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1. Introduction 

Let P1 . . . . .  Pm be continuous linear projections onto the subspaces N1 . . . . .  Nm 
of a topological vector space X. Two natural questions arise: 

(a) Is N~ +... + Nm closed? 
(b) Is N~+.. .  +Arm complemented? 

In [3], H. Lang answers (a) affirmatively in case X is a Fr6chet space and all products 
.P~Pj, i#j, are compact. This generalizes a similar result by L. Svensson [4] for reflex- 
ive Banach spaces. 

The aim of this paper is to answer question (b). In fact we will prove that if Xis a 
Hausdorff locally convex topological vector space and PiPj is compact for i#j, 
then 3/1 +... +Nm is complemented. Moreover a continuous linear projection onto 
this sum is given by P1 +... +Pm, modulo compact operators. 

I f  X is a Hilbert space, we will prove that NI +... +N,, is closed ff Nt +N~ is 
closed for all i, j and every product "PiPjPk is compact for i # j # k  # L 

2. Sums of complemented subspaces in locally convex spaces 

Throughout this paper we will use the following definitions and notations. 
A continuous linear map from one topological vector space into another is cal- 

led a homomorphism if it is relatively open, compact if it maps some open set onto 
some relatively compact set and a projection if it is idempotent. 

A map T is a compact perturbation of a mapping S, if  S - T  is compact. A sub' 
space of a topological vector space (TVS) is called complemented (topologically 
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supplemented or a direct summand) if it is the image of some continuous linear 
projection. 

Lemma 2.1. A subspace L in a TVS X is complemented precisely i f  the canonical 
map X ~ X / L  has a right inverse, which also is a homomorphism. 

Proof. Strightforward verification. 

Lemma 2.2. Let S: X ~ Y  and T: Y o Z  be homomorphisms such that 
im S ~ ker T. Then TS is a homomorphism. 

Proof. Easy verification. 

Lemma 2.3. Let L and M be subspaces of  a TVS X. Suppose that L c M  and that 
L is complemented in X. If, in addition, M/L  is complemented in X/L, then M is comple- 
mented in X. 

Proof. Consider the commutative diagram below, where all topologies and mapp- 
ings are the canonical ones 

X r, , X/L 

.! 1, 

The reader may recall that s is a topological isomorphism. By the assumption and 
Lemma 2.1 there exist homomorphisms 

X and r': X / M  X p': X/L 
-[T- Tt 

such that pop" and ror" are the identity mappings. 
Thus both p" and r '  are injective and we conclude from Lemma 2.2 that p'or '  

is an injective homomorphism. Hence q'=p'or 'os:  X / M ~ X  is a homomorphism. 
But qoq '=s- loropop 'or 'os  is the identity on X/M. 
This proves the lemma. 

Lemma 2.4. Let T be a homomorphism from one TVS  X into another Y. Suppose 
that ker T and i m T  are complemented with projections P and Q respectively. Then 

T has a "left pseudo-inverse", i.e. there exists a homomorphism T# : Y ~ X  such that 

T# T = I - P .  



S u m s  o f complemented subspaces in locally convex  spaces 149 

Proof Consider the diagram below, where To is an isomorphism. 

I - - P  T Q 
X ~ - - - - -  X ) i m T ~  Y 

X X 
ker ( l - P )  = kerT 

Now put T~ =JTolQ. 

By Lemma 2.2, T# is a homomorphism. 
Much of what remains, in this paper, is to refine the following. 

L e m m a  2.5. Let P and Q be projections onto the subspaces L and M in a TVS  
X. Suppose that I - P Q  and I - Q P  are homomorphisms with complemented kernels 
and images. Suppose, moreover, that their kernels are equal. 

Then L + M is complemented in X. 

Proof By assumption Lc~M-~ker ( I - P Q ) = k e r  ( I - Q P ) .  Thus, by Lemma 2.3, 
we may assume that LnM=O.  Now it is straightforward to verify that 

R = P ( I -  QP)~ ( I - Q ) + Q ( I - P Q ) ~  ( I - P )  is a projection onto L +M. 

Remark. The reader should have no difficulty in verifying that 

R = I - S +  S Q S ( I - P Q )  ~ ( I - P )  S + S P S ( 1 - Q P )  ~ ( I - Q ) S  

is a projection onto L + M  (where 1 - S  is any projection onto Lta M). 

