Fredholm pseudo-differential operators
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1. Introduction .

Let me(— oo, oo) Define S™ by |
™ = {o€C= (R"XR"): IDngo(x, O = Cp(L+ gD,

If 6€S™, then we define the pseudo-differential operator 7, with symbol o on
& (the Schwartz space) by

(LN = [pe ™20 (x, Of ) de, fe&

It can be shown that T, can be extended to a linear operator from the space &’
of tempered distributions into &’.

Suppose that ¢¢€.S°. Then it is well known that T, is a bounded linear operator
from LP(R") into LP(R") for 1<p=<-oo. An immediate consequence of this result
is that every 7, with ¢¢S™ is a bounded linear operator from L2, (R" into
LER") for l<p=<eo and —eo<s<eco. Here LP(R") stands for the Sobolev space
of order 5. See Calderén [2] or Stein [19, Chapter 5]. Prompted by the LP-bounded-
ness result, it is obviously of interest to characterize the nonnegative functions
won R" for which every T, with ¢¢.S® is a bounded linear operator on LP(R”, wdx)
for 1<p<eo.

Let 1<p<oo. A nonnegative function w is said to be in A, (R") if we L] (R

and
-1

sgp [ﬁfg w(x) dx) [ﬁ wi(x)—P_iT de" -

where the supremum is taken over all cubes Q in R". See Coifinan and Feffer-
man [5] and Muckenhoupt [17] for basic properties of functions in A4,(R"). Miller
has recently shown in [16] that a necessary and sufficient condition for every T,
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with ¢€S° be a bounded linear operator on LP(R", wdx) for l<p<e is that
we A,(R™).

In [16] Miller has defined weighted Sobolev spaces L2(R", wdx) and developed
some basic properties of these spaces. As in the unweighted case, an immediate
consequence of the weighted LP-boundedness result for pseudo-differential operators
is that every T, with ¢€S™ is a bounded linear operator from L?  (R", wdx)
into LZ(R”, wdx) for l<p<eco and —oo<s<oo if w€A,(R").

In this paper we obtain some more useful results for weighted Sobolev spaces
and give, as an application, sufficient conditions on ¢€S™ such that T, is Fredholm
on weighted Sobolev spaces.

In Section 2 we study the weighted L*-boundedness result for 7, with ¢€S°
Miller’s proof of the sufficiency of the condition in [16] depends on the well known
LP-boundedness result, the Fefferman—Stein sharp function operator in [7] and
various versions of the Hardy—Littlewood maximal function operator. Weighted
norm inequalities for quite general singular integral operators including 7, with
6¢S9 have been derived in Coifman and Fefferman [5]. Suggested by the techniques
in Stein {20], we give another proof of the sufficiency part of Miller’s result. See
Coifman and Meyer [6] for the use of similar techniques in studying pseudo-dif-
ferential operators. Not only is our proof independent of the well known classical
IP-boundedness result, it also produces a more precise inequality which is useful
for studying weighted Sobolev spaces in Section 4 and Fredholm opertors in
Section 5. See Grushin [8, Theorem 3.1]. Our proof depends on two results on
weighted norm inequalities. These are formulated in Theorems 1.1 and 1.2.

Theorem 1.1. Let w€A,(R") for 1<p<oco. Then there is a constani C >0,
depending only on p,w and n, such that

IMfl,=Clifll,, /€.

Here MJ is the usual Hardy—Littlewood maximal function of f. The proof
of Theorem 1.1 can be found in Muckenhoupt [17] or Coifman and Fefferman [5].

Theorem 1.2. Let k>n and wE A,(R") for 1<p<-co. Suppose that mcC*R"—

{0} satisfies
[(D*m)(&)|=BE|~1*, |«|=k.

Then the operator f—~Tf defined on & by
(TF)®)=frne™ ™ ¥m() f(&) &

can be extended to a bounded linear operator on LP(R*, w dx). Moreover, there is
a constant C =0, depending only on n,p and w, such that

ITfl,=CBI|fll,, f€&.
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Theorem 1.2 is in fact a special case of a weighted version of the Hérmander—
Marcinkiewicz—Mihlin Multiplier Theorem obtained by Kurtz in [13]. See also
Kurtz and Wheeden [14]. Our proof also depends on two fairly elementary prop-
erties of pseudo-differential operators with symbols in S° For the sake of
completeness, they are proved in Section 3.

