along a subset of
the set {z€FrB": Imz =0, [z—p|*=|z,—1]2+|z|>+ ... + |z, |2 =*+ (1 —|z,|?) =2¢}
which is the intersection of M with a small neighbourhood of p (depending on ¢).
Note that f, is bounded, so M is not even locally (L*, 9,)-removable at p.

So, a manifold M of real dimension dim, M<2n—2 is locally removable at
every point. In the case of real dimension 2n—2 the locally removability depends
on the position of M with respect to the complex structure in the neighbourhood
of the point p. So, real dimension 2n—2 is the critical one for M to be locally
removable or not. (If M has complete real dimension 2n-~1, it cannot be locally
removable.)

The following example shows (with the help of Theorem 1) that a manifold
which is locally removable at all points need not be removable.

As the referee pointed out to me other natural examples of sets which are
locally removable at every smooth point but not globally removable are the zero
sets of functions analytic in B” and of class C? in Clos B”.

Example 2. Consider C? and let McFr B? be the torus
M = {z = (z, 2)€F1 B®: |z| = |zl = 1/y2}.

It is not hard to see from Theorem 1 that M is locally removable at every point.



120 B. Joricke

On the other hand M divides Fr B? into two parts S1={lzll>1/}/5 } and S,=
{lz;)<1/V2}. The function which is zero in {z€B?: |z|>1/y2} and equals one in
{zcB2: |2,/ <1/V2} cannot be analytically continued to the whole of B2 So, M is
not removable and not even (L™, d,)-removable.

A slight modification shows that such manifolds M do not necessarily discon-
nect Fr B®.

Example 3. M={z=(z,, 2,)€Fr B2 |z)|=|z,|= l/l/_2_, arg z;€(—a, )}, O=<a<mn.
A test function showing that M is not removable is f(z;, z,)=g(z,)
(z = (z1, 2 BN{lz| = 1]V2, arg z,6(—a, 2)}) with g analytic (and bounded) in
{z€ C: |zl<I\{lz|=1/y2, arg z&(—a, a)} but not in the whole of {|z|<1}.

In this case M is a “ring”. The condition that M contains a ring is, roughly
speaking, the only “‘global obstruction” for M to be removable. The following
theorem holds.

Theorem 2. (Main theorem.) Suppose M cFr B? is a manifold of class C? and
of real dimension dim, M=2. If (1) is satisfied for every point pe M (that means
in this case that M is totally real) and

2) M is diffeomorphic to the open unit disc in the plane
then M is removable.

Corollary 1. Suppose M is a simple (nonclosed) Jordan curve on Fr B of
class C* Then M is removable.

Note that the closed Jordan curve y={z=(zl, z,)€Fr B%: z,=a, |z,|= l/l_—TaF}
(a being a complex number, |al<1) is not removable as the function f(z, z;)=
1/(z,—a) shows.

This corollary can be proved easily by constructing a manifold M cFr B2
satisfying the conditions of Theorem 2 and containing M. Corollary 1 can be proved
also directly without using Theorem 2 (the direct proof is simpler than that of Theo-
rem 2) and can be generalized to simple smooth Jordan curves on Fr B* for arbi-
trary n=2. We will not do this here.

Corollary 1'. Suppose M is as in Corollary 1. Then M is (&', d,)-removable.
Smooth curves on Fr B? are always (L™, ,)-removable ([4]).

Corollary 2. Suppose MCFr B2 is as in Theorem 2. Then M is (L=, d,)-
removable.

Corollary. 3. Suppose McFr B® is as in Theorem 2. Then M is (&’,0,)-
removable.



Removable singularities of CR-functions 121

Examples 1, 2, 3 show that both conditions (1), (2) on M, namely, that
T;(Ft BYN\T,M=0 for all pcM and that M is diffeomorphic to a planar disc,
are essential. Note that manifolds M of this kind are ““large” in various senses.
For example, they are uniqueness sets for the space 4(B?) of functions analytic
in B? and continuous in Clos B* [16]. Note also that the results of [4] (Theorem
4.1(b)) concerning general differential operators of first order imply the (L™, 8,)-
removability of a set ACFr B? if the two-dimensional Hausdorff measure of 4
is zero, - A, (A)=0. The condition A,(A)<e<- is not sufficient for general operators.
Examples show that results of the type similar to Corollary 2 hold only for special
operators (only for special differential operators of first order smooth simply con-
nected manifolds transversal to the operator at each point are removable in the sense

0
E"‘l '5; P
acting on functions defined for (x,y, t)éR® gives a counterexample. Take
M={(x, y, )ER®: y=0, x2+1*<3}. Then P is nowhere tangent with respect to M,
but M is not removable (for the class L™). This can be seen by taking a test func-
tion g defined on R®\M in the following way. Let f€H=(C\[-1, 1]), f=const,
C being the extended complex plane. For (x, y, 1)ERN\M put g(x, y, 1)=f [(Tx%]
for Jt|<1 and g(x,y, t)=f(+<) for [t|=1. Note that gcC'(R™N\M), so,
obviously, Pg=0 on R*\ M. By fixing some #, |¢|=<1, it is easy to see that M is
not removable.) So it would be interesting to give conditions for an operator (pos-
sibly different from the g,-operator for some smooth strongly pseudoconvex domain)
to have Hartogs type removable singularities or not. It would also be interesting
to give an operator theoretical proof of Corollaries 2 and 3 not using “complex
methods™. i

Look now what Corollary 2 means in a special situation. Consider the domain
Q={z=(z;, z,)€C?: |z,|?*<Im z,} (the Cayley transform of B2). Its boundary
Fr Q=H,={(z,, z)=(z, s+it): t=|z|*} is the well-known Heisenberg group. Iden-
tify it with CXR by the mapping (z, s)—~(z, s+i|z]2). The 0,-operator for H, is

of Definition 2 or 3}. (Indeed, even the Cauchy—Riemann operator P=

o 0
L°=2iza—_———a—_ (w=s+it) (see [8], 18.2.4). Continuing h€C'(H,) onto C? so
w0z

0 0
that & does not depend on ¢ we get Lh=z‘z—3—- h_}' h. (Note that the formal
s Z
0

adjoint operator with respect to L*(H?) is the famous H. Lewy operator ——i — +

ox dy
0
i(x——iy)g). Corollary 2 (more exactly, its slightly stronger variant which fol-

lows from the Theorem 2" below) now. gives the following: Suppose that Oc CXR
is an open set, McO is a C2manifold of dim, M=2 and M is diffeo-
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morphic to an open planar disc. If for all p=(z, )¢ M the inequality - T,M=
{(Z, S)eCXR: S=Re (2iZZ)} holds (that means L is not tangent for M at any
point), then for any compact set  KCM and any h€L”(0) the equality Lh=0
in ONK (in distributional sense) implies Lh=0 in O (in distributional sense). On
the other hand there are C'2-manifolds of real dimension two and of arbitrarily small
diameter without this property.

 Now we come to the proof of the main theorem. An outline of the proofs of
Corollaries 2 and 3 and also of the “local” Theorem 1 will be given later. Also some
remarks will be given concerning the proof of the analogue of Theorem 2 for strongly
pseudoconvex domains in C? (instead of the ball B2).

1. Proof of the main theorem. Denote for simplicity B=B2, S=Fr B2 Sup-
pose that McS is as in the theorem, E is a closed subset of Clos B, EnScM,
and fis analytic in B\ E, B\E being connected. We have to prove the following.
For every r, r being smaller than one and sufficiently close to one, f can be analyt-
ically continued into a neighbourhood of the sphere #S. Then f is analytic in some
spherical layer {r,<|z]<1} and so by Hartogs’ theorem also in the whole of B.

