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Introduction 

The theory of (constant coefficients) singular integral operators, developed by 
Calder6n and Zysrnund, has been extended [6] by R. Fefferman and Stein to the 
product spaces R " •  The point is to deal with kernels K(x', y') that cannot be 
written in the form/(1 (x'). Ks (y)' for otherwise the boundedness of the corresponding 
operator can be easily obtained by an iteration argument. 

In [10], among other things, we proved the boundedness in L~(T• 1 < p <  0% 
of a variant of the double Hilbert transform H, where the convolution kernel could 
not be factored out and moreover it was a variable coefficients one. Roughly speaking, 
such a variant was defined as follows 

(1) 
1 

H, f (x ,  y) = --f (~',y)eR, x" y" f(X--X', y--y ')  dx" dy' 

where for every fixed yET and for every integer k->0 the region R y c T •  has 
the following property: Ryn {(x', y'): Ix ' l -2-~}= {(x ", y'): Ix'r ~2 -~, ly'l<--a(k, y)}, 
with 0<-6(k, y )~  1 and except for that arbitrarily chosen. This makes the action of 
H .  on the y' variable closer to the action of the maximal Hilbert transform than to 
that of the Hilbert transform itself. (The cut off of the domain of integration given by 
ZR(X', y') was actually smooth.) We also would like to mention that H .  has been 
introduced to deal with some operator that arise in the study of a problem of almost 
everywhere convergence of double Fourier series [11]. For this application it is indis- 
pensable to study the maximal operator/7, defined by 

I 1 
~r,f(x, y) = sup l f , y -  y') dx" dxy' ko>.OJ (x,Y')ERy xt y" f(x--x ' ,  

Ixq_~2-ko 
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and to prove not only that it is bounded on L~ but also to control it pointwise from 
above. We did so by proving 

(2) lfi, f(x, y) ~ c{M1.H2f(x, y)+ MI(H, f)(x,  y)} 

where M 1 denotes the Hardy--Littlewo0d maximal function acting on x' and /72 
denotes the maximal Hilbert transform acting on y'. 

In this paper we extend the mentioned results for H,  and t7, to the case in which 
the product domain is R"XR m, by introducing variable coefficients opera- 
tors T defined as in (1) but with 1ix" and l/y" replaced by the kernels K~ 
g21(x')/llx'll" and K(2)(y')=I2=(y')/lly'][ " that define the classical singular integral 
operators, that commute with dilations, in R" and R m respectively. It should be stress- 
ed that again we have no assumptions of regularity on the dependency of the resulting 
convolution kernel K(x', y', y) upon y, which is a fairly unusual situation. By a combi- 
nation of the techniques of [6] and [113] we are able to prove estimates, in certain in- 
stances, more refined than those in [6] (compare our Lemma 1 with (2.4) of [6]) by 
means of which we prove the boundedness on Lp0t"XR") of the operators T. This 
is done in Part 1. 

Recently R. Fefferman in [5] gave a simple condition for a bounded operator on 
L2(R"XR m) to be bounded from Hv(R"XR m) to Lp(R"XR"), 0<p=<l, and from 
Llg L u(", ~) to weak-L 1. He also proved that the operators of the class considered by 
Journ6 in [13], which includes to a large extend the class studied in [6], satisfy his con- 
dition. In Part II we prove that our operators too (which do not belong to the class 
studied in [13]) satisfy R. Fefferman's condition. 

In Part III we prove a pointwise estimate from above, like (2), for the maximal 
operator T. Let us observe that such an estimate is weaker than the one known for/7, 
the standard maximal double Hilbert transform, where the supremum is taken over all 
possible independent truncations of [x'l and [y'[, and which reads as follows 

(3) -~qf(x, y) ~ c{MllT~f(x, y)+ M2/71f(x, y)+ M1M2Hf(x, y)}. 