In Section 4 we obtain some results on weighted Sobolev spaces defined in
Miller [16]. Specifically, we prove a version of the Sobolev’s Theorem, an inter-
polation result by the complex method in Calderdn [3, 4] and a compact embedding
theorem.

In Section 5 we give sufficient conditions on ¢€S™ such that 7T, is Fredholm
on weighted Sobolev spaces. Our results include those given in Grushin [8]. Fredholm
pseudo-differential operators have been studied in Beals [1], Kumano-go [11].
Kumano-go and Taniguchi [12], Hérmander [9] and others. Information about the
indices are also given in Kumano-go [11] and Hérmander [9].

2. A weighted norm inequality

Let mé(—o, ). Define S™ by
S™ = {o€C=(R"XR?): | DEDio (x, )] = Cyp(1+1ED™ 1)
If 0€S° then for all multi-indices a and f, we let
K.4(0) = sup |D4Dgo (x, I(L+ |1

Theorem 2.1. Let 6¢S° and wcA,R") for 1<p<oo. Then T, is a bounded
linear operator from LPR", w dx) into LP(R", w dx). Moreover, for any sufficiently
large positive integer N, there is a constant Cy=0 such that

1Tef1lp = CnllSllp Zas pi=n Kap(0)
for all f in LP(R", wdx). ‘

Remark. Using the density of & in L?(R", wdx), it is sufficient to prove
Theorem 2.1 for functions f in &.

Proof of Theorem 2.1. Partition R" into cubes R"=U,Q,,, where Q, is
the cube with size one and centre at mcZ”. Let n€Cy°(R") be such that n(x)=1
for x€Q,. For meZ", set

Om (xs é) = n(x—m)a(x, é)-
Obviously, T, = n(x—m)T, and
@.1) Jo [@N@PwE) dx = [ (T, H@Pw ) dx
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for all f in &. Since o,(x,¢) has compact support in x, Fubini’s Theorem
implies that

(2.2) (1, N = f ”{f o(dy D)= () dé}e—znu.-x di

where
64, &) = f an emixg (x, &) dx.

Claim 2.2. For all multi-indices o and positive integers N, there is a constant
Cy=0 such that

086, (4, O = Cu{ 151 n Kug (@)} +1ED A+ (AN,
The proof of Claim 2.2, though easy, will be given in Section 3. This Claim
and Theorem 1.2 imply that the operator f—T,f defined on &% by
(2.3) (TN = [, 86aQ e+ 7(0) de

can be extended to a bounded linear operator on L#(R”, w dx). Moreover, for any
sufficiently large positive integer N, there is a constant Cy=0 such that

(2.4) 1T/l = Ch @+ AD ™3 a4 p12x Kap (O},

for all f in &. Using (2.2), (2.3), (2.4) and Minkowski’s inequality in integral form,

170 flp = Ch{Z et pimn Kua @)} [, A+ 12DN dA) 1

By choosing N large enough, there is a constant Cy=>0 such that | T,mf l,=
Cn{Zespi=n Kus (@} /1, and hence by (2.1),

@25) Jo TNEPwE dx = CB{ S man K @) 1113

for all f in &. Now we need to represent 7, as a singular integral operator.
Precisely, we give

Claim 2.3. Let K(x,2)=[y.e * %0(x, &) dé in distribution sense. Then
(i) K(x,z) is a function when |z|#0;

(i) |K(x, 2)|=Cylz|™ 3\ jay Kup(0) for N large enough;

(ii) for x€R* and f€& vanishin g in a neighbourhood of x,,

TN = [, Ko, Xo— 2) @) dz.

The proof of Claim 2.3 will also be given in Section 3.