The idea of the proof is as follows. We take a point {€ EnrS and construct
an analytic disc 4, (i.e. the holomorphic image of a planar domain) contained in B
with (€4, and with boundary Fr 4, contained in B\E. Our aim is to show
that there is an analytic function in a neighbourhood of 4, which coincides with f
in a neighbourhood of the boundary Fr 4,. This will be done by using the con-
tinuity principle ([14], 111§ 17): f will be analytically continued “along a suitable
family of analytic discs™. Note that all constructed discs are situated in a small neigh-
bourhood of M, so the following somewhat sharper form of Theorem 2 will be
proved.

Theorem 2. Suppose M C S is as in Theorem 2, V is some neighbourhood (in C%)
of M and f is analytic in (BNV)\E for some closed E with EnScM, (BAV)\E
being connected. Then f can be analytically continued into the intersection of B with
some neighbourhood of M. If f is bounded in (BOV)N\GE, then so is the analytic con-
tinuation.

For convenience of the reader we work out the details first in a simple partic-
ular case and then pass to the general case which needs some additional tools. This
particular case is not needed in the proof of the general case.

Particular case. M C S is diffeomorphic to the unit disc in the plane and is con-
tained in the torus

e 1
T2 &t {z = (21, Z)€C2: |zg] = |zg| = 75—} c s
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Proof of Theorem?2’ in the particular case. Everything will be done in a
small neighbourhood of M, so we can perform a logarithmic transformation of
coordinates (z;, z;)—~(log z;, log z,) and after a translation we come to the fol-
lowing situation. There is a manifold Mc{0}+iR? (0 is the origin in R?) which is
diffeomorphic to the (open) unit disc in the plane. Write M= {0}+im, where
mc R? can be assumed to be bounded, simply connected and with smooth bound-
ary. Further ¥V is some neighbourhood of M, say V=w+im, where + is a neigh-
bourhood of zero in R2. Instead of B we have some domain £ with smooth bound-
ary such that ¥nQ=(vnw)+im, where w is a domain in R? with smooth bound-
ary, such that the boundary points of w belonging to « are points of strong con-
vexity. Also 0€(Fr w)ne (that means Mc(Fr Q)nV). Further there is a closed
set E with EnVnFr Qc M and a function f analytic in (QNV)N\ZE, this set being
connected. We have to show that analytic continuation of f gives a function which
is analytic in all points of 2NV sufficiently close to M. This is, of course, (after
a unitary transformation) the situation of 18.1.7, 18.1.8. of the book by Rudin [8].
Instead of showing here that conditions 18.1.7. hold in our situation, we will carry
out the proof in a somewhat different way which demonstrates the method used
in the general case.

Fig. 1

Choosing » sufficiently small we may assume that EnVc(e+in)nV, where
e and n are closed subsets of R%, ncm and »n is diffecomorphic to the closed unit
disc in the plane and enecClos @, enFr o= {0}.

So, fis analytic in {(w+im)\(e+in)}nV. We want to construct the analytic
continuation of finto (w-+im)n(v,+im) for some small neighbourhood »; of 0.
Now it is mot hard to comstruct the analytic disc 4, through a point {=¢4
in€(wnwvy)+im. It will be a part of the complex line II, through the point { parallel
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to the complex tangent space to Q at the points of M (this space is constant for
points in M). Note that the projection of this complex line II, into the real space
R? is the line /; containing {€w and being parallel to the tangent line for w at
the point 0. The projection of IT, into the imaginary space iR? is some line i.%, con-
taining in. So, the intersection of I, with QnV is L;nwnv+i(¥£;nm), the union
of rectangles corresponding to the connected components of Z,nw. (lnwne is
a segment with the endpoints on Fr w, if 2, is small enough and &€+,.) The disc
4, is now the rectangle containing {. Obviously the intersection of 4, with a neigh-
bourhood of its boundary Fr 4, is contained in QnV. Now we write down the
family of discs “‘along which we want to continue f*°. Take v, a unit vector in R?
orthogonal to %, and pose B=0+iv. By II; we denote the translation of the com-
plex line II, by the vector sB (s€(—-os, «)). (We translate in the imaginary direc-
tion orthogonal to IIy). So, IIj=I,+i(Z,+sp) is parallel to II; and goes through
¢+i(n+sv). The intersection INQNY is IENQNV=lnony+i{(Z,+s0)nm},
the union of disjoint open rectangles Pg”‘ (the connected components of IEn@nY,
corresponding to the connected components of (%,+sv)nm).

RN
W

PN

Fig. 2

For each rectangle its intersection with some neighbourhood of its boundary
is situated in  {(w+im)\(e+in)}nV. The sets IFNQNYV form the desired family
of analytic discs. We will show that for each s=0

(%) there is an analytic function in some neighbourhood of
IFNQNV coinciding with f near Fr(II;NQNV).

(Hggéf I, and PP* are the connected components of II,nQnV). So, we shall

get a well-defined analytic continuation of the function f into a neighbourhood of
the (arbitrary) point (€ Qn¥V, which will prove Theorem 2’ in the particular case.
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Denote sy=sup {s: (&, +s0)nns=20} and s,=sup {s: (Z,+sv)nm==0}. Then
—ocos;<§,<oo and for s€(s,, s,) (%) is obviously true. Suppose (*) is not true
for some s=0 and take sod—if sup {s<s,: (*)is not true for s}. Obviously, sy<s,.
We want to show that

3 (%) is not true for s,.

This is based on the fact that the set of regularity of the function f is open but it
needs some arguments because the boundaries Fr (II;nQnV) in general do not
depend continuously on s. (There is only some semicontinuity.) Then we want to
apply the continuity principle ([14], III § 17) and show that (3) is impossible, hence
(*) holds for all s=0. In this step the semicontinuity is easily seen to be sufficient.
It is enough to choose suitable subsets of I;NQNV (s=s,) continuously depending
on s. These two steps will be repeated also in the general situation. Now we will
prove (3).

Suppose (3) does not hold: there is an analytic function in a neighbourhood
W of IInQnV coinciding with f near Fr (ITnQnV). Recall that Il;nQnYV=
Linonv+i(Z,+sv)nm for arbitrary s. Take a sufficiently large compact subset
KcITpnQnV. Now for s sufficiently close to s, an arbitrary point p€Il;nQnV
is either close to K and therefore contained in W, or p is close to II;"N(2nV) and
therefore close to Fr(Q2nV). But INFr(QnV)c{Fr (;none)+i(%,+sv)ju
{lnwonv+iFrm}, so points from QnV which are close to II;nFr(QnV)
belong to QNV\E. Now it is easy to see that for all s sufficiently close to s, the
set I;NQnV is contained in some open set into which the function f can be analy-
tically continued in the desired way. Therefore (%) holds for this s in contradiction
to the definition of s,, and (3) is proved.

Using the fact that (%) is true for s>s, we will now get a contradiction to
the continuity principle ([14], II1§ 17). Indeed, suppose P{o* is a rectangle, one of
the connected components of II}nQnV, for which f cannot be analytically con-
tinued to its neighbourhood in the desired way. It is easy to see that for each com-
pact Kc Pgw" we have K+(s—s50)BCI;nQnV for |s—s|<6 (6>0 depending
on K). Taking sufficiently large closed rectangles for these K’s we see that the points
near Fr(K+(s—s))®B) arein Q\E. This permits us to choose a family of (open)
rectangles P (s>s,, sis close to o) such that lim., Pf=Pp* lim _, Fr P{=
Fr Pgw", the points on P; near Fr P; being contained in Q\E and such that
the function f can be analytically continued into a neighbourhood of P/ in the
desired way. (Recall that (#) is true for s=>s,.) But this contradicts (3) by the
continuity principle. Theorem 2’ is proved in the particular case.