It should be said though, that it seems unlikely that an estimate like (3) can be proved 
in our case, due to the potential high irregularity of the dependency of our kernel 
upon y, that we already pointed out. Moreover, we will show that both T and :~ 
satisfy weighted norm inequalities. Finally, we observe that the techniques so deve- 
loped give similar results for other operators as well: see Theorem 2, 6, 8. 

We wish to thank Professor R. Gundy for a useful suggestion. We also thank the 
Institute for Advanced Study for its hospitality during the preparation of this work. 
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Part I 

On the kernel K(2)(y), yER m, we are going to make the same assumptions satis- 
fied by the kernels that define singular integral operators that commute with dila- 
tions [121 and we will have somewhat stronger assumptions on Ka)(x), xER ~. 
Let us suppose that Kin(x) = f h ( x ) / l l x l l  ~ and K(2)(y) = t22(y)/ll Yll ~ such that f2~ are 
homogeneous of degree zero and furthermore satisfy the following conditions 

(al) f~o_, a~(x) d~ = 0; 

(a2) f s,._,O~(y) de = 0 

where da and dQ are the induced Euclidean measures on the unit spheres S "-x and 
sm-1; 

f2-, oh(5 ) d8 ~ c2-" for every integer r _-> 0; (bx) 0 

f l  o~2(5) (t,2) Jo ~ d6 < ~,  where o91(6) = sup If21(x)-f2z(x')l 
I l x - - x ' l l  ~_5  

l lx l l  = [[x ' l l  = 1  

and o~2 is similarly defined. 
Now let ~0(x) be a C ~ function, radial and supported on {x: 1/2<--II xll--<2} such 

that 

Z~=_~ q'(2~x) = Z~  q,~(x) = l, x # o. 
We write 

K (1) (x) - [ - ~  = Z~=_~ KmCx)~(x) = Z~  g2)Cx)- 

Suppose that to every pair (k, y), kEZ, yER m there corresponds 5=5(k,  y) with 
0<=5(k, y)<-~o and then for g in Lp(R") let 

T(2)g0') = f K(2)(y')g(y-- y ') dy" ; 

Ta(2)g(y) = f K~ (~) (y ' )g (y- -y ' )  dy" 

where K~)(y ') =K(Z)(y')z,r,,~a(y' ). For everyf  in Lp(R"• l < p <  ~,  and with 
5=5(k,  y) we define the variable coefficients operators 

T,, N f ( x ,  y ) = f 2 . 1  ~_ 2-~ <= N. K 2  ) (,~') s ,,,,,, ~_ ,,, I~. (~) ( y ' ) f ( x  -- x', y -- y ") dx' dy '  

where s=(el ,  s2), 0 < e l < 2  and N=(NI ,  N2), Ni>2.  We are going to prove the 
following 

Theorem 1. In the assumptions listed above there exists a constant Ap depending on- 
ly upon p, the dimensions n, m and the constants that appear in (bl) and (b2) such that 
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for | < p < ~  

(a) IIT~,Nfllv <= Av Ilfllv; 

(b) lim~_ 0 T~,~f=Tf  exists in Lv-norm and l]Tf[lv<=Avllfllp. 
N.oo 

Remark 1. We used sharp truncations to define K~ (~) but the theorem holds as well 
for smooth ones. This was the case in [10] and in the application [11]. 

Remark 2. Conclusion (a) of the theorem holds for more general operators than 
T (2), namely for all bounded operators, that we still denote by T (2), for which the fol- 
lowing estimate on the maximal operator 

~'*'gO,) = ~Po if,,,',,>, K '%'  y)gO,')dy" l 

is known: T(=)g(y) <= c {3//2T(2)g(y) + 3/12g(y)}. They include the variable coefficients 
operators defined by "Calder6n--Zygmund kernels" following the definition of 
Coifman and Meyer [2] Chapter IV and the maximal partial sums or Carleson 
operator 

Cg(y) = f= e~N@)r -,~ y, g(y--y') dy" 

[3], [7], and [9]. 
We shallmake use of the following S-function studied in [6]. Let ~b be a nontrivial, 

radial, C~-function on R" supported inside the unit ball, with f ~k(x)dx=O. Let 
~ls(X)=S-n~l(X/S) for s>0 .  Define for fEZpO{n) 

e,e  

s~,f(x) = fo  I,/,:*f(x)l:~ 
then 

# 

(4) %llfllp <-- IlS+fllp <-- %llf l l . ,  1 < p <oo. 