Let O} be the double of Q,. Let @€Cy (R”) be such that 0=¢(x)=1 for
all x in R" and ¢(x)=1 in a neighbourhood of Q}. Write f'= f;+/2, where
fi=of and fi=(1~9)f. Then T,f=T, fi+T,fo. Let L,=[, (T,f)(x)Fw(x)dx
and I, = f le(T‘y f2)(X)|Pw(x)dx. Then for any sufficiently large positive integer N,
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(2.5) and Claim 2.3 imply that there are positive constants Cy and C,y such that

(2.6) L, = 2" CR{ 3 as p1=n Kop @) I f1ll 2+ 271,
and

@7 TR = Con{ Sz K@)} R'-Q}, (1+lrijll—zllﬁ(z)l dz.

Let (14 |m—z|)""fy(2)=/f3 m n(z). Then by (2.7), there is a constant C >0 such that
[ToufZ) (x)l = CC2N{2|¢| =2N KaO (a)}(M.f&m, N) (X)

where Mf, ., y is the Hardy—Littlewood maximal function of f, . y. See Stein
[19, p. 62—64]. Hence by Theorem 1.1, there is a constant C’=>0 such that

.8 115 CCo{ Sz K@) [ 220 a2

So for any sufficiently large positive integer N, (2.6) and (2.8) imply that there is
a constant Cy=>0 such that

I = CE{Siernan K@ { [ gy 1GNP w0t [ 2SN a.

Hence by summing over Z" and choosing N large enough, we complete the proof.

3. Proofs of the Claims

We prove in this section the two claims in Section 2.

Proof of Claim 2.2. Let § be an arbitrary multi-index. Then by integration by
parts and Leibnitz’s rule, (2niA)*(036,)(4, £) is equal to

0P Sy () faw = @2t e = m) 08703015, ) i

Using the properties of # and the fact that ¢€S° there is a constant C,>0
such that v
[2ni2)f (026, O] = Cp(L+1ED™1 3y 2Key (0).

The claim then follows easily from the preceding estimate.
Proof of Claim 2.3. Let o be an arbitrary multi-index. Then

Qrizy*K(x, z) = fR" e~ 2829%5 (x, £) dE
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in distribution sense. Since ¢€S°, there is a constant C,>0 such that
S [020)(x, O] dE = Koo (0) [, A+ [ED T dE = CoKoo(0)

if |a| is large enough. Thus (i) and (ii) follow easily. To prove (iii), note that
K(x,, xo—2)f(2) is absolutely integrable in z and hence Fubini’s Theorem implies
the result.

4. Weighted Sobolev spaces

Let zeC. We denote by J, the pseudo-differential operator with symbol
(1+4n2|¢]?) 2. Since
wEA,(R") for 1<p=<o=L?R", wdx) < ¥,

it follows that J,(I?(R", wdx))c#’. For —oo<s<oo and l<p=oce, Miller
has defined in [16] the weighted Sobolev space of order s, denoted by LZ(R”, w dx), by

LE(R", wdx) = J,(LP(R", w dx)).

If feLZ(R", wdx), then the norm of |fll,,, of f is defined by |fl; ,=I/-sfl,-
LI(R", wdx) is a Banach space with norm | fl|;,,. For elementary properties of
weighted Sobolev spaces, see Miller [16]. Using Theorem 2.1 and the proof of
Theorem 3.1 in Grushin [8], we get

Theorem 4.1. Let 6€8™ for —co<m=<o and wE€ALR") for l<p<os.
Then for any s€(—-oo, =), T, is a bounded linear operator from LEXR®, wdx) into
L (R*, wdx) and there exist a constant C=0 and a positive integer N such that

08920 (x, O]

“ To’f”s—m,p = C”f"s,p Z]a+ﬂ|§N sup W

Jor dall f in LI(R", w dx).

Remark. Theorem 4.1 is a generalization of Theorem 3.1 in Grushin [8].

Miller in [16] has obtained a version of the Sobolev’s Theorem for weighted
Sobolev spaces. In order to give another weighted version of the Sobolev’s Theorem,
the following two lemmas are necessary.

Lemma 4.2. Let weA,R") for l<p<eo. Then for sufficiently large k=0,
frr A+ )~ () dx =< o,

Proof. See for example Lemma 1 in Hunt, Muckenhoupt and Wheeden [10].
Lemma 4.3. Let w€ A, (R") for 1<p<eo. Then w€ A R") for some q<(1, p).

