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Any nth order linear differential equation with a discrete set of singular points 
on an arbitrary Riemann surface M has a monodromy group [10] G constructed as 
follows: A set y~(z) (v= l  . . . . .  n) of n linearly independent local solutions to the 
equation in a neighborhood of an ordinary point is analytically continued along 
a canonical set of cross cuts (i.e., closed loops) for the homotopy group [9] of 
M'=M--{sing. of diff. eq.}. The solutions Y~,a obtained by analytically continuing 
each y, along a cross cut A are linear combinations of the y~ and determine a matrix 
AEGL(n, C). G is generated by A(A) where A ranges over all cross cuts mentioned. 
There is a natural homomorphism Z: nl(M')~G. When n=2,  A(A)EGL(2, C) 
for all AEzq(M') and G is faithfully represented by the group G* defined as the 
image of the composition of natural maps G c~GL(2, C)---Mtib. G* is isomorphic 
to G and can be regarded as the monodromy group when n---2. Monodromy groups 
have been studied extensively by Poincarr, Fuchs, Plemelj, Gunning, Deligne, Hejhal 
and others. 

In this paper, we begin a classification of monodromy groups of the particular 
differential equation known as Hill's equation. The general Hill's equation [8] in C 
is a second order, linear, homogeneous differential equation of the form 

(1) y"+P(z)y = 0 

with periodic coefficient P(z), zEC. We consider only those equations for which 
P(z) is a singly periodic, meromorphic function on C with real periods 2zcn (for all 
nE Z) and with m double poles in every period strip for some mE Z +. Such equations 
can be viewed as equations on the complex cylinder M=C/(z--,-z+2nn for all 
nEZ) with m regular singular points. 
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By substitution of suitable multi-valued functions z=g(w) into the Euler equa- 
tion 

(2) y" + ~ y '  +zfl-~y = 0  

in the extended complex plane (~ (see [1] for the properties of (2)), we obtain lifted 
equations which can be transformed to give Hill's equations restricted as specified 
in the previous paragraph. The generators for the monodromy group G* of each 
resulting equation are found either by analytically continuing a ratio of its indepen- 
dent solutions along a generating set of loops for 7rl (M') or by analytically con- 
tinuing a ratio of independent solutions to (2) along the images under g(w) in C 
of a generating set of loops for nl(M') (see [5, 6] for a more detailed description of 
these techniques). Either method allows us to develop the results in Theorems 2 and 3. 
The abstract groups C,, (X7=1 c~)•  IEZ+u{+~}, nEZ + as well as Z2- 
extensions of these groups are realized as monodromy groups of the lifted Hill's 
equations. 

On the other hand, Theorem 4 and its corollary are developed by analytic 
continuation on M'  of a ratio of solutions to a certain family of equations of type (1) 
depending on a complex parameter without lifting any Euler equation on ~. The 
monodromy groups realized are two generator groups having certain commutator 
relators as well as relators arising from prime ideals in Z[~, ~-1] depending on the 
values of the parameter mentioned. 

We now proceed to describe in detail our findings. 

Theorem 1. The substitutions z=ta(w), 2EC* with t(w) of  form 

(3) 

or 

(4) 

with 

., ~ . ( w - a i ~  
t w) = sin cCC 

t(w) =/-/i=1 tanS~ 

siEC*, m>0,  ajCak+2mr for all j , k = l  .... ,m, jCk,  and for all nEZ 
into any Euler equation (2) (with difference of  indicial roots r=rl-r2) on C. produce 
lifted equations which can be transformed respectively into Hill's equations (with a 
period 27r) 

1 1 - - ( 2 r )  ~ c_~_~j= 1 sj (5) y"(w)+ T 2 -g-cot t(w) y(w) = o 

o r  

y , , (w)+l  ] 1-(2r)  2 (--m sj w-a j  2 (6) T[ 
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where O~ is the Schwarzian derivative operator [3]. Equations (5) and (6) can be treated 
as equations on the complex cylinder C/(z~z+2nn for all n~Z) and determine 
monodromy groups on this Riemann surface. 

