An interpolation theorem
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Given an interpolation couple (A4, 4;), the approximation functional is defined
by:
6] E@t, a; Ay, Ay) = inf {{a—agl, [lael 4, = t}.
An operator T: Ay+A4,~By+B; is E-quasi-linear (see [4]) iff
) E(to+t, T(ag+ay); By, By) = C{E(dty, Tay; By, By)
+ E(dt,, Tay; By, By}

The following interpolation theorem is proved in [4]:

Theorem 1. If T: Ay+A,~>By+B, is E-quasi-linear and

(3 %f; E(s,Ta; By, B))ds—E(1, Ta; By, By) = Cylal,,
C)) E(t,Ta; By, B) = Cot™Plaly,, 0<f < e
Then

lTalﬂ(l—B),q;E = Clalé,q;K7 0 ~ 6 = 1

Condition (3) is interesting: it gives an abstract definition of T being of weak
type. This has yielded in {4] a significant generalization of a theorem of J. Gilbert
on interpolation with change of measure [2], and an extension of a theorem of Ben-
nett—DeVore—Sharpley [1].

The proof of Theorem 1 in [4] is direct, and this entails a shortcoming: it makes
it harder to apply interpolation theory to the new results. In this paper we intend to
prove Theorem 1 again, within the framework of interpolation theory. Using this
approach we are indeed able to strengthen the theorem: condition (4) which is
T: Ay—~(By, By)g, ;g 18 replaced by T: Ay~ B,.
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Definition 2. Let f be integrable on (0, ¢), all t. We define

©) Fo =2 [ £ du— 1),
(6) lw = ess sup | (D).

If we identify functions differing by a constant, | |, serves as a norm on the
space of equivalence classes. Denote this space by W. Condition (3) is therefore
|E (s, Ta; By, By)lw=c1lals,. Our space W is not the class ¥ of [1]. If we denote
by W{(A4,, 4;) the class of elements of 4y,+ A; which satisfy [E(s, a; Ay, Ay)|p< o,
the class W of [1]is W (Lo, L..). Note that |Talp =c, |a| , which is the usual hypo-
thesis in the interpolation theorem, implies E(s, Ta; By, By)=c1lals, . Our generali-
zation consists therefore in replacing L.. estimates on E, by a ¥ estimate.

The identification of W (4,, A;) for given interpolation couples (A4,, 4,) will
yield the conclusions of known interpolation theorems from weaker hypotheses,
much in the same way as was done in [4] for interpolation with change of measure.
We shall return to these and related problems in subsequent papers.

We are going to interpolate between W and L, spaces. For the application of
Wolff’s theorem we need the following theorem:

Theorem 3. W is complete.
Proof. {f,} is a Cauchy sequence in W. f,cf, are chosen, so that:
1 —_—
@) fo f,=0.

{(f) 4} is Cauchy in L.., and so there exists i€ L., so that f,, ~h (L..). On the other
hand, using

® i fir= [
we have

1 pe 1 du
©) oo = [l e —
so that
(10) | [s s = tlhog 1o = fulw

and [{ f,~g(t), all ¢. Since also
() OO = (o ~fode O 4| o o)

We also have

(12) S —f(® (L,(0, M), for any M), and for a.e. 7> C.
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Therefore fis integrable on (0, M) for any M and f o f=g. Finally

(13) - Bo® = 2 [2 oo ® = 7 [ f~FO=F®)

so that f,=h and thus |f,,—f.|.—~0 and f,—f (W). The proof is complete.

Theorem 4. (Ly, W)y, 0. e=L(p, @), O<p<oo; 0<q=co. All function spaces
here are taken on (0, ).

Proof. We first interpolate W with L, and then, using a theorem of Wolff we get
the full result.