Proof. See Lemma 2 in Coifman and Fefferman [5].
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Let weAd,(R") for l<p<eo. Then by Lemma 4.3, it is possible to define
9w, p bY
4.1 gy, =mf{g: 1 <g<p and we4,(RMH}.

We can now give another version of the Sobolev’s Theorem for weighted Sobolev
spaces.

Theorem 4.4. Let wc A, (R") for 1<p<oo. Suppose that s€(—oo, o) is such
that sp=nq,, ,. Then for any compact subset K of R", there is a constant Cy=0
such that

sup ()| = Cklolls,,, vES.
Proof. Let ves. Setting f=F Y(1+4n2éPR)2d), then v=J,f=Gxf,

where G, is the Bessel potential of order s. See Schechter [18, Chapter 6] or
Stein [19, Chapter 5] for properties of Bessel potentials. By Holder’s inequality,

1 1
(4.2) @) = { [, 1Gx=nFwG) Ty} | £,
Now the p’th power of the first term in the right hand side of (4.2) is equal to

Pw(y) Pt dy = L(x)+ L(x).

“.3) Szt Sza) 16:Ge=2)

Since weA (R") where g=¢,, , by Lemma 4.3 and (4.1), Holder’s inequality with
r—1

@4 R ={[,,_ WO T Y {[, 1G0T ).

P
Using the estimates of G, at the origin and at infinity, [p.|G(¥)| P=7 dy<eo.
p
It is easy to see that w a1 is in L] (R"). Thus I(x)<ec uniformly in x€R"

F= implies that

4
by (4.4). To estimate Iy(x), first note that w™ »—1€4,,, (R"). Hence the estimates
of G, at infinity imply that, for every k=0, there is a constant Cg ;>0 such that

1
(4.5) L) = Crp fiyes A+ YD w(k) 7T dy, x€K.
If we choose k large enough, then Lemma 4.2 implies that

1
[z A+ 1D w(3) 71 dy<ee.

By (4.2), (4.3), (4.4) and (4.5), the proof is complete. ,
For sy<s;, 0=0=1 and s=(1—0)s,+0s,, it is well known that the inter-
polation space [L} (R"), L?(R")], defined by the complex method in Calderén [3,4]
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is LE(R") with equivalent norms. For a very good and rapid introduction of the
complex method, see Schechter {18, Section 5 of Chapter 1]. In order to give a
weighted version of the above mentioned interpolation result, we need Lemmas
4.5 and 4.6.

Lemma 4.5. Let wcA,R") for l<p=oo, fELYR", wdx) for —oo<s<eoo
and Y. Then |f()\=|1l, W, where (¥l -5, r,w IS the norm of ¢ in
1
LZ (R, w 7—1 dx).
Proof. Since & is dense in LP(R", wdx), it is sufficient to prove that

| f R® (p(x)l[/(x)dx[é[[(p[[s,plllﬁll_s, »w for all @€&. But this follows easily from
Plancherel’s Theorem and Hoélder’s inequality.
By Theorem 1.2 or Theorem 4.1, we easily obtain

Lemma 4.6. Let wC A, (R") for 1<p<oo. Suppose that a,b are real numbers
such that a<b. Then for any s€(—oo, ), there exist a constant C=0 and
positive integer N such that the norm of the operator

J tLI(R", wdx) -~ LI_ (R", wdx)

—p—iv*
is =C(L+ )Y for a=pu=b and —<v<eoo.

Theorem 4.7. Let wcA,R") for l<p<ece. Then for s,<s,, 0=0=1 and
s=(1—0)s4+0sy,
[LE (R", wdx), L R", w dx)]y=LI(R", wdx)
with equivalent norms.

Remark. In the proof of Theorem 4.7 given below, we shall use the terminology
and notations in Schechter [18, Section 5 of Chapter 1].

