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by: 

(1) 

Given an interpolation couple (A0, A~), the approximation functional is dcfined 

E(t, a; Ao, A1) = inf {[a-ao[a]Iaolao <= t}. 

(2) 

An operator T: Ao+AI~Bo+B1 is E-quasi-linear (see [4]) iff 

E( to+ q, T(ao+a~); Bo, BI) <= C{E(dt o, Tao; Bo, B1) 

+ E(dq,  Tal; Bo, B1)}. 

The following interpolation theorem is proved in [41: 

Theorem 1. I f  T: Ao+AI-+Bo+B1 is E-quasi-linear and 

(3) l f~ E(s, Ta; Bo, BO ds -E( t ,  Ta; Bo, B1) <= C~lala~, 

(4) E(t, Ta; Bo,B~) ~ Cot-~lalao, 0 < ,8 < ~. 

Then 
ITalacl-o), ~; E ~ C Ialo, a; K, 0 < 0 < 1 .  

Condition (3) is interesting: it gives an abstract definition of T being of weak 
type. This has yielded in [4] a significant generalization of  a theorem of J. Gilbert 
on interpolation with change of measure [2], and an extension of a theorem of Ben- 
nett--DeVore--Sharpley [1]. 

The proof of Theorem 1 in [4] is direct, and this entails a shortcoming: it makes 
it harder to apply interpolation theory to the new results. In this paper we intend to 
prove Theorem 1 again, within the framework of interpolation theory. Using this 
approach we are indeed able to strengthen the theorem: condition (4) which is 
T: Ao~(Bo, B~)~,=;~ is replaced by T: Ao~Bo. 
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Definition 2. Let f be integrable on (0, t), all t. We define 

(5) fe(t) = + f~ f(u) du-f(t) ,  

(6) Iflw = es0ssup lfe(t)l �9 

If  we identify functions differing by a constant, [ Iw serves as a norm on the 
space of equivalence classes. Denote this space by W. Condition (3) is therefore 
IE(s, Ta; Bo, B1)iw<=cllalal. Our space w is not the class W of [1]. I f  we denote 
by W(Ao, AO the class of elements of Ao + A1 which satisfy iE(s, a; Ao, A~)Iw < co, 
the class W of [1] is W(Lo, L=). Note that ITaIBl~C ~ Ialal, which is the usual hypo- 
thesis in the interpolation theorem, implies E(s, Ta; Bo, B1)<--qlaIA. Our generali- 
zation consists therefore in replacing L= estimates on E, by a W estimate. 

The identification of W(Ao, A1) for given interpolation couples (A0, A~) will 
yield the conclusions of known interpolation theorems from weaker hypotheses, 
much in the same way as was done in [4] for interpolation with change of measure. 
We shall return to these and related problems in subsequent papers. 

We are going to interpolate between W and Lp spaces. For the application of 
Wolff's theorem we need the following theorem: 

Theorem 3. W is complete. 

Proof. {f,} is a Cauchy sequence in W. f ,  Cf, are chosen, so that: 

(7) f0 f .  = O. 

{(f.)e} is Cauchy in L=,  and so there exists h6L= so that f.,~-,-h (L=). On the other 
hand, using 

1 t 1 ~ ~ du 
S+O0 T (8) 

we have 

(9) -} f;f" = f j  u 
so that 

(10) f~(f.--fm)l <-- t ilog tl If. --fmlw 

and fo f .~g( t ) ,  all t. Since also 

(11) [f"(t)--fm(t)l ~ [(f"--fm).(t)[ ++ f: (f"-f . ,) .  

We also have 

(12) f . ( t )~f( t )  (Lx(O , M), for any M), and for a.e. t~C .  
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Therefore f is integrable on (0, M) for any M and f t  o f=g.  Finally 

(13) 

so that f ~ = h  and thus I f , . - f ~ [ = - ~ 0  and f , -~ f  (W). The proof is complete. 

Theorem 4. (L0, W)~/p,q;E=L(p, q), 0 < p <  co; 0<q<-oo. All function spaces 
here are taken on (0, oo). 

Proof. We first interpolate W with L~ and then, using a theorem of Wolff we get 
the full result. 

I f f~EL(p,q) ,  l < p < ~ ,  then there exists a constant c so that f+cEL(p,q) .  
For: if f~EL(p,q)  then f ~  If~(u)] du/u<oo. From (8) then we have: 

lim u) du = c 

exists. Let g = f - c .  Of course g~ = f .  so that from (8) again we have 

1 t ~ du 
(14) yf g= f; r u .  