We shall also need the following technical lemma. 

Lelnma 1. I f  k, rEZ and s~2-"  (i.e. 2-'-x<=s<=2 - ' )  then 

I~ , ,gkm,  f(x)l <= cn2-lk-'l n l f ( x ) .  

Proof. Clearly the convolution ~k s .  Kkm(X ) is supported inside {x: Ilxll <- 10 2- '} 
i f2- '=>2 -k and inside {x: (2-k/10)<=llx[ I <=10 2 -k} if 2--k>2 - ' .  Now we are going 
to estimate the values that such a convolution takes on. First assume that 2 - ' =  > 10 2 -k. 
It is easy to check that IIV~s(x)ll <--c2 <'§ Therefore using (a~) we have that 

I~:.sek<'(x)l = If aul 
2rn 

~ - f  Ig~ ~) (u)l llV~'A~)II II nil du <= c 2 ~ - ' '  
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Secondly, assume that (2-k/10)<=2 - '-< 10 2 -k. Then clearly 

r. 
I~/~*/~)(x)l < f lK2)(u)l 1r du < c 2 "  <= c ' ~  = 21k-'l " 

Finally, assume 2- '<(2-k /10) .  Then since f Ip(u) du=O we have that 

14's*K~ ~) (x)l <- f IK~ ~) ( x -  u) --Kk (1) (x)l lO~(u)l du 

f a ~ ( x - u )  ai(x) ] 
<= Ilx-ull" cp~(x-u) llx---=-@ ,#~(x-u) [,L(u)l du 

fl~"~l(X) l".~"~l(X)q)k(X) + I lx -u l?  q ~ k t x - u ) - ~  [~k,(u)[ du = Ii(x)+I~(x).  

We observe that 

fops(x -u) cpk(x). 
I/~(x)l <- c Ilx-uV x " 10s(u)[ du 

c .  2 k" 
<= c.2k(n+~)flO,(R)lR"dR <= 2,_ k , 

f lgo~(x-u)l I~Rx--u)-~(x)l 1r du I~(x)=d Ilx-ulV 

and 

279 

2 kn 
-< f m <x-u)l co fitull)  c2k. f co1(6) d6 <= c ~2,_ k . - d  Ilx-uil" *kll*,) IO*(u)ldu<- Ja~_(,-./ll.,) 6 

This ends the proof  of the lemma. 
Now we turn to the 

Proof o f  Theorem 1. Since 0 * i/, has the same properties of 0, then for y fixed and 
f i n  C o (R" X R =) we have 

lls0.0T..Nf(x, Y) ll~.<dx)~ IIT~.Nf(x, Y) ll~.<dx). 

So integrating in y we obtain 

IlS**~ T~,NfHf.,(dxd,)~ llT~,Nfl[f.,<a,,a,). 

Therefore to prove (a) it is enough to show 

Ilso,~T.mfllL,u~) <-- A, Iifl[,. 

It  is understood that until the end of the proof  of (a) we deal with truncated operators 
T,, N, but for simplicity of  notations we might drop the truncations. We are going to 
rewrite S**~,T,,N f in a suitable way, using the identity O , . K } ~ ) . f ( x , y ) =  
K~(2).4t~.f(x, y), 5=5(k ,  y), which is true because the two convolution kernels 0s 
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and K6 (~), the last one with variable coefficients, act on different variables and so the 
corresponding operators commute. Let us write 

S~,.r y) = 2,=_~ f~~,_rl2k~ks*K~l)*K}2)*Os* f(x, y)l * 

Now if Mz denotes the Hardy--Litt lewood maximal function acting on y '  then [12], 
p. 67, 