58,

2. Proof of Theorem 2’ in the general case. The main difficulty in this case is
to construct the analytic discs mentioned above. The construction may be of some
interest in itself, so we give the formulation of the corresponding result in Theorem 3
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(see Section 4 below). We begin with a heuristic discussion to give an idea of how
to do this. So, suppose z€B and z is close to M. We have to construct an analytic
disc 4,, z€4,, which is contained in B and whose boundary Fr 4, lies in B\ E
and is close to M. We can expect that the discs look as in the special case: In one
direction they are “long”, which means they lie in some neighbourhood of a curve
which is very close to M at all its points, and in the other (orthogonal) direction
they are ““short” and, roughly speaking,

(+) “reach the boundary Fr B very fast”.

What does this mean for the tangent space of 4, at points p€4,? The tangent
space is, of course, a complex line (because 4, is analytic) and in view of (+) it
must be close to the complex tangent space T5 S of S at some point p’€S, p’ being
close to p. Now we proceed as follows. Suppose r<1, zérM. On rM we choose
a smooth tangent vector field w such that the corresponding integral curve through
z is almost the curve mentioned above. (So w(p)cT,(rM) and w(p) is “almost”
in Ty, S for perM .) By approximation (note that M is totally real) we get a vector
field + which is analytic in some neighbourhood of r Clos M; for some M,;, M;C
Clos MM, M, being of the same kind as M, and such that « is close to w on
rM,. Now we find a vector function & (=4,), analytic for { in some planar domain
such that

@) FO)=z
Q) F'(O) = (7).

The solution of this differential equation in a suitable planar domain gives us the
desired disc. Condition (5) implies that {& (x): x€I} (I being some interval,
0¢IcR) is the curve mentioned above.

The following lemma is needed to prove that in the direction io- the disc “‘reaches
the regularity set of f very fast™.

Lemma 1. Suppose ECClos B is a closed set, B\E is connected and EnScCM,
where M is a C%manifold of real dimension dim, M=2. Then there exists a closed
set ACE which touches M nontangentially and such that each function f analytic
in B\E is the restriction to B\E of a function analytic in B\ A.

A closed set AcClos B is said to touch M nontangentially if AnScM and
there are a neighbourhood U of M and a number o=0, such that

(6) AnBAUC U K@),
teM

where K (@)={¢: |{—{|<aRe ({—{,{)} is the nontangential cone (with respect
to B) with vertex { and angle . (Here (@, b)=a,b,+a,b, is the complex scalar
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product of the vectors a, b€ C?, |a|=((a, a))"/* is the corresponding norm.) An
equivalent definition is that there exists some B=0 such that (with the U above)

) AnBnUc {J {erS: dist(é, rM) < f(1-1)}

rg<r<l
(dist (p, 4) is the distance of the point p from the set 4 with respect to the norm
|-]). Note that in (6) and (7) we can replace M by some open subset M, of M,
Clos Myc M (because 4 is closed) and we can suppose that M, is diffeomorphic to
a planar disc.

Proof of the lemma. Take an arbitrary point {€M,. Denote by II, the (real)
two-dimensional plane trough { orthogonal to M (that means orthogonal to T, M).
So II, is the plane spanned by the two vectors { and n;, where n, €T, SN(T, M)+,
[7|=1. All we have to do is to find a set 4 satisfying

® AnUnBnII; Cc K () NI,
(Indeed, Jgep, II; covers some neighbourhood of M,.) We use the following
well known lemma (see [8], 18.1.8. or 18.1.12).

Lemma 2. Suppose f is holomorphic in BnU, where U is some neighbourhood
of the spherical cap C;,,ii—f {z€S: Re (z,{)>t} (t<]1, L€S). Then f can be analy-
tically continued into the sector OC,,d;f {z€B: Re (z,{)>t}.

(Note that Oy ,US;,, is the convex hull of the spherical cap C;,.)

This lemma gives a well defined analytic function in Ue, ,csna, Ose coinciding
with fnear S\M,. Denote it by f as before. We have to show that the remaining
exceptional set A satisfies (8). Suppose that (€B, and that B, is some small ball
centered at {. Then M divides SnB, into two connected components. It follows
easily from the fact that M is of class C2 that each of them contains some spherical
cap Cy ., (j=1,2) such that their boundaries Fr Cy,., are tangent to M at the
point { and t;=t;({)=1,>0 (j=1,2) for some ¢, dependlng only on M, M,, but
not on ¢{ GMO ThlS is enough. Indeed, T,M=T,(Fr Cg,,t,) implies that &;—{
is orthogonal to T, M (j=1, 2) and so II, is the plane spanned by { and ; (j=1, 2).
Now by Lemma 2 fis holomorphic at the points of the set {z€ BnIT,: Re (z, £;}>1;}
for j=1 or 2, thatis at the points of BnII, which belong to one of the halfplanes
P;={zeIl,: Re (z, &)=t} (j=1,2), { being a boundary point of both halfplanes
and &;€P; (j=1,2). Now the inequality t;=¢, implies that near { the remaining
set (II,nB)\(P,UP,) is contained in some nontangential angle K (x)nII; with
o not depending on {. The lemma is proved.

In the following we will assume from the outset that the singularity set E is
closed and touches M, nontangentially, where M, is diffeomorphic to an open
planar disc, M,cClos M,c M and we also fixa set M;, Clos MM, cClos M,cM
of the same kind as M,.
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Fig. 3

3. We now come to the definition of the vector field w and the construction of
the holomorphic field . We construct a vector field wy on M and then put w(p)=

w,(p)=rw, (3) for perM. The field w, has to be of class C! and to satisfy the
r

condition wy(p)eT,MnT,S for all pcM. Both spaces T,M and T,S have real
dimension two and are contained in the three-dimensional space T,S, so their
intersection is a (real) line (in view of the condition of the theorem T,M=T;S).
All that remains to do is to choose an orientation on T,MnT;S continuously -
depending on peM. With this aim we find a C* vector field v on M such that
v(p) is not orthogonal to T,MnT,;S for all p and w;(p) is the unit vector from
T,MnT;S satisfying Re (w,(p), v(p))>0. Then w; will be of class C* (because
M and S are of class C?). The vector v(p) will be defined in the following way.
There is a nonsingular C* vector field v in 7,56 T,M (the orthogonal complement
of T,M in T,S) (recall that M is diffeomorphic to a planar disc). Take v=iv. We
have to show that iv (p) is not orthogonal to T,SNT,M (p€ M), or what is the same,
that v(p) is not ofthogonal to i(T;SNT,M)=T;SN(T,M), that is T;Sn
iT,M(cT,S) is not contained in T,M. This is obvious.

Now we approximate the vector field w=w, on rM (r<1 is sufficiently
close to one) by a vector field »=+v, holomorphic in a suitable neighbourhood of
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rM. For this purpose we approximate w, on M by a suitable field v and then put

v (p)=Frv ({] for p near rM. This is possible in view of the following theorem
r

({11, [21, (3)).

Theorem A. Suppose that McCC" is a totally real manifold of class C*, w is
a vector field of class C* on M, and M, is an open subset of M with Clos M,C M.
There exist a constant C=>0 and a functiony on [0, + ), y=0, with lim,_, y(8)=0,
both depending only on M, M, and w, such that

for every sufficiently small =0 there exists a vector field v, analytic in the

e-neighbourhood V, of Clos M, and such that

® sup  |w(2)—v.(2)] = &y (e)
z€ClosM,
and
(10) IVe(z1) = V(22| = Clzi—2z5| +ey(e) for all  z, z€V,.

