Sums of complemented subspaces in locally convex spaces

Lars Svensson

1. Introduction

Let $P_1, ..., P_m$ be continuous linear projections onto the subspaces $N_1, ..., N_m$ of a topological vector space X. Two natural questions arise:

- (a) Is $N_1 + ... + N_m$ closed?
- (b) Is $N_1 + ... + N_m$ complemented?

In [3], H. Lang answers (a) affirmatively in case X is a Fréchet space and all products P_iP_j , $i\neq j$, are compact. This generalizes a similar result by L. Svensson [4] for reflexive Banach spaces.

The aim of this paper is to answer question (b). In fact we will prove that if X is a Hausdorff locally convex topological vector space and P_iP_j is compact for $i\neq j$, then $N_1+\ldots+N_m$ is complemented. Moreover a continuous linear projection onto this sum is given by $P_1+\ldots+P_m$, modulo compact operators.

If X is a Hilbert space, we will prove that $N_1 + ... + N_m$ is closed if $N_i + N_j$ is closed for all i, j and every product $P_i P_j P_k$ is compact for $i \neq j \neq k \neq i$.

2. Sums of complemented subspaces in locally convex spaces

Throughout this paper we will use the following definitions and notations.

A continuous linear map from one topological vector space into another is called a *homomorphism* if it is relatively open, *compact* if it maps some open set onto some relatively compact set and a *projection* if it is idempotent.

A map T is a compact perturbation of a mapping S, if S-T is compact. A subspace of a topological vector space (TVS) is called complemented (topologically

supplemented or a direct summand) if it is the image of some continuous linear projection.

Lemma 2.1. A subspace L in a TVS X is complemented precisely if the canonical map $X \rightarrow X/L$ has a right inverse, which also is a homomorphism.

Proof. Strightforward verification.

Lemma 2.2. Let $S: X \rightarrow Y$ and $T: Y \rightarrow Z$ be homomorphisms such that im $S \supset \ker T$. Then TS is a homomorphism.

Proof. Easy verification.

Lemma 2.3. Let L and M be subspaces of a TVS X. Suppose that $L \subset M$ and that L is complemented in X. If, in addition, M/L is complemented in X/L, then M is complemented in X.

Proof. Consider the commutative diagram below, where all topologies and mappings are the canonical ones

$$X \xrightarrow{p} X/L$$

$$\downarrow r$$

$$X/M \xrightarrow{s} X/M \xrightarrow{L} M$$

The reader may recall that s is a topological isomorphism. By the assumption and Lemma 2.1 there exist homomorphisms

$$p': X/L \to X$$
 and $r': \frac{X}{L} / \frac{M}{L} \to \frac{X}{L}$

such that $p \circ p'$ and $r \circ r'$ are the identity mappings.

Thus both p' and r' are injective and we conclude from Lemma 2.2 that $p' \circ r'$ is an injective homomorphism. Hence $q' = p' \circ r' \circ s : X/M \to X$ is a homomorphism.

But $q \circ q' = s^{-1} \circ r \circ p \circ p' \circ r' \circ s$ is the identity on X/M.

This proves the lemma.

Lemma 2.4. Let T be a homomorphism from one TVS X into another Y. Suppose that $\ker T$ and $\operatorname{im} T$ are complemented with projections P and Q respectively. Then T has a "left pseudo-inverse", i.e. there exists a homomorphism $T^{\sharp}: Y \to X$ such that $T^{\sharp}T = I - P$.

Proof. Consider the diagram below, where T_0 is an isomorphism.

Now put $T^{\#} = JT_0^{-1}Q$.

By Lemma 2.2, $T^{\#}$ is a homomorphism.

Much of what remains, in this paper, is to refine the following.

Lemma 2.5. Let P and Q be projections onto the subspaces L and M in a TVS X. Suppose that I-PQ and I-QP are homomorphisms with complemented kernels and images. Suppose, moreover, that their kernels are equal.

Then L+M is complemented in X.

Proof. By assumption $L \cap M = \ker(I - PQ) = \ker(I - QP)$. Thus, by Lemma 2.3, we may assume that $L \cap M = 0$. Now it is straightforward to verify that $R = P(I - QP)^{\sharp} (I - Q) + Q(I - PQ)^{\sharp} (I - P)$ is a projection onto L + M.

Remark. The reader should have no difficulty in verifying that

$$R = I - S + SQS(I - PQ)^{\sharp} (I - P)S + SPS(I - QP)^{\sharp} (I - Q)S$$

is a projection onto L+M (where I-S is any projection onto $L\cap M$).

Lemma 2.6. Let E be a finite dimensional and F a complemented subspace in some Hausdorff locally convex TVS (from now on abbreviated HLCTVS). Then E+F is complemented. If moreover $E \cap F=0$, and Q is some projection onto F, there exists a projection P onto E satisfying PQ=0, with the property that P+Q-QP is a projection onto E+F.

Proof. It is no loss of generality to assume that

$$\dim E = 1$$
, and that $E \cap F = 0$.