If £, €L(p,q), l<p<-<o, then there exists a constant ¢ so that f+c€L(p, 9).
For: if f,€L(p,q) then [7|fy ()] duju<es. From (8) then we have:

.1 g
lim 5 S du = e
exists. Let g=f—c. Of course g, =f, so that from (8) again we have
1 t oo du
(14) —Jog= [Tl
1
From g, € L(p, g), using Hardy’s inequality we get - fo g€L(p, g). Since

+ g4 ()]

(15) g = ‘ITf;g

we get g€ L(p, 9)-
As elements of W, f=g and in the sequel we shall therefore write for

few: fo.€L(p, 9)=f<L(p,q). This amounts to taking the element in the equi-
1
valence class of f for which lim — [ f=0.
oo S

On the other hand, f€ L(p, q), 1 <p< o, implies f,, € L(p, g). To see this, consider
the linear operator # : f—f, . Obviously:

16) #: Ly~ L(1, =),

# ! Lo > L.
Interpolating we get

an #: L(p, ) ~L(p,q), l<p=<eo, 0<g=-c
Now for the identification

1
(18) (L1= W)H,q;K: L(p’ q)7 ;: ]—69 0< ‘]é o=,
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Since L.,cW, we have L(p,q)C(Ly, W) k- For the converse note that
actually maps W to L., so that

19) 3 (L W)e,x ~ L(ps 9)-
Therefore
(20 ilna = Colf Iy, 1ixc-

Since however |fl, ,=C,|f.l,,» we get (18). To get the full theorem we apply
Wolff’s theorem. We restate it in a form more convenient for our application.
Ay, Ay, A5, Ay are quasi-Banach Abelian groups and A;nA4,C 4,0 A;. Assume

21 (4;, A3)/;’,q;E =4, 0<pP <o, 0=g= o,
(22) (Az, A4)|/1,r;K = A3’ 0= l/’ = 1’ 0<r= oo
Then
(23) (43, A4)atz,q;E = Ay, o= BlY,

1=
o) (1o Az = Ay 0= 12

In [5] the statement of the theorem is for quasi-Banach spaces, i.e., [rx|,=|r||x|4
for scalars # is required. This, in fact, is not used in the proof. The added generality
is needed here for L, defined by

(25) o= Setiseorn @)
does not have the homogeneity property. It is easy to see that for 0<p= oo
(26) E(t, f Loy L) = (f7 Lf* (o)} ds)'™

and, applying an extension of Hardy’s inequality applicable to decreasing functions,
see [3], we get from (26) for 1<p:

@7 Ly = Lo L)y vix: %J,[% =1
Since, by (18), we have

28) Lo Wik = L,

we get, using (23) and (24),

(29) (Lo, Wi,1,e = Ly,

(30) (L07 W)l/p,p;E = Lp: 1< D = ==
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To get the result for the full range we shall need a version of the reiteration theorem:
(31) (o> (Ao, A ;s 58 = (o> At p,gsE-
Fix O0<r<1 and write

L, = (L07 Ll)l/r—l,r;E = (LO’ (Lo, W)l,l;E)l/r—l,r;E = (Lo, W)l/r,r;E-

Finally, another application of the reiteration theorem gives the result in full gene-
rality. The theorem is proved.

Theorem 5. T: Ay+A,—~By+B, is E-quasi-linear and

(32) %‘/:E(s, Ta; By, B)ds—E(t, Ta; B,, By) = Claly,.
(33) |Talp, = Colala,-
Then, for O<g<oco, 0=g=oo:

(34) ]Tai(Bo,l‘h)u, G E = Cla‘(Ao’Al)u,q;E'

Proof. Consider Ep: Ay+A4,—~Lo+W defined by

(3% Er(a)(s) = E(s, Ta; By, By).
Conditions (32), (33) give

(36) Ep: Ay ~ W,

37 Er: Ay~ Ly,

while from the "E-quasi-linearity of T we have, for each O=a<oo, 0=<g=oco:
[Tal(BD’ B i is a semi-quasi-norm on Ay A, , satisfying:

1Ta‘(30,31)oz,q;15 ~ ‘ET(a)l(LO,W)a;,q;E
= ‘ET(a)|io|ET(a)|W
= Cgclla,io la]Al‘

Reiteration between different values of « now yields for 0 <o <oo, O0<g=oco:
&

(38) T: (AO: Al)at,q;E - (BOa Bl)az,q;E

and the theorem is proved.
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