T(e)g(y) = sup f KC2If y') g (y -  y ') dy'] <= c {MzKe)*gO') + Mzg(y)}. 
) - -  _ 

By this inequality and Lemma 1 we have that for s,-~2-" and always 6=6(k, y) 

IXk ~ls* g~l) * go(z) *l~s*f( X' Y)[ "< 2 k  [O** Kk(1) * K}') *O,*U( x, Y)I 

~_ .~kc2-1k-rl M1K}~).O,* f(x, y) ~_ c{MIM~K(2)*O,* f(x, y)+ M1M~O,* f(x, y)}. 

Therefore 

By the maximal theorem of [4] we know that 

II ~ )H -< (f '~s*K(')~f(x,Y)['d=~ss}'/' S .,I,T.,Nf(X, y v = .>o v 

By (4) and the boundedness of T (2) we conclude that this is dominated by r fH~. 
This ends the proof of (a). 

Now we shall prove (b). We start by proving it for f i n  a dense subset of L v, na- 
mely fEC~. We can assume f (x', y')=fl(x') f~(y'), f~(C~. We write T,,N f (x, y) 

,-r(1) as a sum of four terms by breaking up the domain of integration. The first one ~,,N 
corresponds to Ilx'll-<-2, Ily'll <----2. ,7-(1) itself can be expressed as a sum of four . , t  e , N  

�9 + integrals by writing f~(x-x ' ) f2(y--y ' )=A(x-x ' ) - f~(x)] .[ f2(y-y)- f~(y)]  
A(x)[f2(y,y')-f2(y)] +f2(y)[f~(x-x')-A(x)] +A(x)A(y). The last three integrals 
are zero, while the first one converges as 8~0 and N ~ o  to T(l~f(x, y) for each 
(x, y), by the dominated convergence theorem. Moreover, T(X~f(x, y) is dominated 
by a constant and it lives on a fixed compact set. Then we consider T,(,~ n which has 
llx'll _->2, II y'll -<-2 as domain of integration. In this case we write f~(x-x ' ) f2(y-y ' )  = 
fl(x-x,)[f~(y--y')-f~(y)]+fl(x-x')f2(y). We insert this in the integral defining 
T c~) and observe that the second integral is zero, while the first one is bounded inde- 8,N 
pendently of a, N and {6 (k, y)} by an Lv-function of x times a bounded function with 
a bounded support in y. Hence T (~) r y) converges for almost every (x, y) as e, NJk ' 
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-~0 and N ~ o .  In a similar way one handles the other two terms. So we conclude 
that for almost every (x, y) the limit lim,-~0,N-.= T~,Nf(x, Y)=Tf(x, y) exists. By 
the preceding estimates it is clear that T,,Nf(x, y)--Tf(x, y) is dominated by an 
Lf func t ion  and so Tfis also the limit of T~,~fin Lp-norm. Now by a density argu- 
ment it is easily shown that the same holds if f belongs to Lp. This ends the proof of 
Theorem 1. 

We also have 

Theorem 2. Let  N ( y )  be any integer-valued, L-function and suppose that (aj) 
and(b1) are satisfied. Then (a) and(b) hold for the following operator 

Uf(x, y) = f 2k  Kk (1) (xt) f l,,J <~(,,,,) y" 
e iN(y)y  ' 

f ( x  - x', y - y ' )  dx'  dy" 

acting on Lp(RnXT). The norm of the operator U is independent of N(y) and in parti- 
cular of the L=-norm of N(y). 

Proof. By Remark 2 we know that (a) holds. Then it is easy to prove that Us f 
converges in L f n o r m  by writing U,,Nf(x, y)----Z. U,,Nf(X, Y)ZE.( x, Y) where E, = 
{(x, y): N(y)=n} and observing that by assumption we are dealing with a finite sum 
for every fixed N(y). Hence (b) holds. 