Proof. The Euier equation (2) with difference of indicial roots r = 1/(~- 1) 2 - 4fl 
can be lifted by the map z=t~(w) to C by a two step process as follows: Let 
z=fot(w) with f ( t ) = t  x. First, lift (2) by z=f( t )  to a new Euler equation 

(7) y"(t)+ t Y ' ( t ) +  y(t) = 0 

with a ' = 2 a - 2 + l  and fl'=fl2 ~ and with difference of  indicial roots 

(8) r'  = 1 / (e  ' -  1 ) 2 - 4 f l  ' = 2r .  

Second, lift (7) to C by the substitution t=t(w) to obtain 

(9) Y" (w) + P (w) r '  (w) + Q (w) Y(w) = 0, 

where P (w) = ~--~7---) + ct' and Q (w) = fl' 

If  t(w) assumes form (3) or (4), observe that 

t' ~'-,n Sj ( w--aj '~  
(lO) -7 = ~ + ~"J=~ T ~ot ( - ~ j  
or  

'" =z:  l CSC( ) (11) -7- = 

t p 
respectively and that all singularities o f -  in (10) and (11) are simple poles. Further- 

t 
t" (tt'~ tt'~ ~ l t t ' x  t" 

[ | _ | , + ] , ] 3 ] ] ] _ ]  Consequently, for ( 1 0 ) a n d  ( t l - ) a s  well as more, -7=if,  t !  I, t l ) l~, t  l" 

P(w) in (9) are meromorphic on C with simple poles as singularities. Therefore, the 
transformation [4] 

- - 4  fW r(s)d s . . 
Y(w) = e ~ - -  ytw) 

exists and can be used to transform (9) into 

(12) y"(w) + J(w) y (w) = O, 
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where 

J(w)=Q(w) - I  P'(w) - 1  P~(w) 

_,(t '~ ~ ! ( - t "  ~, t"i' 1 I - t "  , t'~ ~ 
=/s [WJ -g[-'T -+ wJ -~'[--?-+= TJ 

fl,+ :{' 2 (~')4~.)(t'' ' O~t(w) 
= [Tl + T "  

Elementary calculations using (8) produce 

so that 

1 --  (2r)  z ct' (ct') ~ 

4 - = f l ' ~  2 4 

J(w) = 1 [  - l - (2r)z  r t" h~ ] 
2 tS-J 

Equations (9) and (12) have the same ratio of linearly independent solutions. Eq. (12) 
is (5) or (6) for t(w) of form (3) or (4) respectively. 

t" t '  t ' z  
If t(w) assumes form (I0) or (1 I), observe that T (w+2rO=T(w) or T ( w + 2 n ) =  

t t 
~ ( w )  respectively. Furthermore, observe that 

3 

0~t(w,= { ~ / "  ~ [ { ~ ' ] '  1 { ~ / ~  

Hence, 02 t (w + 2~) = 0~ t (w) for t (w) of form (3) or (4). Also, [ t-~) ~ 
g t '  ,tz 

J cw) 
Thus, J(w+2zO--J(w) in (12). It follows that (5) and (6) are Hill's equations with 
a period 2re. 

From the periodicity of the coefficients of (5) and (6), we can conclude that these 
equations are defined on the complex cylinder C/(z~z+2gn for all nCZ) and have 
monodromy groups there. s 

Remark 1. The proof of Theorem 1 implies that if the substitutions z=tZ(w) 
and z=t(w), t(w) fixed of form (3) or (4), are made respectively into any two 
Euler equations with respectie differences of indicial roots r and r'~-r2, then the 
same transformed Hill's equation results. 

We can now prove 
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Theorem 2. Each equation o f form (5) has monodromy group G* of  one of  the 
following types; 

Ct, (xtnlCoo)XCt, /EZ+u{+~176  nEZ +. 

All of  these groups (for all specified l and n) are realized as r2E C and t (w) o f form O) 
both vary. 

