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1. Introduction 

Let m~( - -~ ,  ~).  Define S"  by 

S m =  {a~C~(R"XR"): ID~D~a( x, ~)1 ~- c~ao+lr 
If  aES m, then we define the pseudo-differential operator T~ with symbol a on 
.90 (the Schwartz space) by 

(T.f)(x) = fR.e-~'x'~(x, ~)f(Od~, fC~ 

It can be shown that T, can be extended to a linear operator from the space S ae 
of tempered distributions into 6 e'. 

Suppose that aES ~ Then it is well known that T, is a bounded linear operator 
from LP(R ~) into LV(R ~) for l < p < ~ .  An immediate consequence of this result 
is that every T, with aCS m is a bounded linear operator from L~+m(R ") into 
L~(R ~) for l < p < ~  and - ~ < s < ~ .  Here L~(R ") stands for the Sobolev space 
of order s. See Calder6n [2] or Stein [19, Chapter 5]. Prompted by the LP-bounded - 
ness result, it is obviously of interest to characterize the nonnegative functions 
w on R" for which every T, with aE S o is a bounded linear operator on LP(R ~, wdx) 
for l < p < ~ .  

Let l < p <  ~.  A nonnegative function w is said to be in Ap(R ") if wEL~o~(R ") 
and 

)( so s ow(x)dx W(x) p=l dx < ~  

where the supremum is taken over all cubes Q in R ". See Coifman and Feffer- 
man [5] and Muckenhoupt [17] for basic properties of  functions in Ap(R"). Miller 
has recently shown in [16] tha t ' a  necessary and sufficient condition for every T, 
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with aES ~ be a bounded linear operator on LP(R n, wdx) for l < p < ~  is that 
wEAp(Rn). 

In [16] Miller has defined weighted Sobolev spaces L~(R ~, w dx) and developed 
some basic properties of these spaces. As in the unweighted case, an immediate 
consequence of the weighted LP-boundedness result for pseudo-differential operators 
is that every T~ with aES  ~ is a bounded linear operator from P L~+,.(R, wdx) 
into L~(R n, wdx) for l<p -~ ,o  a n d - ~ o < s < ~  if wEAp(R"). 

In this paper we obtain some more useful results for weighted Sobolev spaces 
and give, as an application, sufficient conditions on aES ~' such that T, is Fredholm 
on weighted Sobolev spaces. 

In Section 2 we study the weighted LP-boundedness result for T, with aES ~ 
Miller's proof of the sufficiency of the condition in [16] depends on the well known 
LP-boundedness result, the Fefferman--Stein sharp function operator in [7] and 
various versions of the Hardy--Littlewood maximal function operator. Weighted 
norm inequalities for quite general singular integral operators including T, with 
aES ~ have been derived in Coifman and Fefferman [5]. Suggested by the techniques 
in Stein [20], we give another proof of the sufficiency part of Miller's result. See 
Coifman and Meyer [6] for the use of similar techniques in studying pseudo-dif- 
ferential operators. Not only is our proof independent of the well known classical 
LP-boundedness result, it also produces a more precise inequality which is useful 
for studying weighted Sobolev spaces in Section 4 and Fredholm opertors in 
Section 5. See Grushin [8, Theorem 3.1]. Our proof depends on two results on 
weighted norm inequalities. These are formulated in Theorems 1.1 and 1.2. 

Theorem 1.1. Let wEAp(R ~) for 1 < p <  ~. Then there is a constant C >0, 
depending only on p, w and n, such that 

{[gfllv <=C [If lip, fED:. 

Here M f  is the usual Hardy--Littlewood maximal function of f. The proof 
of Theorem 1.1 can be found in Muckenhoupt [17] or Coifman and Fefferman [5]. 

Theorem 1.2. Let k > n  and wEAp(R") for l<p<~o .  Suppose that mECk(R n -  

{0}) satisfies 

I(D~m)(~)l <_-B I~l -I~l, 1~1 ~ k .  

Then the operator f ~ T f  defined on Do by 

( T f ) (x)  = f i~, e-g~iX'em(~)f(~) d{ 

can be extended to a bounded linear operator on LP(R ", w dx). Moreover, there is 
a constant C > 0 ,  depending only on n ,p  and w, such that 

I1Tfllp <= CB [Jfl]v, fE 5e. 
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Theorem 1.2 is in fact a special case of a weighted version of the H/Srmander-- 
Marcinkiewicz--Mihlin Multiplier Theorem obtained by Kurtz in [13]. See also 
Kurtz and Wheeden [14]. Our proof also depends on two fairly elementary prop- 
erties of pseudo-differential operators with symbols in S o . For the sake of 
completeness, they are proved in Section 3. 

In Section 4 we obtain some results on weighted Sobolev spaces defined in 
Miller [16]. Specifically, we prove a version of  the Sobolev's Theorem, an inter- 
polation result by the complex method in Calder6n [3, 4] and a compact embedding 
theorem. 

In Section 5 we give sufficient conditions on a~S = such that T~ is Fredholm 
on weighted Sobolev spaces. Our results include those given in Grushin [8]. Fredholm 
pseudo-differential operators have been studied in Beals [1], Kumano-go [11]. 
Kumano-go and Taniguchi [12], H6rmander [9] and others. Information about the 
indices are also given in Kumano-go [11] and H6rmander [9]. 

2. A weighted norm inequality 

Let mC(--~o, ~). Define S m by 

am = {a6C~(R~• : ID~D~a( x, r <--- C~a(l+ 14[)m-I~l} �9 

If  aES ~ then for all multi-indices c~ and /~, we let 

K,a(a) = sup IhgD]a(x, 4)1(1 + 14l) -I~l. 