Part II 

In this section we are going to study the boundedness of our operators T from 
Hp(R"• m) to Lp(R"• 0<p-<_l, and from LlgLM(n'm)(R"• m) to weak-L1 
(R"• Our proof is based on Theorem 3 that foUows. Its proof  can be found 
in [5]. 

A function a(x, y) defined m R " •  m is said to be an Hp-rectangle atom provi- 
ded a is supported on a rectangle R=Q,• where Q1 is a cube of s i d e / a n d  Qs 
is similarly defined, 

fez a(x, y)x'dx=O for each multiindex a so that I~l ~N(p) and for each yE Qs, 

fej a(x, y)yady=0 for each multiindex fl so that [pl<=N(p) and for each xEQI , 

and IlalIL,r Here N(p) is a positive integer depending upon p, n and m 
which becomes large as p ~ 0  and that can be taken equal to zero i fp  is sufficiently 
close to 1 (see [5]). Now we can state 
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Theorem 3. Let G be a linear bounded operator on L2(R~• Suppose that for 
any Hp-rectangle atom a supported on the rectangle R we have 

fcR IG(a)lP dx dy ~- c? -1 

for every ? >: 2, with R~ denoting the concentric y-fold dilation o f  R. Then G is a bounded 
operator from Hp(R~XR ") to Lp(R"XR'~), 0<p<: l .  

We will also make use of the following 

Lemma 2. Given K ( x ) = ~ ,  xCR", where g2 is homogeneous o f  degree zero 

and satisfies (al), then i f  q) is as in Part I and Ko(X)--K(x)ep(x) we have 

(5) I~r <- cll~ll if ll~II < 1. 

If  furthermore, f2 is C 0) then 

(6) Ig0(r ~- cl[~[I-1 / f  t{r > 1. 

Proof. (5) follows by a Taylor expansion of/~0(~) with the origin as a starting 
point and (6) by one integration by parts. 

We shall now require smooth truncations on the y'  variable in the definition of 
our operators T. Suppose that ~Pl(x) and opt(y) are C ~, radial and supported res- 
pectively on {1/2 =<11x11~ 2} and {1/2~-IJYll <_-2}. Define K~l)(x) and K~)(y) in the 
usual way. Then consider the operator 

Tf(x, y) = f Z k  K~tl)(x-x') f z~-~_6(k,~) K~(~)(Y-Y')f( x', Y') dy" dx' 

defined as a limit in the sense of distributions. The existence of the limit can be proved 
as in the classical case. We are going to show 

Theorem 4. I f  f21 and f22 satisfy (ax) and (as) respectively and furthermore [21 is C (I) 
and f22 i f  Lipschitz continuous, then T is bounded from Hp to Lp, 1/2<p <- 1. 

Proof. Let us check that the condition of Theorem 3 is satisfied. We will estimate 
separately 

f,l,~ll.7.~'i~jl ITaldxdy; f,,~,,~_2?l ITaldxdy; f,,~tt~~.,~lTaldxdy. 
Ilyn ~ 2  rldl IlYll ~9. j 

Our estimates follow closely [5], except in the case I[xll--<--2[I1, Ilyll~2~rlJI which 
requires a different argument. Assume first Ilxll ~2'1/I, Ilyll ~2tr lJ l .  Then in the 
sums that follow it is enough to add over 2-k=>2" III, and 2-h=>2Z? IJI. We have 

Ira<x, y)l < f 2~ IK~o)<~-~')-K,<" (x)l sup If 2 ~ o  Kh~)(Y'Y')a(x" y') dy'] dx'. 
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Proceeding as in the proof  of Lemma 1 and using the fact that  s is Lipschitz we can 

I/I So prove that  IK(~)(x-x')-g(~l)(x)l <--Cn 2_k(.+~) . 

IZa(x, Y)[ =< (2,lll).+lc" III fsup,,o f Z.>-.o (K~)(Y-Y ')-K~(2)(y))a( x', Y') dy'[ dx" -< 

-< c.]II lJ[ 
= (2rli[).+ 1 �9 (2tyljl)m+ 1 fla(x', y')l dx'dy'. 