Proof Remark 1 implies that there exists an equation (2) which lifts by map (3) 
to an equation which transforms into (5). Therefore, 2 = 1 can be assumed with no 
loss of  generality. Let u(z) be some ratio of  linearly independent solutions to (2) and 
h(w)=uot(w) the corresponding ratio of  linearly independent solutions to (5). 
Equation (5) has singularities at at ( i=  1 . . . . .  m) and bp (p = 1 ..... n), the additional 
poles of  0n t (w), as well as at all translates at + 2nn, bp + 2rcn, n( Z where no translate 
of  any bp is a translate of  any at. It can be assumed, without loss of  generality, that 
all at ( i=1 . . . . .  m) and bp ( p = l  . . . . .  n) lie in D={zlc<:Rez<c+2~ } for some 
c~Re. Since, by Theorem 1, equation (5) can be viewed as an equation on the cylinder 
C/(z~z+2nn for all nEZ), the group G* is generated by the elements T~, and Tbj 
corresponding to simple loops A,, and Abj in D about  the points ai and bp in D as well 
as the dement T~ corresponding to an arc A2, from some fixed base point w in D to 
w+2z .  Here, all loops and arcs avoid singularities of  (5). 

Equation (2) has a ratio of  linearly independent solutions given by 

so that 

{ z ~ if rEC* 
u ( z ) =  Inz if r = 0  

h ( w )  = 

cw + Ztm=l st ln sin (W--~2 ai } if r = O .  

Since h(w) is locally single-valued in a neighborhood of  bp for all p, Tbp=id. Fur- 
thermore, the generators Ta, corresponding to the simple loops A~, are given by 

eZ=i%z if r6C* 
Ta , (z )= t2z~is t+z  if r = 0 '  i = l , . . . , m .  

The generator T,~ is obtained by determining the continuation h(w+2n) along the 
arc A2,. We obtain 

f r2~x i-fro ~(gk + 1)~irs h (va'~ e~ ~ i=1- ' "","~" if rEC* 

h(w+2rc) = [ [c2n+~,~ '  1 (2k,+l)~ist]+h(w) if r = 0, 



124 Kathryn Kuiken and John T. Masterson 

where ki ( i=1,  ..., m)CZ depend on the homotopy class [A2~] in C-{a~+2rm, 
nEZ}. Therefore, 

{ eC'~ l I  m e(~ + l)'~,z ff rEC* i=1 
T , ( z ) =  [c2n+Z'~=l(2ki+l)nis lJWz if r = 0 .  

G* is generated by Ta, ( i= 1, ..., m), T~ and is a group of atfine mappings con- 
sisting entirely of multiplications if rEC* or of translations if r=0 .  Hence, G* 
is Abelian and a direct product of at most m +  1 cyclic groups [11]. 

We now show that G* has at most one generator of finite order. I f  r = 0 ,  then 
clearly G* has no generators or nontrivial elements of finite order. If  rEC*, then 
assume that 

Dl(z) = e z, D2(z) = e z, I, J, K, LEZ* 

are generators of G* having finite order. Define 

2~xi 
C ( z )  = e "2-ff'gcd(IL'JK). 

Number theory shows that the subgroups of G* generated by D~ ( i= 1, 2) and C are 
the same. We conclude that G* has at most one generator of finite order. Therefore, 
G* is one of  the types claimed. 

All of these types are realized as follows: Although G* is generated by at most 
m +  1 generators, it might have a minimal generating set with fewer elements. We 
will show, for fixed m and r in equation (5), that there are choices of s~ ( i=  1, ~.., m) 
and c for which a corresponding minimal generating set contains precisely m + l  
(rn= > 1) elements of infinite order. Similar arguments are used to prove the existence 
of monodromy groups with one generator of finite order and with fewer than two 
generators of infinite order. Consequently, all groups listed will result as m and r are 
varied. 

Suppose that, for fixed m, r and arbitrary si ( i= 1, ..., m), c and a t ( i= 1 . . . . .  m), 
there exists a minimal generating set having fewer than m-t- 1 elements. This assump- 
tion leads to at least one relation of the form 

T~~ T~'](z) = z for some (no, nx; ..., n,,)EZm+l-{<O, 0 . . . .  ,0)}. 

Thus, 
I �9 2kl-i- 1 

e 2~(-wrn~176 : 1 if rEC* 

. . _ ~  2k~+l . --,m 
/ - - W n o + ~ ' ~ = l  ~ -  S ~ n o + , ~ i = l  sini = 0 i f  r = 0 
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so that 

icrnoq_ ~am=l 2 k i + l  rsino_t_~i 1 rsini = NEZ if rEC* 
2 = 

�9 ~ , .  2k i+ 1 m 
zcno+Zi=l ~ Sino- t - ,~ i= 1 sins = 0 if r = 0. 