L e m m a  2.6. Let E be a finite dimensional and F a complemented subspace in some 
Hausdorff locally convex TVS  (from now on abbreviated HLCTVS) .  Then E + F is 
complemented. I f  moreover Ec~F=O, and Q is some projection onto F, there exists 
a projection P onto E satisfying PQ = O, with the property that P + Q -  QP is a pro- 
jection onto E + F. 

Proof It is no loss of generafity to assume that 

d i m E =  1, andthat  Ec~F=O.  

If O:eEE, it follows from the Hafin--Banach theorem that some e'EX" 
annihilates F and satisfies e'(e)= 1. 

Put Px = e'(x) e. 
The rest is plain verification. 

Definition. A homomorphism from one TVS  into another is called a quasi-iso- 
morphism if its kernel has finite dimension and its image has finite codimension. 

L e m m a  2.7. In a HLCTVS  compact perturbations of  isomorphisms are quasi- 
isomorphism. 
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Proof. See Grothendieck [2]. 
We now have come to our main result. 

Theorem 2.8. Let L, M be complemented subspaces in a HLCTVS X with corres- 
ponding projections P, Q. Suppose that I " P Q  and 1 - Q P  are compact perturba- 
tions of isomorphisms. Then L + M is complemented. Furthermore, if PQ and QP are 
compact, then P+ Q is a compact perturbation of some projection onto L + M. 

Proof. We will reduce this theorem to Lemma 5. To do this we introduce 

H = ker ( I -PQ) a L 

K = ker ( I -QP) a M 

~ = L + K  

_,'~I = M + H. 

We observe that L n M= HnK is finite dimensional. Thus, by passing to the quotient 
space X/L n M we may, in view of Lemma 3, assume that L n M =  O. Hence H n M =  
K n L = 0 .  

Since H and K are finite dimensional we conclude, from Lemma 6, that there 
exist projections S and T onto H and K, respectively, such that P = P + ( I - P ) T  
and O = Q + ( I - Q ) S  are projections onto L and _~r, respectively. Since S and T 
are compact, i - f f ~ ) a n d  I-QP are compact perturbations of isomorphisms. 

Obviously L + M = L + ~ ,  so if we show that ker (~r-PO_)=ker(I-OP), the 
proof will follow from Lemma 2.5. Since H a L n _~r c L n l~r and KC ~ n/Q', we get 
H + K a L n ~ r c / T n / ~ ,  where / 7 = k e r ( I - f f Q )  and / ~ = k e r ( I - O f f ) .  Now we 
claimthat ITcH+K.  Indeedif  x5/7, then 

x = ffOx = PQx+P(I-Q)  SX+(I -P)  T(Q+(I -Q)  S)x. 

So Px=PQx+P(I -Q)Sx .  But clearly PQS=S=PS. Hence Px=PQx f o r a l l x  
in/7.  Since / 7 c ~ = L + K ,  every x in /7 can be written as y+z, where yEL and 
zEK. 

Therefore Px=P(y+z)=PQ(y+z) yielding y=PQyEH. Hence ~Tell+K, 
proving our claim. 

Finally L n 2 Q a / - T a H + K a ~ n 2 ~ r ,  from which we conclude that L n ~ r =  
/ 7 = / ~ =  H+K, and consequently that L + M  is complemented. The rest of the theo- 
rem follows easily from the remark made after Lemma 2.5. 

An induction argument yields. 

Corollary 2.9. Let N1, ,.., N,, be complemented subspaces in a HLCTVS with 
corresponding projections P1...Pm. Assume that P~Pi is Compact whenever i~j. Then 
NI +... + Nm is complemented. Moreover, P~ +... + P,, is a compact perturbation of 
a corresponding projection. 
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3. Sums of  dosed subspaces in Hilbert spaces 

Our aim in this section is to prove. 

Theorem 3.10. Let Px..,P,, be orthogonal projections onto the subspaces N1...Nm 
of  a Hilbert space H such that 

O) N,+Nj  is closed for all i, j ;  
(ii) PiPsPk is compact for all i ~ j ~ k ~ i .  

Then NI +... + N m is closed in H. 
Before we prove this, we need a couple of  Lemmas. 

Lemma 3.11. Let P and Q be orthogonal projections onto L and M, subspaces of  
a Hilbert space H. 

Then L + M is closed precisely i f  1 -  PQ has closed image. 