Proof of Theorem 4.7. Let H‘,:[LSPO(R”, w dx), L (R, wdx)l,. Suppose
that uc€H, and &>0 are given. Then there is an f in H(LZ (R’ wdx),

L2 (R", wdx)) such that f()=u and |f[y=|ulo+e. Let Aj(¢)=(1+4n2;§12)%
for j=0,1;/1:;1 and g(2)=F A f(2)}. Now igi*=J

0

f (Z)EL;’O(R", wdx) for 0=Rez=1, it follows from Theorem 4.1 and Lemma 4.6
that g(z)EL(”so_sl)Rez(R”, wdx) and there exist a constant C =0 and a positive
integer N such that

(4.6) gt iNlsg-spmp = CA+ VDAt )5,
for 0=p=1 and —oo<v<oo. Since fEH (Lg R*, wdx), Lfl(R”, wdx)), it follows

—(—2)sp—z5, " Since
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that f (1+iy)EL§’l(R", wdx) and hence by Theorem 4.1 and Lemma 4.6 again,
there exist a constant C;=>0 and a positive integer N, such that

(4.7) gL+, = Ci(L+ DV A+,

for —oco<y<oo. Let v€S Then h(z)=[p.g(z)(x)v(x)dx is continuous in
0=Rez=1 and analytic in 0<Rez<1. Moreover by (4.6), (4.7), Lemmas 4.5
and 4.6, there exist a constant C’>0 and a positive integer N’ such that

lh(u+iv)| = C' A+ DY Alalol,w
h(z)

I e 10l e

of Lemma 4.2 in Stein and Weiss [21, Chapter 5]. Hence there is a constant Cy=0

such that |F(0)|=C,, i.e.,

ifRng(B)(X)v(x)l dx = Gyl fllulvlp,w-
By Lemma 4.5, g(0)¢L?(R", wdx) and |[g@)|,=C,(|ulls+e¢). Since e>0 is

2
arbitrary, it follows that |g(0),=Cylulls. But g(0)=F ~{(1+4n2[?)sdi}. Thus
uc LE(R", wdx) and |lul,, ,=Cpllul,.

Next suppose that uw€LP(R” wdx). Putting f(z)=e*~"#{A°~*4}, then
f(O)=u. Since 1°~*=J_( _sy@-z for 0=Rez=l, it follows from Theorem 4.1
and Lemma 4.6 that f(u+v)€L] (R", wdx) and there exist a constant C >0 and

a positive integer N such that

LA+ )55, p = Ce™* L+ VD" [lulls,

for O0=p=1 and —co<v<oc. Furthermore, by Theorem 4.1 and Lemma 4.6
again, f(1+iy)eL] (R", wdx) and there exist a constant C,>0 and a positive
integer N,; such that

If QA+, , = Cre™ A+ v [uls,,

for —co<y<oo, Thus feH (L;) (R", wdx), L7 (R", wdx)) and there is a constant
C,>0 such that | fllz=C,lulls, ,, i.e., u€H, and |jully=C,lull,,,. This completes
the proof.

The following proposition is a special case of a result in Lions and Peetre [15].

for 0=p=1 and —oo<v<e, Thus F(z)= satisfies the hypotheses

Proposition 4.8. Let l<p<oo and —eo<sy<s<oo be given. Suppose that
weA,R"). Let S be a bounded linear operator from L (R", wdx) into L7 (R", w dx)
such that S': Lfl(R", wdx)—»Lg’o(R", wdx) is compact. Then for 0=0=1,

S: [L2 (R", wdx), LZ(R", wdx)l, >~ L2 (R", wdx)

is a compact operator. Similarly,if T is a bounded linear operator from L{ (R", w dx)
into L} (R", wdx) such that T: L (R", wdx)—~L; (R", wdx) is compact, then
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Jor 0=0=1,
T: LE (R", wdx) - [LE, (R", wdx), LL (R, wdx)}

is a compact operator.

We can now give a weighted version of the compact embedding theorem for
Sobolev spaces.

Theorem 4.9. Let wcA,(R") for l<p<es. Suppose that {v,} is a bounded
sequence of elements in LP(R", wdx). If ¢cCy(R") and t<s, then there is a sub-
sequence {u;} of {ve} such that {ou;} convergesin LF(R", wdx).