Equivalently, 

where 

[ Z .  ( - i c r ,  rsl, . . . ,  r S m )  : N if rEC* 

(--ic, sl . . . . .  Sin) = 0 i f  r = 0 ,  

V= [no, n l + ( ~  - ~ )  + ( 2 k ~ + l )  ) = 2Zm+l_{(0 ,  0}}. no, . . . ,  nm no EL* ..., 

It follows that 

(--ic, s 1 . . . .  ,sm)El[-J~s r ~ N I  
if rEC* 

[[.)~L. H(~, 0) if r = O ,  

where H(~, x) is the hyperplane in C m+l with equation -V. (Zl . . . . .  Zm+O=z. Since 
such countable unions of hyperplanes must be nowhere dense [12] in C "+x, there 
exist uncountably many choices of ( - i c ,  sl, ..., sin) in C m+l which do not lie in the 
above countable unions thereby preventing the assumed existence of any relation 
among the generators T~,T,,. ( i=l ,  ..., m). Hence, xZm+lrT,,,,i=l v~  for all mEZ + 
appears as claimed. 

The above construction allows the selection of ( - i c ,  sl . . . . .  sin_l) , m > l ,  with 
corresponding monodromy group Xm=l c ~  for a class of equations having m - 1  
singularities. Let rEC* and choose s m so that rsm=l/l, IEZ +. Then, ( - i c ,  Sl . . . .  
.... s~-l ,  sin) corresponds to classes of equations having m singularities and mono- 

C m dromy groups t •  c ~ ,  m > l .  
( w - a ~  

Letting rEC* and t'(w)=sin 2/t [ - - - 7 ) '  IEZ +, produces an equation with one 

singularity and monodromy group Cl. Letting rE C* and f ( w ) = e  TM sin 2/1 [w-- ai~ 
I-T-) '  

lEZ +, produces an equation with one singularity and monodromy group C~• 
Finally, letting l= 1 produces the group C.~. [] 

Theorem 3. Each equation o f form (6) has monodromy group G* o f  one o f  the 
following types," 

(A, Bi ( i =  1, . . . ,n);  A2= 1, B j B k = B k B j  fo ra l l  j , k =  1 . . . . .  n, 

AB t = Bi-l A for all i =  1, ..., n) 
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o r  

(.4, B, (i = 1, ..., n); .42= 1, B~ = 1, ByBk = BkBj 

for all j , k = l  . . . .  ,n,  AB i = B ? I A  for all i = l  . . . .  ,n). 

All o f  these groups (for all 1, nEZ +) are realized as r2EC and t(w) o f  form (4) both 
vary. 

Remark 2. If  n =  1 in Theorem 3, then G*=D~ or D l respectively. 

Proof. As in the proof of Theorem 2, there exist generators 

e2~i'S,z if rE C* 
Ta' (z )=t2nis~+z if r = 0  i =  1 , . . . ,m  

corresponding to analytic continuation of 

/-/i=1 tan'S' if rEC* 

h ( w ) =  
Z m/=l silntan[-~J if  r = 0  

along simple loops Aa, about the singularities ai ( i= 1 . . . .  , m) of (6). Here, 2 =  1 
has been assumed without loss of generality. Furthermore, the proof of Theorem 2 
establishes that the subgroup of G* generated by T~, (i= 1 . . . . .  m) is either 