Proof. We may assume that L n M = 0 ,  otherwise we just pass to the quotient 
space H / L n M .  By duality, im (1-PQ)  is dense. Thus, by the open mapping theo- 
rem, 1 - P Q  is invertible if and only if im ( I - P Q )  is dosed. 

Also, as is easily seen, I - P Q  is invertible precisely if [PQ[< 1. 
Finally, as is well-known, L + M  is dosed precisely if ]PQ[<I, proving our 

lemma. 

Lemma 3.12. Let P, Q, R be orthogonal projections onto the subspaces L, M, N 
of  a Hilbert space H, such that 

O) L + M, L + N, M + N are closed. 
(ii) L n N = M c ~ N = O .  

(iii) PQR, RPQ and QRP are compact. 

Then L + M + N is closed. 

Proof. Letting P ^ Q  denote the orthogonal projection onto L n M ,  it is not 
too hard to verify that 

(* )  S = P ^ Q + ( 1 - Q ) ( 1 - P Q +  P ^ a ) - ~ ( P - P  n Q) 

+ ( I - P ) ( I - Q P  + P ^ a ) - x ( Q _ p  ^ Q) 

is an orthogonal projection onto L + M .  A simple calculation shows that 

I -  RS  = ( 1 -  RP) ( I -  I~Q) + K 

for some compact operator K. 
By Lemma 3.11, I - - R P  and I - R Q  are invertible. Hence, I - -RS,  being a Fred- 

holm mapping, has a closed image. Thus, by Lemma 3.11, L + M + N  is closed. 
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Lemma 3.13. Let L, M, N be closed subspaees in a Hilbert space H, with orthogo- 
nal projections P, Q, R respectively. Suppose that 

O) L+M,  L+N, M + N  are closed. 
(ii) PQR, RPQ, QRP are compact. 

Then L + M + N is closed. 

Proof. Since (RAP)(RA Q) is compact, it follows from Theorem 8 that 
E=Nc~L+NnM is closed, and that R A P + R A  Q is a compact perturbation of 
an orthogonal projection T onto E. (The orthogonality follows easily from the fact 
that R A P + R A Q  is self adjoint). 

I~=R--T is an orthogonal projection onto N = N n E  • where _L denote ortho- 
gonal complement. We observe that ~c~L=.NnM=O, and that L + M + N = L +  
M + ~ .  Now we want to apply Lemma 3.12 to L, M and N. That PQR, RPQ and 
QKP are compact is easily checked. Hence it only remains to show that L +/V and 
M + ~r are closed. 

A straightforward calculation shows that 

P ~  = P R ( I - R  ^ P ) + K  

for some compact operator K. 
But, since L + N  is closed, the norm of PR(I--R A P) is less than 1. Hence I - P / ~  

is a compact perturbation of an isomorphism. 
From Theorem 2.8 we therefore conclude that L + ~  is closed. Similarly we 

get that M + N  is closed, completing the proof. 

Proof of  Theorem 3.10. Induction on m. 

Remark. A generalization of Theorem 3.10 in terms of products of four pro- 
jections is not valid, as the following counter example shows. Put for n = 1, 2, ... 

K, = span (1, 0,0,0) c R 4 

L, = span (0, 1, 0, 0) 

M, = span (0, 0, 1, 0) 

N, = span (1, 1, 1, n -1) 

H . = R  4 

and let H be the direct product of the H,,  with K, L, M, N similarly defined as subsets 
of H. 

If S, P, Qand  R denote the orthogonal projections onto K, L, M and N respec- 
tively, one easily verifies that the product, in any order, of P, Q, R and S is 0. 
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Moreover,  every sum of  three or less of  the subspaces K, L, M and N is closed. 
However, K + L + M + N  is not dosed.  I f  we put  L = K + L  we get an example 

showing that we really need the assumption that every permutation of  the product  

in condition (ii) o f  Theorem 3.10, is compact.  

Remark.  In [4] Theorem 2.8 is used to study questions arising in theoretical 
tomography concerning the closure of  a finite sum of  subspaces of  L ~ consisting of  
functions constant on certain sets. In a future paper we will use Theorem 3.10 to 
give a functional analytic p roof  of  a theorem in three-dimensional theoretical to- 
mography,  due to J. Boman [1]. Theorem 2.8 can also be used to prove theorems 
about extensions of  functions and existence theorems for certain partial differential 

equations, see [4]. 
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