If $0 \neq e \in E$, it follows from the Hahn—Banach theorem that some $e' \in X'$ annihilates F and satisfies e'(e)=1.

Put Px = e'(x)e.

The rest is plain verification.

Definition. A homomorphism from one TVS into another is called a *quasi-iso-morphism* if its kernel has finite dimension and its image has finite codimension.

Lemma 2.7. In a HLCTVS compact perturbations of isomorphisms are quasi-isomorphism.

Proof. See Grothendieck [2].

We now have come to our main result.

Theorem 2.8. Let L, M be complemented subspaces in a HLCTVS X with corresponding projections P, Q. Suppose that I-PQ and I-QP are compact perturbations of isomorphisms. Then L+M is complemented. Furthermore, if PQ and QP are compact, then P+Q is a compact perturbation of some projection onto L+M.

Proof. We will reduce this theorem to Lemma 5. To do this we introduce

$$H = \ker (I - PQ) \subset L$$
 $K = \ker (I - QP) \subset M$
 $\tilde{L} = L + K$
 $\tilde{M} = M + H$.

We observe that $L \cap M = H \cap K$ is finite dimensional. Thus, by passing to the quotient space $X/L \cap M$ we may, in view of Lemma 3, assume that $L \cap M = 0$. Hence $H \cap M = K \cap L = 0$.

Since H and K are finite dimensional we conclude, from Lemma 6, that there exist projections S and T onto H and K, respectively, such that $\tilde{P}=P+(I-P)T$ and $\tilde{Q}=Q+(I-Q)S$ are projections onto \tilde{L} and \tilde{M} , respectively. Since S and T are compact, $I-\tilde{P}\tilde{Q}$ and $I-\tilde{Q}\tilde{P}$ are compact perturbations of isomorphisms.

Obviously $L+M=\widetilde{L}+\widetilde{M}$, so if we show that $\ker(I-\widetilde{P}\widetilde{Q})=\ker(I-\widetilde{Q}\widetilde{P})$, the proof will follow from Lemma 2.5. Since $H\subset L\cap \widetilde{M}\subset \widetilde{L}\cap \widetilde{M}$ and $K\subset \widetilde{L}\cap \widetilde{M}$, we get $H+K\subset \widetilde{L}\cap \widetilde{M}\subset \widetilde{H}\cap \widetilde{K}$, where $\widetilde{H}=\ker(I-\widetilde{P}\widetilde{Q})$ and $\widetilde{K}=\ker(I-\widetilde{Q}\widetilde{P})$. Now we claim that $\widetilde{H}\subset H+K$. Indeed if $x\in \widetilde{H}$, then

$$x = \tilde{P}\tilde{Q}x = PQx + P(I-Q)Sx + (I-P)T(Q + (I-Q)S)x.$$

So Px=PQx+P(I-Q)Sx. But clearly PQS=S=PS. Hence Px=PQx for all x in \widetilde{H} . Since $\widetilde{H}\subset \widetilde{L}=L+K$, every x in \widetilde{H} can be written as y+z, where $y\in L$ and $z\in K$.

Therefore Px = P(y+z) = PQ(y+z) yielding $y = PQy \in H$. Hence $\tilde{H} \subset H + K$, proving our claim.

Finally $\widetilde{L} \cap \widetilde{M} \subset \widetilde{H} \subset H + K \subset \widetilde{L} \cap \widetilde{M}$, from which we conclude that $\widetilde{L} \cap \widetilde{M} = \widetilde{H} = \widetilde{K} = H + K$, and consequently that L + M is complemented. The rest of the theorem follows easily from the remark made after Lemma 2.5.

An induction argument yields.

Corollary 2.9. Let $N_1, ..., N_m$ be complemented subspaces in a HLCTVS with corresponding projections $P_1...P_m$. Assume that P_iP_j is compact whenever $i \neq j$. Then $N_1+...+N_m$ is complemented. Moreover, $P_1+...+P_m$ is a compact perturbation of a corresponding projection.

3. Sums of closed subspaces in Hilbert spaces

Our aim in this section is to prove.

Theorem 3.10. Let $P_1...P_m$ be orthogonal projections onto the subspaces $N_1...N_m$ of a Hilbert space H such that

- (i) $N_i + N_i$ is closed for all i, j;
- (ii) $P_i P_i P_k$ is compact for all $i \neq j \neq k \neq i$.

Then $N_1 + ... + N_m$ is closed in H.

Before we prove this, we need a couple of Lemmas.

Lemma 3.11. Let P and Q be orthogonal projections onto L and M, subspaces of a Hilbert space H.

Then L+M is closed precisely if I-PQ has closed image.

Proof. We may assume that $L \cap M = 0$, otherwise we just pass to the quotient space $H/L \cap M$. By duality, im (I-PQ) is dense. Thus, by the open mapping theorem, I-PQ is invertible if and only if im (I-PQ) is closed.

Also, as is easily seen, I-PQ is invertible precisely if |PQ|<1.