Therefore by Schwarz inequality 
]Rla/2 

f l, xH ~g~l~J Ira(x. Y)l dxdy ~_ e. r---~ff [[al[~(g). 
l l y l l  ~ Vl 

Now suppose llxll<=21II and IlYll-~Zq, IJI. Fix y. Then by Schwarz inequality and 
Plancherel formula we have 

f l,~,,~-~l,~ Ira(x, Y)I dx <- llI "/2 ( f  lTa(x, y)l = dx f  '= 

= IIl ":~ ( f  Izk ~ '  (~) z =  ._-<.,k,.)K~,,, .e(~. y)l = de) 1" 

<- ill./= (f (Z~  IKk (~''') ({)1)2 sup [Zh>=ho Kh (2)*a({, y)[2 d{)tl 2" 
h o 

Since K(k*)(X)=2knK(o*)(2kx). by Lemma 2 we have ~ k  ]Kk(~)({)[ <--c. Therefore inte' 
grating both sides of the inequality with respect to y we obtain 

f ,s~,,~2f ITa(x. Y)I dx dy <= clll"/2 f ,,:~2,rlsl (s~p [Zh>=ho Kh(2)*~l(~, y)lZ d~)Xl2 dy 
Ilyl~ Z2 ~lJI 

= < c[I[n/2(2ty]J[)m/z ( f  > K ( 2 ) . a  ~, sup IZh-ho . *( y)l=ar ayf/=. 
Since 

[~h Kh (2)*a(e, Y)[ = ] Y__.h f (K(hZ)(Y--Y')--K(h2)(Y))*a({. y')dy'[ 

< [:l f = (2tTlJl)m+ ~ la(~, y')[ dy', 

we have by Plancherel formula that 

f,~,,~4, ITa(x, Y)I dxdy <= IR?/~ IIalIL~(R). 
I yl l  ~ 2  r J 2t~' 

Similarly one can show that 

f ,~,~~ ~11Za(x, y)[ dxdy <= IRIV~ [lallL~(g). 
I lY[ I  ~_2 J 2r~' 
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Then one applies H61der's inequality and if ~<p<_- 1 one may add up the preceding 
estimates and prove the theorem. 

Remark 3. For 0<p<=~, Theorem 4 can be proved in a similar way assuming 
more smoothness on the kernels K (t) and K ta) and using the fact that the rectangle 
atoms have N(p) vanishing moments in each variable separately. See [5]. 

Also under the same assumption of Theorem 3 as in the//1 case one can prove 
(see [5]) that, in case n=m= 1, 

C 
m{lGf(x, Y)I > e, xCQx, y~Q2} ~- ~ llfIIL~o~L 

where Q1 and Q~ denote the unit square of the two copies of R. Therefore under the 
assumptions of Theorem 4 our operators T map L log L into weak-L1, in ease 
n = m = l .  

Part I l l  

In this section we prove maximal theorems for the operators T and U of Part I, 
as well as weighted norm inequalities. 

Theorem 5. Let 

Tf(x, y) = sup [Zk_~ko K~I)*K~(~2,r)*f(x, Y)]. 
ko>O 

Then under the same assumptions of Theorem 1 the following inequality holds 

(7) Tf(x, y) <= e{M1T(2) f(x,  y)+ Ml(Tf)(x, y)} 

with c independent o f f  and {6(k, y)}. Hence ~ is bounded on Lp, 1 < p <  oo and under 
the assumptions of Theorem 4,from HI to weak-/_a. 

Proof. We are going to compare Tkof(x, y)=~k~_k.K~).K(~2)*f(x, y) with 
q~ko(X')* Tf(x, y) where qgko(X')=2kong(2~oX" ) and r is chosen to be radial, 
decreasing, smooth, supported in the unit ball and such that f~o(x')dx'=l and 
~p (x') ~0. Let us denote by F~(x', y) =K(j~,y),f(x', y). Clearly, IFk(x',y)l <= TC~)f(x',y). 
Now we consider 

Gtof(x, Y) = f {Zk<-~oK~I)(X")Fk (x -x ' ,  Y)--.~k q)ko*Kk(1)(x')Fk( x - x ' ,  Y)} dx'. 