The proof follows from [3]. We will only sketch it. First construct a vector
field of class C* in some fixed neighbourhood ¥ of Clos M, which coincides with
w on M (denote it also by w) and such that ow(z)—~0 for dist(z, M)~0 uni-
formly for z€V. (This is Lemma 4.3 of Hormander and Wermer [1], see also [2]
Lemma 1.6.) So

an w(zD)—w(z)| = Clzy—zo| for 2z, z,€V.

Now put £>0 and solve the d-equation Ou,=dw in some suitable domain of
holomorphy T,oV,. The function v,=w—u, is holomorphic in T,>¥, and
the theorem follows if we can take u, with supy_[ug =ey(e). This is essentially done in
[3]. T, is defined by using the C? strictly plurisubharmonic function ¢ in ¥ con-
structedin Lemma 1.2 of [2], such that MnV ={z€V: ¢ (2)=0}={z€¥": grad ¢ (z)=0}.
To solve the ¢-problem on T, we use the kernel K, constructed in Section 3 of
[3] and use the Koppelman formulas (1), (2) for Ko"’ o (see also formula (10) in [3])
and estimate (a) with ¢=0 from Lemma 4.4 of this work.

4. Now all is ready for the construction of the discs. Assume first that z€rM,
(r<1 is sufficiently close to one). (Later we will deal with the general case z€ EnB.)
Recall that M cFr B? is a C? totally real manifold, M;cClos M,CM is a
manifold diffeomorphic to the open unit disc. Forther £=Clos ECClos B touches
M nontangentially, Then analytic discs of the following kind can be constructed.

Theorem 3. Suppose r<1 is sufficiently close to 1. Let z€rM,. There exists
an analytic disc d, of the following form:
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There are a planar rectangle
P = {z=x+ipeC: x€(a, b), y€(—¢, &)}

(e=const (1 —r) for a suitable const) and an analytic mapping F=%,: P~C?
such that F (0)=z and d,=,(P). Moreover, F is one to one and O<c=|grad 7|=C
on P. The curve Z/((a, b)) is the curve mentioned above which is very close to
rM;: dist (, riMy)<(1—r)y(1—r) for each (€ Z.((a, b)), where y(e)=0(e) for ¢—~O0.
Further d,cB and Frd,Cc B\ E.
Proof of Theorem 3. Put v=uv,, v, (p) def v, (E-) , where v, is the holomorphic
¥
vector field in the c¢(1 —r)-neighbourhood of M, (c is a sufficiently large constant
depending on the constant « in (8)) constructed by Theorem A by taking e=c(1—7),
w=w;. We want to solve the differential equation

@ F0)=z
) F'Q)=+(F©)

in some suitable planar region. By Cauchy’s theorem (see, for example, [15], III § 13)
there exists a unique solution in a neighbourhood of zero. Next we will continue
the solution to the points of an interval of the real line and show that the image
of this interval is a curve which is very close to rM, moreover, it is close to the inte-
gral curve of the vector field w, on rM,; through the point z. We need some informa-
tion about the

integral curves of the field w,.

Lemma 3. Through every point pc M, passes a unique integral curve of maximal
length for the vector field wy|M,. (Recall that w, is a nonsingular vector field of
class C! defined on the C2%-manifold M >Clos M; and w, is tangential to M at
every point.) All integral curves are simple Jordan curves of finite length and join
two (distinct) points on the boundary Fr M. The length of the curves can be esti-
mated from above by a finite number depending only on M, and w,, but not on the curve.

Proof. We may assume that M, is the unit disc in the plane and w, is a C'-vector
field (tangent for M,) in a neighbourhood of its closure, }w;| does not vanish there
and so O=<c =|w; =c,<o on Clos M;. The existence and the uniqueness of
an integral curve through a given point z is well known (see, e.g. [9], II 1.1, II 3.1),
which means that there exists a unique function s(¢) defined on the maximal interval
(a, b)cR, 0¢(a, b), such that

(12 s(0) =z, (1) = (wIM)(s(®) (*€(a,D)):
The length f Z |8°(t)| dt of the curve lies between c¢,(b—a) and cy(b—a), so we
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have to prove that as —oo, b + o, s(a+)EFr My, s(b—)cFr M, and s(a+)#
s(b-).

Suppose, for example, that b=+ . Consider the equation (12) on the whole
of M (instead of M,) and recall that w,#0 on M. We come to a contradiction with
the theory of Poincaré—Bendixson: we have Clos {s(¢): r=0}cClos M,, this set
is compact and is contained in M, a contradiction with the Theorems VII.4.3 and
VIL3.1 of [9]. So, b<+<> and therefore s(b—)EFr M, ([9], I13.1). In the same
way we prove that a> —oc and s(a+)€Fr M,;. The inequality s(a+)ss(b—)
also follows from Theorem VIL.3.1 of [9]: we have to consider s on (g, b) as a part
of the solution of (12) on the whole M (instead of AM,).

It remains to give uniform estimates for the length of the curves. To do this
we choose some open set M, diffeomorphic to a planar disc and such that Clos M;C
M,cClos M, M. Consider the integral curves for the field w,|M, through a
point p€M,, that is solve the differential equation

(13) S, (0 = (wlM)(S, (), S, =p

on the maximal interval (4, B). Put I',={S,(t): t€(4, B)} and for pcM,; put
Yp=1{5,(t): t€(a, b)}={S,(t): t€(a, b)} ((a,b) being as in (12)). Let I'y be the
connected component of I',nM;, containing p. Denote by |y| the length of the
curve vy (|y|=f, |s’], if y={s(¢): t€I}, I being an interval of R). Then, obviously,
|yp|=|I‘g|<|Fp[ for peM,. We shall show that for each {€Clos M, there exists
a neighbourhood ¥V, in M, such that for zeV,nM, we have |FY <|I¢|. By com-
pactness of Clos M, this is enough. But this is an easy consequence of the con-
tinuous dependence of the solution of the Cauchy problem on the initial data ([9],
Theorem V.2.1). Indeed, if {€Clos M, and I'={S,(t): t€(4, B)}, then for some
neighbourhood ¥, of { and some small ¢>0 for z€V,nM, the solution S, of
(13) is defined at least on [4+¢, 4—¢]. Further S,(4+¢), S,(B—e)c¢ M\ Clos M,,
S,(0)=zE¢M,, so I'’ is contained properly in {S,(z): t€(4+¢, B—¢e)}. Moreover
S,(t)—S;(t) (t€[A+e, B—el) is very small for z€V, and so.is S,(t)—S;(¢)=
(w1|M2)(Sz(t))—(wllMg)(Sg(t)), therefore |I')|<|I| for zeV,AM,, if V is small.
To construct the continuation of the solution of (4), (5) we need also

Gronwall’s lemma. Suppose f is a vector function of class C on (a, b), 0¢(a, b)
and f(0)=0. Suppose that |f'()|=C|f()|+¢ for all t€(a, b) and some &=0.
Then

(14) /)l = V—ITZZC_z cg. 3O = gconst for t€(a, b),
where const depends only on C and max {b, |al}.

For convenience of the reader we give the short
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Proof. Without loss of generality we assume that fis a real vector function. Then

[0/ BY)=Q 34 )=3 (43 =1 fE+Clfl+eP=1+2C7)| f2+2:2 Tn-
equality (14) follows by integrating the inequality

(f?aA+2C? 2
4209 fPs2e = 1F2¢

(/Ba+2cs)
_(1+2C2)lf[2+2£2 =142C?

the condition f(0)=0.