Finally, as is well-known, L+M is closed precisely if |PQ| < 1, proving our lemma.

Lemma 3.12. Let P, Q, R be orthogonal projections onto the subspaces L, M, N of a Hilbert space H, such that

- (i) L+M, L+N, M+N are closed.
- (ii) $L \cap N = M \cap N = 0$.
- (iii) POR, RPO and ORP are compact.

Then L+M+N is closed.

Proof. Letting $P \wedge Q$ denote the orthogonal projection onto $L \cap M$, it is not too hard to verify that

(*)
$$S = P \wedge Q + (I - Q)(I - PQ + P \wedge Q)^{-1}(P - P \wedge Q) + (I - P)(I - QP + P \wedge Q)^{-1}(Q - P \wedge Q)$$

is an orthogonal projection onto L+M. A simple calculation shows that

$$I-RS = (I-RP)(I-RO)+K$$

for some compact operator K.

By Lemma 3.11, I-RP and I-RQ are invertible. Hence, I-RS, being a Fredholm mapping, has a closed image. Thus, by Lemma 3.11, L+M+N is closed.

Lemma 3.13. Let L, M, N be closed subspaces in a Hilbert space H, with orthogonal projections P, Q, R respectively. Suppose that

- (i) L+M, L+N, M+N are closed.
- (ii) PQR, RPQ, QRP are compact.

Then L+M+N is closed.

Proof. Since $(R \wedge P)(R \wedge Q)$ is compact, it follows from Theorem 8 that $E = N \cap L + N \cap M$ is closed, and that $R \wedge P + R \wedge Q$ is a compact perturbation of an orthogonal projection T onto E. (The orthogonality follows easily from the fact that $R \wedge P + R \wedge Q$ is self adjoint).

 $\tilde{R}=R-T$ is an orthogonal projection onto $\tilde{N}=N\cap E^{\perp}$ where \perp denote orthogonal complement. We observe that $\tilde{N}\cap L=\tilde{N}\cap M=0$, and that $L+M+N=L+M+\tilde{N}$. Now we want to apply Lemma 3.12 to L,M and \tilde{N} . That $PQ\tilde{R}$, $\tilde{R}PQ$ and $Q\tilde{R}P$ are compact is easily checked. Hence it only remains to show that $L+\tilde{N}$ and $M+\tilde{N}$ are closed.

A straightforward calculation shows that

$$P\tilde{R} = PR(I - R \wedge P) + K$$

for some compact operator K.

But, since L+N is closed, the norm of $PR(I-R \wedge P)$ is less than 1. Hence $I-P\tilde{R}$ is a compact perturbation of an isomorphism.

From Theorem 2.8 we therefore conclude that $L+\tilde{N}$ is closed. Similarly we get that $M+\tilde{N}$ is closed, completing the proof.

Proof of Theorem 3.10. Induction on m.

Remark. A generalization of Theorem 3.10 in terms of products of four projections is not valid, as the following counter example shows. Put for n=1, 2, ...

$$K_n = \text{span} (1, 0, 0, 0) \subset \mathbb{R}^4$$
 $L_n = \text{span} (0, 1, 0, 0)$
 $M_n = \text{span} (0, 0, 1, 0)$
 $N_n = \text{span} (1, 1, 1, n^{-1})$
 $H_n = \mathbb{R}^4$

and let H be the direct product of the H_n , with K, L, M, N similarly defined as subsets of H.

If S, P, Q and R denote the orthogonal projections onto K, L, M and N respectively, one easily verifies that the product, in any order, of P, Q, R and S is 0.

Moreover, every sum of three or less of the subspaces K, L, M and N is closed. However, K+L+M+N is not closed. If we put $\tilde{L}=K+L$ we get an example showing that we really need the assumption that *every* permutation of the product in condition (ii) of Theorem 3.10, is compact.

Remark. In [4] Theorem 2.8 is used to study questions arising in theoretical tomography concerning the closure of a finite sum of subspaces of L^p consisting of functions constant on certain sets. In a future paper we will use Theorem 3.10 to give a functional analytic proof of a theorem in three-dimensional theoretical tomography, due to J. Boman [1]. Theorem 2.8 can also be used to prove theorems about extensions of functions and existence theorems for certain partial differential equations, see [4].

References

- 1. Boman, J., On the closure of spaces of sums of ridge functions and the range of the X-ray transform, Ann. Inst. Fourier, Grenoble 34, 1 (1984), 207—239.
- 2. GROTHENDIECK, A., Topological Vector Spaces, Gordon and Breach 1973.
- LANG, H., On sums of Subspaces in Topological Vector Spaces and an Application in Theoretical Tomography, Applicable Analysis, 1984, 18 257—265.
- 4. Svensson, L., On the closure of sums of closed subspaces, Research report, Royal Inst. of Technology (Stockholm), 1981.

Received April 9, 1985

Department of Mathematics Royal Institute of Technology 10044 Stockholm Sweden