1 
From g~EL(p, q), using Hardy's inequality we get t ft~ gEL(p, q). Since 

(15) g(t) <= +f~gl+ Ig~(t)] 

we get gEL(p, q). 
As elements of W, f = g  and in the sequel we shall therefore write for 

fEW: f~EL(p,q)=*fEL(p,q). This amounts to taking the element in the equi- 
1 

valence class of f for which lim - - f ~  f=0. 
s ~  S 

On the other hand,fEL(p, q), 1 < p <  ~, impliesf~EL(p, q). To see this, consider 
the linear operator ~ : f ~ f ~ .  Obviously: 

(16) # :  L 1 ~ L(1, ~), 

Interpolating we get 

(17) ~ : L(p, q) ~ L(p, q), 

Now for the identification 

(18) (Lx, W)o,q;K = L(p, q), 

l < p < ~ ,  0 < q ~ .  

1 
- - = 1 - 0 ,  O-~q<= ~. 
P 



36 Mario Milman and Yoram Sagher 

Since L o o c W ,  we have L ( p , q ) c ( L 1 ,  W)o,~;K. For 
actually maps W to L~ so that 

(19) :~ : (Lt ,  W)o,q;r --,- L (p ,  q). 
Therefore 
(2O) 

the converse note that 

lf+l -< c If p ,q  = p (Lj. W)  o ,t;K" 

Ifi,,,~<-c,,If~[,,,~, we get (18). To get the full theorem we apply Since however 
Wolff's theorem. We restate it in a form more convenient for our application. 

A1, As, Aa, A4 are quasi-Banach Abelian groups and A I n A 4 c A z n A a .  Assume 

(A1,Aa)p,q;e=A2, 0 < f l <  ~,  0 < q = <  ~ ,  

(As, A4)~,r;~=Aa, 0 < r  0 < r ~  ~.  

~ = ~ / r  

~ o = ~ 1 - 0  
~ e 

(21) 

(22) 

Then 

(23) 

(24) 

(A1, A4)=~,q;e = As,  

(Ax, A4)=a,r;E = Aa, 

In [5] the statement of the theorem is for quasi-Banach spaces, i.e., [rxlA=[r I IxIA 
for scalars r is required. This, in fact, is not used in the proof. The added generality 
is needed here for Lo defined by 

(25) IflL0 = f{xT tf(x)l>o} d~(x) 

does not have the homogeneity property. It is easy to see that for 0 < p  =< 

(26) E(t,  f ;  Lo, Lp) = ( f 7  [f* (s)] pds) lip 

and, applying an extension of Hardy's inequality applicable to decreasing functions, 
see [3], we get from (26) for 1 < p :  

(27) L1 = (Lo, L p ) l / p , , 1 ; E ;  

Since, by (18), we have 

(28) 

we get, using (23) and (24), 

(29) 

(30) 

1 1 
7 + 7  = 1. 

(L1, W)l/p,,p;r = Lp 

(L0, W)I,1;E : L1, 

(Lo, W)I/p,p;E = Lp;  1 < p < ~ .  
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To get the result for the full range we shall need a version of the reiteration theorem: 

(31) (A0, (A0, A1)~,~;E)p,q;e = (A0, A1)~+O,q;E. 

Fix 0 < r < l  and write 

Lr = (Lo, L1)I/r-I,r;E = (Lo, (Lo, W)l,1;g)l/r-l.r;g = (Lo, W)I/r,r;E" 

Finally, another application of the reiteration theorem gives the result in full gene- 
rality. The theorem is proved. 

Theorem 5. T: Ao + AI ~ Bo + B~ is E-quasi-linear and 

(32) 

(33) 

Then, for 

(34) 

+ f~ E(s, Ta; Bo, BI)ds-E(t ,  Ta; Bo, B1) CllaIA,. 

ITal.o <= Colalao. 
0<c~< oo, 0<q<- ~o: 

[Ta[(no, nl).,.;~ ~ C[al(Ao, aD.,q;E" 

Proof. Consider Er :  Ao+AI~Lo+W defined by 

(35) Er(a)(s) = E(s, Ta; B o, B1). 

Conditions (32), (33) give 

(36) Er:  A1 ~ W, 

(37) ET: A0 oL0, 

while from the E-quasi-linearity of T we have, for each 
lTa](n,, Bx)~, q. ~ is a semi-quasi-norm on AortA1, satisfying: 

ITal(no, nx)~,.;E ~ IET(a)l(Lo, W)...;~ 

IET(a)lZolG(a)lw 

<= C~Cllal~ao lalal. 

0<cr ~o, 0<q<- ~ :  

and the theorem is proved. 

Reiteration between different values of cr now yields for 0 < e <  ~, 0 < q ~  ~ :  
4- 

(38) T." (Ao, A1)a~,q;E --~ (O0, B1)ct, q;E 
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