Now it follows from Gronwall’s lemma that (for sufficiently small &=0) the
solution & of (4), (5) exists for { in a neighbourhood of the interval (g, b)cCR,
the maximal interval on which a solution of (12) exists with z/r instead of z (recall
that z€rM,;). Indeed, we can continue the function & as a solution of (4), (5)
in a neighbourhood of all points ¢ of an interval [ as long as & (¢) for #€1 remains
in 7V, i.e. the set where » is defined. We want to show that this is so on the whole
of (a,b). Put w.(p)=rw (p/r) for pcrM,; and 4,(t)=rs,,(t), the integral curve
through p€rM,; for the field w,|rM;. Denote f(t)=4,(t)—F (t). Then f(0)=0,
F@O)=d(t)—F'(t)=w,(s,(t))—o(F (1)), so by the estimates (9) and (10) of Theo-
rem A

(15) /@) = w,(a:(B) =2 (0. ())| + ] (a:(0) —2(F 1)

for =0 and the inequality

for ¢t <=0 and having in mind

= lrwl(sz/r(t)) - rva(sz/r(t)[ + rve(sz/r(t)) —FV, ( y-r(t) )\
= rey @+ rer @)+ rCls, (0= ZL| = 269y +-CI0

as long as F (¢t)€rV,, so for those ¢ by Lemma 3 and Gronwall’s lemma
(16) | /(O] = const ey (¢)

(const depending on C and the (uniform) estimate for (b—a) from Lemma 3).
Therefore (if e>0 is sufficiently small) the inclusion % (¢1)€rV, remains true for
all 7€(a, b) (because o,(r)€rM, for those ¢), and (16) holds on (a, b).

Now we continue the solution & of (4), (5) in imaginary directions of {. So we
look at the differential equation

an g—Tgf‘(tHr) = i%ﬁ(t-}—ir) = ie(F (1 +i1))

with initial value % (¢t) for t=0, ¢ being some number from (g, b). Note that
while & (1+1it)€rV, we have (as in (15))

(18) [io(F (t+i7))—iw, (4. ()| = 269 (e)+ Clo, () — F (t+i7)| = 2Ce
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(for 7 close to one and therefore & small), therefore

F (t+it)—F (1) = iw,(0.(1)) - T+ O (e 1)),

g
and so F{+in)crV, for |1 _5_3. (We assume that r is sufficiently close to one
so that ¢ is small and also that |w,| is close to one.) Note that & ()=q,(¢)+ O (ey (¢)),

0, (1)ErS, 1w,(, (1)) T€T, 4, (#S), s0 for mé-;- we have

F ) +iw(0,(0))€(r+ 0 ey () + O (D)) S = (r+0(e)) S.

On the other hand iw,(az(t))eEsz(,)(rM ), and by compactness we can assume
that the angle between iw,(p) and T,rM is uniformly bounded away from zero for
perM;(cClos rM;c M). Recall now that for the set E of singularities we have
the inclusion (7) and that ¢ was defined by e=c(1—r). The choice of the constant
¢ will be made precise now: we choose ¢ depending on f in formula (7), and on
the lower bound for the angle between iw,(p) and T,(rM) for pcrM,, and such

that for ¢€(a, b) and for t close to +§ or -——82—, F (t+it) is contained in B\ E,

the set where f is regular (recall that the function 7—% (¢+it) can be continued
g

to the interval |r|§z).

Recall now that M,cClos M,c M, is of the same kind as M;, that is M, is
diffeomorphic to an open disc and E=Clos E touches M, nontangentially. The
following Lemma 4 will imply Theorem 3 and will also be useful in the following.

Lemma 4. For some =0 and all r sufficiently close to 1 the following is true.
Suppose zerM, and (a,b) is the maximal interval for (12) as above. If té(a, b)
and dist (a,(t), r(M\My))<6 (in particular, if dist (s,(), Fr "M))<6, i=0o0r 1)
then {3’7(1‘—{—1"6): lrlé—g—(l —r)} is contained in B\ E.

The lemma follows from the facts that EnScM,, E is closed and M, is dif-
feomorphic to an open disc, so the intersection of B with some neighbourhood of
Clos (M\\M,) is contained in B\ E.

Applying now Theorem 3 to rM, instead of rM,, z€rM,, we get analytic discs

4,cd, (instead of d,) with z€ 4,. Note that 4,=Z({{=x+iy€ C: x€(aq, by), |y| <&}),
where (ay, by) is the maximal interval on which a solution of the equation

(13y) 5:5¢(0) = z[r, 53, () = (0| Mo) (5.0 (D)

exists. By Lemma 4 we have d,\A4,CB\E.
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5. Now we come to the analytic continuation of the function f along a suitable
family of discs of the form A,. Fix some r close to 1. The function f is analytic in
the set B\, which contains some neighbourhood of Fr (rM,). For every point
z€rM, there exists a unique analytic disc 4, of the type constructed above such
that z€A4, and the boundary Fr 4, lies in B\FE. Our aim is to prove the fol-
lowing

Lemma 5. For every disc A, (z€rMy) there exists a function which is analytic
in some neighbourhood W, of Clos A, and coincides with f near the boundary Fr 4.

From this Iemma the proof of the Theorem 2’ follows. Indeed, by the lemma
we have a well-defined analytic function f in some neighbourhood of Clos (rM,)
which coincides with f in a neighbourhood of Fr (#M,). The function is defined
as follows: for { in a neighbourhood W, of a fixed disc clos 4, (W, being much
smaller than W) we define f({) to agree with the function of Lemma 5 which is
holomorphic in W, and coincides with f in a neighbourhood of Fr 4,. Now it is
not hard to see that the definition does not depend on the choice of 4,. Indeed, if
43 I/félml/f/z'a, then (if the VZ are sufficiently small) we can assume that there is some
small connected open part of Vféﬁ contained in VKl which contains { and a part I’
of the boundary Frd,, I' being close to a part of Fr4, . This shows that the
definition does not depend on the choice of 4,. So there is a function holomorphic
in a neighbourhood of Ur,<r<1 Clos (M,) which coincides with f near
U,o<,<1 Fr (rM,). (For a fixed r we can take the above defined function analytic
in a neighbourhood of Clos (zM,). Again it is easy to see that the definition is
correct.) We have to continue the function also to points on S in a f(1 —r)-neigh-
bourhood of rM, (see (7). This can be done as follows. Suppose { lies in #S and
in the f(1 —r)-neighbourhood of rM,. For every point p€S we consider the unitary

operator u, in C? given by the matrix [zl _g? (p=(p1, p>))- Then it is not hard
2 1

to see that there is some z with [z—e;|<const f(1—7) (e,=(1, 0)€.S) and such

that {€u,(rM,) and, moreover, u,(rM,) is contained in the const f(1—r)-neigh-

bourhood of rM,. We repeat now the construction for u, M, instead of M, (the
only difference is that we have

UnEn¥S c {{er'S: dist({, ru,M;) < cost B(1—r)}

for #'=r+o(1—r) instead of (7), so that we have to take ¢ in the definition of
e=c(l—r) somewhat larger). Now it is easy to see that this procedure gives a
function analytic in the intersection of a neighbourhood of M with B and coinciding
with f outside E.