(13) (B i ( i = 1  . . . .  ,n<=m); B sBk=BkB j, j , k =  l , . . . , n )  

o r  

(14) (Bi (i = 1, ..., n <= m); BjBk = BkBj, j ,  k = 1, ..., n, Bl, = 1, IEZ+), 

where each B~ ( i= 1, ..., n) is a word in the Ta, ( i= 1 . . . . .  m). Also, each of the 
generators Tbp (defined as in the proof of Theorem 2) is the identity. The continuation 
of  h(w) along an arc A~ (avoiding ai ( i= 1 . . . .  , m)) from some base point w to 
w+2rc determines the remaining generator 

e ~  ~ ~ 2k~+l)rs 
if rEC* 

A (z )  = 
m �9 [ - - z + ~  l~ l (2ki+l)s i  if r=O,  

where ki ( i= I  . . . . .  m)EZ depend on the homotopy class [A2,~] in C--{ai+2~n;  
( i=1 . . . . .  m), nEZ}. AB~=Bi-IA for each Bi ( i= I  . . . . .  m) since each Bi is either 
a multiplicative (when r(C*) or additive (when r---0) affine transformation. Clearly, 
AS= 1. It follows from the above relations that every word in the generators A and B~ 
( i= 1 . . . .  , m) can be reduced .[7] to M or MA where M (possibly the identity) is a 
word in Bi. M A r  since MA is an elliptic element of order 2 while M = I  only if M 
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is derivable from the relations in (13) and (14). Thus, G* is as claimed. Finally, an 
analogous hyperplane construction proves that all groups listed must occur for appro- 
priate choices of r2 and t(w) of form (4). [] 

Theorem 4. The Hill's equation 

,, l l ' l  
(15) y (w)+--~[--~tana(2}-- /3tan(2)+(1-- /32)]y(w)=O 

has monodromy group G* given by 

(A) (T o, T,; X1X~ = X~X1 where X i range over T~ToT~ "u for all NEZ) 

iff e(P++) ~" is a transcendental number, 

(B) (To, T; X1X2 = X~X1 where Xi range over T~ToTI N 

forall NEZ, R~(T~ToT~ N, NEZ) = id.) 

iff e(P+-~) 2" is an algebraic number but not a root o f  unity, 

(C) (To, T.;  Tr= id .  for f ixed KCZ+-{1},  
X1X,=X2X1 where Xi range over T~ToTZ N 
for all N=0,  1 . . . . .  K - l ,  Rx(T~ToTZ N, N6Z)=id.)  

iff e(a+-~) ~" is a primitive Kth root o f  unity but not 1, 

i 2 

(o) iff e(P+T) 
Proof. Consider the equation 

t"(w) 1 ( 2 )  (16) t'(w) = ~-tan +fl, /3CC. 

Any solution t(w) to (16) is a ratio of linearly independent solutions to 

y" (w) + ~ 03 t(w)y (w) = O, (17) 

where 

03 t (w) = tan +/3 - ~ ~- tan -~- +/3 

1 ~ ( w ~  /3 w 1 
= -~tan [ y J - ~ - t a n  (-~-) +~-  ( 2 - / 3 2 / .  

(16) admits a solution 

(18) 
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{s} 
multi-valued on C / ( z o z + 2 n n  for all nEZ). The singularities of sec -~ e ~' are 

wt=(21+ 1)r~ for all IEZ with corresponding residues 2 ( -  1)~+le ~(zz+l)". Therefore, 
analytic continuation of (18) along simple loops At encircling w~, IEZ, determines 
monodromy generators 

i i 
�9 

(19) Tt(z ) = z-~rce .  ~ e" ~ . 

Furthermore, analytic continuation of (18) along an arc A, on C corresponding to 
a simple non-contractible loop on C/(z~z+2rcn for all nEZ)  gives 

t(w + 2rc) = e (~+-~) 2"t(w) + K~, 

KpE C, with corresponding monodromy generator 

(20) T,~(z) = e('+2i)~"z + Ka. 

Here, Kp= f a s e c ( 2 ) e " S d s d e p e n d s o n t h e  h o m o t o p y c l a s s [ A , ] w i t h r e s p e c t t o  

the singularities w~ and is therefore known modulo the translations T z for all 
IEZ. 

i 

If  e(p+-~) ~" = 1, then contour integration over an appropriate choice of contour 
A~ gives Ka=0,  T ,= id .  and Tl(z)=z+__4n for all IEZ. Hence, G*=C.~. Converse- 

ly, if G*=C~,  then e(a++) ~ =  1. Otherwise, G* would have a minimal generating 
set consisting of  two generators. Thus, Case (D) has been proved. 