Observe that 

~P~o*[Zk K~I)*Fk( x, Y)] = Z k  [Kk(X)*~~ F*(x, Y) 
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as one can check by a limiting argument. To estimate G~o f (x ,  y) we split the domain 
of  integrationinto two pieces: Ilx'll -> 10.2-k0 and  Ilx'll > 10.2-k0 and so we write 
Gkof=G~Xo~f+G~)f. If  IIx'll~_10.2-~o then 

Z~_~oIK~I~(x31 ~_c2k~ and by (ax) 

Z k  Kk(1)*CP~o(x') = Zk>=M-8 Kk(1)*~Oko(X')" 
Since K(kl}(x) = 2~K0m(2kx), from Lemma 2 it follows that 

2k0 _ .  
llK~m*~ko(x')ll~ ~--II~m ffkoh ~_ cn~ r  2"o" 

and so ~,k~k~ IK~ ~) * q~0(x')l ~--c2 k~ This implies that la~,~f(x, Y)I <= cMx TC~)f(x, y). 
Now suppose llx'll > 1 0 . 2  -ko and observe that 

2 k  Kka'*gko(x') = 2k~_~ KJx'*9~o(x') " 

Since f ~ (x') dx'----- 1 we are led to study 

ax" I 
~- f Z~-<~o IKJ x) (x') -K~  (x) (x' -x '31 ~0~o(X") dx" ~_ Z~_~o 2k-~~ (x'), 

by computations similar to those of  Lemma 1. So G~f(x,y)<=cMx~z)f(x,y). 
Hence T~of(X, y)~_c {]q~o.(Tf)(x, Y)I +MxT(~f(x,  Y)} and from this (5) follows. 

In a similar way one proves 

Theorem 6. I f  

- - -  ,if <x,)., 
ko>O 

y, f(x-x' ,  y-y')dx'dy", 

then under the same assumptions of Theorem 2 we have tTf(x, y)<=c {Ml~f(x, y)+ 
Ml( Uf ) (x, y)} where ~ denotes the maximal CarIeson operator and c is independent of 
N(y), {~ (k, y)} and f .  

Now we are going to prove that weighted norm inequalities hold for the operators 
T and therefore, by (7), for the ~P's as well. Following [6] we say that w(x, y)E 
Ap(R"XR m) if for every yER m the functions x~w(x,y)EAp(R ~) and have alp- 
norm bounded independently of  y and if a similar condition holds for the functions 
y-*w(x, y) for every xER. For the basic facts about  Ap(R ~) weights, see [1] and [8]. 

Theorem 7. I f  T and ~ are defined as above and wCAp(R~• m) then for 1 < p <  oo 

(8) IlZfllL, cw~ --~ cp llfllL,<wl, 
# 

(9) [l:rfliL, c,O < cp lifl[ = Lp(w) 
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t with % and cp depending only upon p, n, m and the constants that appear in (bl) and 

(b2). 

Proof. The p r o o f  o f  (6) follows the same lines o f  the p r o o f  o f  Theorem 1, once the 

following two inequalities have been established [6]: 

llSr <= CE IlfllLl~) 

where w~Ap(R") and  fELp(w(x)dx) ;  

II(z (M1M~fD~)~'2iI~,<., , ~ c; l/(2' 
where w E A , ( R n X R  •) and  fEL , (w(x ,  y) dx dy). 

Finally, since the Ca de son  opera tor  satisfies weighted n o r m  inequalities [9] we 

also have 

Theorem8.  I f  wEAp(RnXT) and l < p < ~ ,  then 

lI Uf]IL~(w) <= % llfllL~@,); 

where % and c'p in particular do not depend upon the function N(y) .  
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