It remains to give the
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Proof of Lemma 5. Suppose the lemma is not true, so there is some disc 4,
corresponding to a point z€rM, such that there does not exist a function analytic
in a neighbourhood of 4, and coinciding with f near Fr 4,. Such a disc we shall
call a singular disc, and the point z we shall call a singular point. Consider the set
of all integral curves y with respect to the field w,|[rM,, ie. y={0.(t): 1€(ay, by)}
for some z€rM, and the maximal interval (a,, b,) on which a solution of (13,)
exists. We shall call a curve y a singular curve, if some point {€y is singular (so the
corresponding disc 4, is singular). Now we define an ordering in the set of curves
y in the following way. Suppose M, is oriented in some way and define on Fr (rM)
the induced orientation. On a curve y={s(t): t€(ay, bo)} the real parameter ¢
defines an orientation. To a curve y correspond (in a unique way) its endpoints
p(=p(M)=a(a+) and q(=g())=0(by~), p, gcFr (rM,). Now (rM)\y con-
sists of two connected components, and also Fr (?M)\({p}u{g}) consists of two
components. Denote by ¢,(=¢(y)) (the left component) that component of
Fr kM )N\({p}o{q}) for which yuClosc, (with the previous orientations on y
and on the part ¢, of Fr(rM,)) is an oriented curve and denote by 0,(=0,(y))
the corresponding component of »My\7y. The other components are denoted by
e(=¢,()) (the right component) or O,(=0,(y)), respectively. We shall say that
a curve y, lies on the left of y, if ¢,(y;)C¢(y,) and that y, lies strongly on the left
of y, if the inclusion is proper. Obviously, if y, lies on the left of y, and v, lies on
the left of y; then », lies on the left of y,. Note that it is possible that neither y, lies
on the left of y, nor 7, lies on the left of y,. Our aim is to prove the following lemma
and to bring it to a contradiction with the continuity principle.

Lemma 6. Suppose Lemma 5 is not true. Then there exists a singular curve y*
such that there are no singular curves strongly on the left of y*.

Proof. Suppose ¥, is some singular curve. Define by induction singular curves
v, in the following way. If for k—1 there are no singular curves strongly on the
left of y,., then we are done. Otherwise we choose a singular curve y, strongly on
the left of y,_, such that

(19)
le,(y)] < %—i—inf {l;(|: y being a singular curve strongly on the left of y,_,}

(le()| means the length of the curve ¢,(y), we assume that Fr M, is a C'-curve.)
Obviously, ¢ (y)Cq(y,—y) for all k. Suppose that the number of k’s is infinite
and put e Mi Clos ¢;(y,). Then ¢ is a closed arc on Fr (rM,) (possibly a single
point). Denote by p, g its endpoints (possibly p=g). Obviously, p(y)—p, (1) —~4.
Our aim is to show that p#q and p=p(y*), g=q(y*) for some integral curve y*,
where y* is the desired singular curve. To do this we denote by I' the integral curve
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through the point p(€rM,) for the field w,|rM,. Denote by I', the corresponding
curves through p(y,). We choose the parametrization on I', so that I',={%(¢): t€ 1.}
(I, R is an interval), 0¢], and % (0)=p(y,). We parametrize also I'={¥(¢): t€l},
0¢l, (0)=p. Suppose €1, satisfies (t)=q(y). Now H£(0)—-F(0), so by
[9], Theorem V.2.1, we have t€l, for an arbitrary #€I and sufficiently large &
(depending on ¢). Also %(¢)~& (¢) uniformly for ¢ on compact subsets of /. But
0€7 and &(t) can be continued into the segment [0, ¢) (i.e. [0, 7)) as long as
& (t') remains in #M; for 1’¢[0,¢). On the other hand H(t)crM, for 1€(0, t).
Put T=limf,_ for some subsequence {k,}c{k} and prove that [0, Tl If
not, then & can be defined on [0, t) for some =T and not on [0, f) if >z So
by [9],I11.3.1 & (t")~Fr (rM,) for t'~t—0. But & (')=lim,., % (t")cClos (rM,)
for O0<t’'<t=T, a contradiction. Now Z(T)=q by [9], TheoremVZl and the
fact that yn (tkn)»q Taking other subsequences {t,cm} this shows that T=Ilim ¢,.

Now we want to state that p=£¢ and that p, g are the endpoints of a singular
curve y* (y* being an integral curve for the field w,|rM,). Take ¢>0 so small that
[—o, TH+olcT and dist{F (), r(M,\M,)) <6 for 1€|—o, 6Ju[T—o, T+0]. There-
fore also [—o, T+olcl, for k=k, and also dist (% (t), r(M,\M,))<6 for
t€[—a, o]u[T—0, T+0o] and k=k,. Denote by f’kCFk the curve

I = {%(): t€(=0, T+0)),

and by r T, respectively, f:{&” (t): t€(~0, T+0)}. For z=%(¢,) (or z=& (1))
with #,€(—o, T+0) we denote by D, the disc

&
D, ={Z.@+10): [l <%, n+1€-o, T+

(i.e. the part of the disc d, situated near I'y(or I ). As for the discs 4,, a disc D, is
called singular if there is no function analytic in its neighbourhood and coinciding
with f near its boundary. Now for each k there is some z,=%(a,), @,€(0, ), such
that the disc D, is singular (because 4, CD, 1s singular). Suppose z is a limit point
of {z,}. Then ze I'nClos M. Itis easy to see that D, is singular (in the contrary
case the equality Iim D, =D, would imply that D is nonsmgular for z, close
to z). The fact that D, 1s singular implies by Lemma 4 that I nrM,=0, so T#0
(hence p>£q). We need also the following.

Lemma 7. For every z€I' the disc D, is singular.

Proof. The set {z¢I': D, is nonsingular} is open. By the continuity principle
it is also closed. I is connected, so the set of nonsingular discs is empty.

Take now z€ fmrMo The disc D, is singular, so by Lemma 4 the corresponding
disc A,cD, is singular. We want to show that the integral curve y=y, for the
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field w,|rM through the point z is the desired curve y*. We found already that this
curve is singular. Further

(20) ) =p, q9@¢) =q.

Indeed, put I'" = {& (¢): t€[0, T}, the part of I between p and ¢; then I” <Clos (M)
(because I’=lim I, (1","54—cr {%.(t): ¢€[0, #,1})). For every k we have

p€EClos O0,(7)\{Clos 7,},

so I'"cClos O,(y,) (if not, I'" must intersect Clos y, in such a way that we get a
contradiction with the uniqueness theorem for solutions of (12)). But ycI"nrM,,
so p(y), q(7)€Clos ¢,(y,) for every k and so | (y)|<|¢|=1im |¢,(y)] if one of the
equalities (20) is false. But this contradicts (19). The inequality (19) implies also
that there are no singular curves strongly on the left of y. Lemma 6 is proved.

It is easy now to get a contradiction with the continuity principle. Indeed, take
(,€0,(y"), {,~z. The integral curves v;, of the field w,|rM through {, are then
strongly on the left of y* (taking into account that {,€0,(y*) and the uniqueness
property for solutions of (12)), and therefore they are nonsingular. By [9], Theorem
V.2.1 there are parts §;, of the curves y; such that §,,—y*, {,€,,. We can assume
that the endpoints of §;, are near Fr (rM,). (Compare with the end of the proof

-~ de & .
of the particular case.) So for the discs A;ng {%"(t+it): [r|<-2—, t is such that

%.(t)€5,,} the boundaries Fr A, are contained in ¥nB\E and f can be con-
tinued into a neighbourhood of Clos ch in the desired way (recall that y, are
nonsingular). Now A; ~4,, Fr A, ~Fr 4, and the continuity principle gives a
contradiction. Theorem 2’ is proved.