A calculation establishes that 

(21) T~+N(z) = T~oT~oT~'N(z) for all l, N E Z  

so that To, T, form a generating set for G*. Furthermore, XIX2=X2X~ for any 
choices of translations Xj ( j = l , 2 )  in {T~oTooT~ N for all NEZ}.  Let 

(22) Ra(To, T,,) = T~*oTd~o...oT~,oTd . = id. 

{ j~ (i = 1 . . . .  , n-- 1)EZ* 
where li (i = 2 . . . .  , n)EZ* 

11, j ,  EZ 

be an arbitrary relation in G*. Observe that 

(23) T,)  = . . .  

... o(TfiT=,t, o Too T -  Z,?=,t,)i, o T[? .~  t, = id. 
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The relation in (23)shows that the multiplier (e(a+-~) ~) 2;~=1,, of the M6bius 

transformation R~(To, T=) in (23) is 1. Consequently, T~=l t '= id .  and R~(To, T=) 

is a word involving only the conjugates T~NToT~-N, NCZ. Let et, a+T)2=#l so that 
T=#id. Thus, every relation T~=id. can be obtained by free reduction (implying 

that k=0)  iff e(a+~-) 2~ is not a root of unity. Hence, Cases (A) and (B) have been 
distinguished from Case (C). 

Let e(a+-~) Z~#l. If R~ is any relation in (22)which cannot be derived from the 
previously discussed relations XIX2=X2X1, then R~ can be written, using these 
relations, as 

(24) RX(To, T~) = (TgloTooT;nl)Jlo(Tg~oTooT~'n2)J~o ... o(T;~oTooT;"k)/k = id. 

_ f n x > n 2 > . . . > n k ,  niEZ 
where / 

tj~EZ ~, i = 1, ..., k 
and conversely. Therefore, 

( ' )  
(25) Rz(To, T,)(z) = z-4zce t~+y ~Cnu[jl,cnl_nk..}_j2,cn _nk+...-]-Jk] = Z, 

~ = e ( ' + ~ ) ~ #  0, 1" 

Hence, P(~) =Jl ~-~k +Jz ~"'-'~ +..- +Jk is a non-constant polynomial with integer 
coefficients having z as a zero. Thus, z is algebraic. Conversely, ifz is algebraic, then 
the reversal of the steps in the above argument constructs a non-trivial relator Rx. 
Thus, Case (A) has been distinguished from Cases (B) and (C). This distinction 
together with the already known distinction of Cases (A) and (B) from Case (C) 
completes the proof. [] 

Remark 3. Observe that the map ~G*: Rz(To, T,)~n*P(~) is an epimorphism 
from the group (Ra) to the prime ideal (in the ring Z[~, ~-~]) consisting of all 

polynomials in r and ~-1 having,  =e-  ~ ~ as a root. Here, Ker (?G*) contains 
all of the relators XxX2X~IX~ 1. 

Corollary. The monodromy group G* o f  equation (15) is Kleinian (in fact, 
i 

elementary) iff z =e(a'~Y) 2~ satisfies z~= 1 for v= 1, 2, 3, 4, 6. 

Proof. If z # l ,  then G* is generated by 

To(2) = z-4 , T (z) = , z  + K a. 

The group G generated by 
%(z) = z + L  %(z)  = 

is conjugate to G* in M6b. Hence, G* is Kleinian iff G is Kleinian. 
Now, the proof splits naturally into four cases. 
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Case 1. If  ]z[~l,  then the transformations 

T~oTooT;" = z + z  n 

include translationswith [z"l<e for any e > 0  and suitablechoicesof n 6 Z .  Hence, 
G and G* are not Kleinian. 

Case 2. If  [z[ = 1 and z is not a root of unity, then T~ is an elliptic element of 
infinite order. Hence, G and G* are not Kleinian. 

Case  3. I f  [~[= 1 and ~ is a root of unity but not 1, then it is seen, using pp. 
210--214 of [2], that G and G* are Kleinian iff z ' = l  for v=2,  3, 4, 6. For these 
values of v, G* is an elementary Kleinian group. 

Case 4. I f  z = l ,  then the proof of Case (D) in Theorem 4 shows that G* is 
generated by T ( z ) = z + 4 n .  Thus, G* is an elementary Kleinian group. [] 
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