Proof. There are three cases to be considered, namely, (i) O0=t<s, (i1} 5>0
and t<0 and (iii) #<s<0. It is clear that if Theorem 4.9 is true for case (i), then
it is also true for Case (ii) since for ?<0, the inclusion from ILP(R", wdx) into
LP(R" wdx) is bounded. So we first suppose that 0=t<s. Let r=s be such
that (r—1)p>ng,,, where g, , is given in (4.1). Let p be a multi-index. Then
by Theorem 4.1, there is a constant C,=>0 such that

(48) ”D"U”r—]u[,p = Cuuvur,p’ vE,SP

Let K=supp ¢. Then (4.8), Theorem 4.4 and bounded inclusion between weighted
Sobolev spaces imply that there is a constant Cx=0 such that

4.9 sup [p(x)|+ 2y sup [(D;0)(x)| = Cilloll,,,
x¢K x€K

for all v€&. Hence if {1} is a bounded sequence of elements in LZ(R", wdx),
then (4.9) implies that {v,} is a bounded equicontinuous sequence of functions on K.
Using Ascoli—Arzela Theorem, there is a subsequence of {v;} which converges
uniformly on K. Hence ¢ is a compact operator from LEZ(R", wdx) into
LP(R", wdx). Since ¢ is also a pseudo-differential operator with symbol in S°,
¢ is bounded from LF(R", wdx) into LP(R", wdx). By Theorem 4.7 and Proposi-
tion 4.8, ¢ is then a compact operator from LZ2(R”, wdx) into

[L?(R?, wdx), LP(R", w dx)] |« = LF(R", w dx).

But ¢ is also bounded from L?(R”, wdx) into LP(R", wdx). Hence by Theorem
4.7 and Proposition 4.8 again, ¢ is a compact operator from
[Ltp (Rn, w dX), L',_p (Rn’ de)]_s_i = Lsp (Rn, w dX)
r—t
into L2(R", wdx). This completes the proof of Theorem 4.9 for Cases (i) and (ii).
Using Lemma 4.5, the result is also true for Case (iii) by duality.
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5. Fredholm operators

We can now use the results obtained so far to give conditions on ¢€S™ such
that T, is Fredholm on weighted Sobolev spaces. We first introduce the following
class Sy of slowly varying symbols. See Grushin [8], Kumano-go [11] and Kumano-
go and Taniguchi [12].

Definition. A symbol ¢ in S™ is said to be in Sy if for all multi-indices o
and B, thereis a constant C,z(x)>0 such that

[DEDze (x, &)| = Cop(x)(1+ £~
Sor all x, E€R" and 1im ;). Cop(x)=0, for |B] 0.

The following theorem on composition of two pseudo-differential operators
can be found in Grushin [8].

Theorem 5.1. Let 6,6S™ and 0,€S¥:. Then there is a symbol g€Sih™™:
such that T, T, =T, and for any positive integer N,

(—2ri)~
ol

o (%, &)= 2jai<n 020)(x, &) (D209 (x, HHESF+ma=N.

Using Theorems 4.1, 4.9 and the proof of Theorem 3.2 in Grushin [8], we obtain

Theorem 5.2, Let @€ST for —oo<m<ece and w€A,(R") for l<p=<eoo.
Then for any s€(—oo, ), T, is a compact operator from L?  (R", wdx) into
L?  (R", wdx).

From Theorems 5.1 and 5.2, we easily obtain the following generalization
of Theorem 3.3 in Grushin [8].

Theorem 5.3. Let —oco<my,my<oo,0,6€8™ and 06,€S8y:. Suppose that
weA,R") for 1<p<eoo. Then for any s€(—eoo, ), T, 1,-T,, 1sacompact
operator from L%, ., (R", wdx) into LI(R", wdx).

The following theorem gives sufficient conditions under which a pseudo-
differential operator is Fredholm on weighted Sobolev spaces. It is a generalization
of Theorem 3.4 in Grushin [8]. See also Theorem 7.2 in Beals [1].

Theorem 5.4. Let o€Sy for —oo<m=<ew and w€A,(R") for l<p<oo.
Suppose that liminf, s |o(x, O|(1+]E))"™=>0. Then for any sc(—eo, ), T,
s a Fredholm operator from LE, (R", wdx) into LE(R", wdx).

The proof of Theorem 5.4 depends on Theorem 5.3 and is the same as the proof
of Theorem 3.4 in Grushin [8].
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