6. Outline of the proof of the local result for n=>2. Take a point pcM. After
a unitary transformation of C* we can assume that p=(1, 0, ..., 0) and that M
is contained in {z,=2z,=0}. Lemma 1 is true for n>2 also. The idea of the proof
of Theorem 1 is now to apply the construction of the discs from Theorem 2 to B
{zs=23, ..., z,=20} for small 23, ..., 20.

Note that Theorem 1 can be strengthened in the same way that Theorem 2 was
strengthened to obtain Theorem 2’. This is possible because the constructed discs are
contained in a small neighbourhood of M.

7. Remarks about the proof of Theorem 2’ for strongly pseudoconvex domains
Qc C? with C2-boundary. The proof follows the same scheme as the proof of Theo-
rem 2’. Lemma 1 is of local character (for each boundary point p€Fr Q there
exists a biholomorphic mapping of some neighbourhood of p under which Q becomes
strongly convex near p, see [10] Theorem 1.4.14 or [8] 15.5.3). The other parts of
the proof are not specific for the ball, except for the choice of M,=rM and approxi-
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mation on M, (by Theorem A) with a constant ¢ and a function y not depending
on r. In the general case we choose the manifold M, by the following procedure.
Denote by ny(z) the unit inner normal (with respect to the domain ) at points
z€EM, and denote by vy(z) a nondegenerate Cl-vector field, v,(2)¢T,SeT,M.
Approximate these fields on a large compact part of M by fields n(z) and v(z) which
are holomorphic in some neighbourhood ¥ of this compact part and consider the
holomorphic mapping Y (=Y, 4): z—~z+en(z)+edv(z) (z€V). For small ¢=0 the
mapping is biholomorphic. Denote the image of MnV by M,._, ,. The manifold
M, , for a suitable 4 will play the role of U,#M in Theorem 2’. Indeed, it is now
enough (as in the proof of Theorem 2) to define the field w, on M~V and to approxi-
mate it there by «,. Then we can define the fields w, , and », 4, on M, , by the for-
mula w, ,(z)=(grad ¥)y-s, wi(Y=1(2) vy, 4(2)=(grad ¥)y-10e1 (Y1) W=V,
and the discs through z€ M, , are defined by the formula /(% .,({)) (with &, v,
defining the disc through ¥~'(z) which corresponds to the field +;). (So

W (Fy-1(€ )Y =(grad ¥)=, v-1)0 '9?(,,- (s

= (grad Y)y-260% -1 o1 (U (Fymry (ON) =y, 4 (¥ (F-1 (D))

8. Now we shall deduce Corollaries 2 and 3 from Theorem 2. (Note that they
can be strengthened with the help of Theorem 2’.) Corollary 2 follows immediately
from Theorem 2 and

Lemma 8. For an (relatively) open set I <Fr B2 and a function fe L= (') the
Jollowing facts are equivalent:

a) 0,f=0 on I in the distributional sense;

b) f coincides a.e. on I' with the radial boundary values of a bounded function
F holomorphic in BAV (V being some neighbourhood of I'): f({)=lim,, &F (r{) a.e.

Note that | f"L""(n=” 'g;”L“’(BﬂV)'

Indeed, Theorem 2 gives an analytic continuation of the function & obtained
by Lemma 8 b) for I'=Fr B\ 4 (the set where 9, f=0) to the whole of the ball B.
We get a function bounded and holomorphic in B (see Theorem 2’) with radial
boundary values fa.e. on Fr B, so 9,f=0 on FrB, again by the lemma.

For the proof of Lemma 8 it is enough to continue the function to the sets O,
for all C,,cI'. This can be done by a refinement of the arguments at the end
of the proof of Theorem 18.1.12 in [8] or by Lemma 15 and Theorem 16 of [13).

Corollary 3 follows from

Lemma 9. 1) For an open set I CFr B and a distribution f on I' the following
conditions are equivalent:
a) fisof finite order in I’ (i.e. | f(p)l=c; maX, <, | D% @ll L=ry for every function
9€eCy () and 8, f=0 onT.
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b) Denote by V the union of O,, for all spherical caps Cy,,CI'. There exists a func-
tion & analytic in V such that

@n |F Ol = &0~ (CeV)

and the measures F*({)do({) on I'cFr B (o being the normalized rotation

invariant measure on ¥r B, F*(r)=F () if r{cV and F*{F()=0 other-

wise) tend to f as distributions.

2) Moreover, if F is holomorphic in the set V of 1b) and satisfies (21) then there
exists a distribution f on I' of finite order such that F*(r{) do({) tend to f. If f=0
then F=0.

The proof of Corollary 3 follows immediately. Indeed, f is a distribution on
the compact set Fr B, so fis of finite order. Take the function & obtained by apply-
ing 1b) to f|I' and I'=Fr B\ 4, the set where d,f=0. Theorem 2 gives an
analytic continuation & of & to the whole of the ball B, satisfying (21) in the whole
of the ball. (The estimate (21) in the whole of the ball follows from the maximum
principle and the fact that each disc from the proof of Theorem 2’ is contained in
some spherical layer of the form {z€B: ¢;(1—r?)<(l—|z|®)<cy(1 —rH} (0<r<1).)
By Lemma 9 there is a distribution f; on Fr B corresponding to % and fi|=f|I.

Outline of the proof of Lemma 9. To prove point 1) of the lemma it is enough
to prove it for all spherical caps C contained in I' with unique constants c;, &y
and N; and to use the uniqueness pfoperty (see 2)). We will prove now the implica-
tion a)=b). We want to consider ‘“‘convolutions of the distribution f with smooth
functions” and get continuations of these smoothed functions. For this we identify
points { on S with unitary operators u, by the formula {= [g;] U= (gl'%] .

. 2
Take C=-mollifiers x, on S (or equivalently on the group W of unitary operators).

For {€C,, some smaller spherical cap consisting of points {€C with some distance
(depending on n) from the boundary Fr C, we define

22) 5O = [, fu) 5w du

(the integral is symbolic and means application of the distribution f to a suitable
Cy -function of {€C (defined by yx,)). Then f,6C* and it is easy to see that 9, f,=0
on C, in the usual sense. Therefore ([8], 18.1.12) £, extends to a continuous func-
tion in C,u0,, the convex hull of C, (see the definition of O in Lemma 2),
also denoted by f,, which is holomorphic in O,. The following lemma gives a con-
venient representation formula for f,(p) (p€0,) by the boundary function f,|C,.

Lemma 10. Suppose CS is some spherical cap, O is the corresponding subset
of B. Suppose gcC(CuO0) and g is analytic in O, Then for each (€C and r suffi-
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clently close to 1 we have the representation
(23) g(rD) = [ U@, & e do(®)

where the function \y can be taken in the following form:

Ir=&, 6)!]

const ( 1—r
A AT
for some fixed function @cCy (%, _2_))’ =0,
f{z€ci |z} <4} (p(lzl) dm2(z) =1.

So ¥ (r, (¢, &) has the following properties: ¥ =0; for fixed r, { the function
E=Y(r, £, &) isin Cg Cprsa-n)s f Y, & &) da(€)=1 for a suitable choice
of const, so the integrals (23) give an approximation of the identity for ri1;

Y@, &=y &0

Proof. Suppose {= ((1)] aef e, so {e,z)y=%, for z€ C2 For r sufficiently close

(232) Y(r, &) =

to 1 we have by Cauchy’s formula applied in the z; direction:

[r—zy|

am@) 5z 0 (T2 ¢ 0

g(r: 0) = f

lzy~rl<41~r)

if 9eCy((3,3) ¢=0, [ p=1. Applying Cauchy’s formula in the z, direction,
we have

_ _ [r—z| 1
g(r,0) = flz,—rl«m r)( - 2('0( ’1 ] V1—|zf?

[ gl VT TalPe) dmy () L2 2 g,

The general case can be proved by rotation.

Continue now the proof of Lemma 9. The formula (23) applied to f, shows
that for all points p€0, f, (n=n(p)) converge uniformly on a small neighbourhood
of p to the function &,

@4 Fe) = [¥(r, & ENAO do(®), rLcO.

(The integral is in distributional sense.) Further f, are analytic in O,, therefore &
is analytic in 0. Now the choice of ¥ (see (23a)) together with the fact that fis of
finite order gives the estimate |F (r{)| =c(1 —r)~" (#{€ 0). We have to show now that

25 [ 2OF* (0 do©) ~ [ 2OfQdo(0)
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for every ge€Cy (C) (the right hand side being understood in distributional sense).
This follows easily from (24): For r sufficiently close to ! (in dependence on supp ¢)
we have

[2QF*00do@ = [ 5@ [¥(. & NSO do(©) do(?)

(the last integral is also distributional). So

[eOF* D do(© = [1(©)da(®) ([ 2OV, & &) da ().

It remains to use the facts that fis a distribution of finite order, geCy (C), and ¥
is a smooth approximation of identity, ¥ (r, (¢, )=y (r, (¢, £)). The implication
1a)= 1b) is proved.

Now we will prove 2), again for a spherical cap C and the corresponding

set OCB. Assume that C=C, where C=el=((1)). Define (J,%)(z,, 25)=

o F(z,8)dE for (zy,2)€C,,, the integration being along a suitable curve
joining 0 and z, (for example, along {é=rz,: r€(0, 1)}). Let also.(J; F)(z;, z)=

tte F (&, z) d¢ (integration along a suitable curve joining ¢+& and z;, for exam-
ple, a linear segment). Then J, & and J, & are analytic in Cy,,,. For some / and k
the function J{J§ # is analytic in C 4, and bounded, as is not hard to see by a
computation (/, k and the bound for J,J, # depend only on C; and N, from (21),
not on ¢ and ¢’). The point 2) can be proved now by taking derivatives of this bounded
function along spheres of radius r<1. The uniqueness (f=0=% =0) is obtained
by considering the smooth function %* (rC)d———Ef Ju F* @)y, () du for a suitable
Cy -function y, on U with small support near the identity. Then Z*(#{) tend to

FAC) & f w S @) x, (1) du as ril (the integral is distributional). The uniqueness theo-

rem for smooth analytic functions and a suitable choice of y, give the desired result.
The remaining implication 1b)=1a) is now easy.

Remarks added April 15, 1987. During the preparation of this article the work
of G. Lupacciolu “A theorem on holomorphic extension of CR-functions” appeared
(Pacific J. Math. 124:1 Sept. 1986), where also removable singularities (in the sense
of Definition 1) are considered. Lupacciolu considers arbitrary domains 2 (not
necessarily strictly pseudoconvex domains) and shows that polynomial convexity
of the singularity is sufficient for removability. For domains of holomorphy in C”
this condition was shown to be sufficient already by E. L. Stout (“Analytic con-
tinuation-and boundary continuity of functions of several complex variables”, Proc.
Roy. Soc. Edinburgh 89A (1981), 63—74.) For n>2 Stout showed that even rational
convexity is sufficient.

It is in general not easy to give geometric conditions for polynomial or rational
convexity. Compact subsets of smooth arcs are polynomially convex, so Corollary 1
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Tt seems that this tool does not give Corollary 1.

Every totally real manifold is locally polynomially convex, so Theorem { for
the case n=2 follows from the works of Stout and Lupacciolu. But arbitrary
compact sets on simply connected totally real manifolds in C*? are not necessarily
polynomially convex (see the example of Wermer at p. 34 of the work of R. Niren-
berg and R. O. Wells, Trans. Amer. Math. Soc. 142 (1969), 15——35), so theorem 2 is
not contained in the works of Stout and Lupacciolu. It seems that the method
of Lupacciolu and of Stout in the case of dimension n=2 does not give L -esti-
mates for obtaining removable singularities for CR-functions or CR-distributions
(in the sense of Definitions 2 and 3). It seems also that their method does not allow
to prove versions of the results “localized to a neighborhood of M (in the sense
of Theorem 2’) (such as, in particular, the analog of Corollary 2 for parts of Fr B?
or arbitrary, not riecessarily closed, smooth hypersurfaces in C? with nondegenerate
Levi. form (instead of the whole of Fr B2)).

References

1. HORMANDER, L. and WERMER, J., Uniform approximation on compact subsets in C", Math.
Scand. 22 (1968), 5—21.
2. Harvey, F. R. and WELLS, R. O., Holomorphic approximation and hyperfunction theory on
a .C* totally real submanifold of a complex manifold, Math. Ann. 197 (1972), 287—
318.
3. BRUNA, J. and BURGUEs, J. Ma., Holomorphic approximation in C™norms on totally real
compact sets in C”, Math. Ann. 269 (1984), 103—117.
4. HARVEY, R. and POLKING, J., Removable singularities of solutions of linear partial differential
equations, Acta Math. 125 (1970), 39—56.
5. HORMANDER, L., An introduction to complex analysis in several variables, Van Nostrand, Prin-
ceton, New Jersey, 1966.
6. Lewy, H., On the local character of the solutions of an atypical linear differential equation in
three variables and a related theorem for regular functions of two complex variables,
Ann. of Math. 64 (1956), 514—522.
7. LEwy, H., An example of a smooth linear partial differential equation without solution. Ann.
of Math. 66 (1957), 155—158.
8. Rupm, W., Function theory in the unit ball of C", Springer-Verlag, Berlin—Heidelberg—New
York, 1980.
9. HARTMAN, PR., Ordinary differential equations, John Wiley & Sons, New York—London—
Sydney, 1964.
10. HeNnkIN, G. M. and LEITERER, L., Theory of functions on complex manifolds, Akademie-Verlag,
‘Berlin, 1984.
11. CaARLESON, L., Selected problems on exceptional sets, Van Nostrand, Princeton, New Jersey,
1967.
12. Hii, C. D., A Kontinuititssatz for 95, and Lewy extendibility, Indiana- Univ. Math. J. 22
(1972), 339—353.



Removable singularities of CR-functions 143

13. HENKIN, G. M. and CHIRKA, E. M., I"'panmunnie CROMCTBA TONOMOPOHEIX (yHKUME HECKOIH-
KHX KOMILNEKCHBIX NEPEMEHHRIX, Sovrem. problemy mat. 4 13—142, VINITI, Moscow,
1975.

14. Viapmmirov, V. C., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka,
Moscow, 1964. )

15. Petrovskil, I. G., Lektsii po teorii obyknovennykh differentsial’nykh uravnenii, Nauka, Mos-
cow, 1970.

16. PINCHUK, S. 1., T'paHmunas Teopema eIUHCTBEHHOCTH A ronoMophHEX ¢yHKImIi HECKOMbL-
KAX KOMILIEKCHEIX IIEPEMEHHBIX, Mat. Zametki 15 (1974), 205-—-212.

17. Favorov, S. Yu., Pacnpenenenue ocobennocteit romomopdsoil dyHKkImy Ha TPaHHLE TIONA-
JAPUYECKOTO MHOXeCTBa, Teor. Funktsii, Funktional. Anal. i. Prilozhen. 15 (1972),

111—114.

Received November 4, 1986 B. Joricke
Akademie der Wissenschaften der DDR

Karl-WeierstraB-Institut fiir Mathematik
MohrenstraBe 39 — PF 1304

1086 Berlin

DDR