Theorem 2.1. Let aCS ~ and wEAp(R n) for l < p < ~ .  Then T, is a bounded 
linear operator from LP(R n, w dx) into LP(R ", w dx). Moreover, for any sufficiently 
large positive integer N, there is a constant Cu >0  such that 

I[Z, f l l ,  -< CNllfllp~'l~+al~_N K~a (a) 

for all f in LP(R ~, w dx). 

Remark. Using the density of S e in LP(R ", w dx), it is sufficient to prove 
Theorem 2.1 for functions f in 6 a. 

Proof o f  Theorem 2.1. Partition R n into cubes Rn=UmQm, where Qm is 
the cube with size one and centre at m~Z ~. Let r/~Co(R n) be such that r/(x)=l 
for x~Qo. For m6Z ~, set 

am(X, 4) = n ( x - m ) a ( x ,  4). 

Obviously, T,==~(x--m)T, and 

(2.1) f Q. l(T.f)(x)l'w(x) dx ~ f R. I ( z , j ) ( x ) l ' w ( x )  dx 
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for all f in Se. Since am(X, ~) has compact support in x, Fubini's Theorem 
implies that 

(2.2) 

where 
(z, 4) = f a .  a,,, (x, ~) dx. 

Claim 2,2. For all multi-indices ~ and positive integers N, there is a constant 
Cu > 0 such that 

10~6",. (2, ~)1 ~ CN{ZiPl ~N K,~ (a)}(1 + I~l)-I,I (1 + I~l) -N. 
The proof of Claim 2.2, though easy, will be given in Section 3. This Claim 

and Theorem 1.2 imply that the operator f ~  T~f defined on 5 a by 

(2.3) =fR~ era(X, ~)e-~i~'r f(~) d~ 

can be extended to a bounded linear operator on LP(R ", w dx). Moreover, for any 
sufficiently large positive integer N, there is a constant CN>0 such that 

(2.4) II TaflI, <= CN(1 + I;tl)-N{Zt,+pr~N K~,(a)}llf}], 
for all f in 50. Using (2.2), (2.3), (2.4) and Minkowski's inequality in integral form, 

IiZ,,,fllp =< CN {ZI,+aI~_N g,a (a)} fR. (1 + I,~1) -~ d211fllp. 

By choosing N large enough, there is a constant Cu>0 such that IlT,..fl]p<= 
CN{ZI~+aI~_NK~a(a)} llfllp and hence by (2.1), 

(2.5) f I(Z,f)(x)lpw(x) dx <= Cg,{z~I=+eI_~N g=a(a)}Pllfll~, 

for all f in 50. Now we need to represent T, as a singular integral operator. 
Precisely, we give 

Claim 2.3. Let K(x,z)= fR, e-==i*'r {)d{ in distribution sense. Then 
(i) K(x,z) is a function when Iz[#0; 

(ii) IK(x,z)I~_CNIzI-N ~I=I~_NK, a(a) for N large enough; 
(iii) for x0ER" and fE 6 e vanishing in a neighbourhood of  xo, 

(T,f)(Xo) = f .. K(Xo, Xo- z) f(z) dz. 

The proof of Claim 2.3 will also be given in Section 3. 
Let Q* be the double of Q,.. Let r ~) be such that 0-<~0(x)_~l for 

all x in R" and ~0(x)=l in a neighbourhood of Q*. Write f = f ~ + f 2 ,  where 
f l=~of and f~=(1-qg)fl Then T,f=T~fl+T,,f2.  Let I,,=fo,,l(T,,f)(x)i~'w(x)dx 
and z~=SQ,.l(T~f,)(x)pw(x)dx. Then for any sufficiently large positive integer N, 
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(2.5) and Claim 2.3 imply that there are positive constants C N and C2N such that 

(2.6) Im ~ 2PCK,{~'I~+BI~N K,a(a)}Pl[f x][~ + 2VlT, 
and 

(2.7) IT=A)(x)I <- C~{X~.~_~ K.0(~)}f,. ~. ( l+lm-zl) -NlA(z) l  dz. 
(x + I x -  zl) ~ 

Let (1 + [m-z[)-Nf2(z)=f2, m,u(Z). Then by (2.7), there is a constant C > 0  such that 

[v,A)(x)l-<- CC~N{Z~,:_~N K, o(O)}(MA, m,N)(x) 
where Mf~,~,N is the Hardy--Lit t lewood maximal function of  f2,m,N. See Stein 
[19, p. 62--64]. Hence by Theorem 1.1, there is a constant C ' > 0  such that 

f , IAO):w(z) dz. (2.8) I~, ~ C'C2N{~I~I~_Z N g,0(a)} p " (1 + [m - zl) rr 

So for any sufficiently large positive integer N, (2.6) and (2.8) imply that there is 
a constant CN>0 such that 

'm<-- - C~{2',=+,,~_,,K~#(~)}"{fQz If(x)l'w(x)ax+f.. IA(x)l'w(~) ax}. 
(1 + [ m -  xl) ~" 

Hence by summing over Z ~ and choosing N large enough, we complete the proof. 

3. Proofs of the Claims 

We prove in this section the two claims in Section 2. 

Proof of  Claim 2.2. Let fl be an arbitrary multi-index. Then by integration by 
parts and Leibnitz's rule, (2rci2)P(tg~Sm)(2, 4) is equal to 

( - i ) #  Z,~-# {~} f , ,  e'''* "(O~tl)(x-m)(O~-'O~a)(x, ~) dx. 

Using the properties of  q and the fact that aCS ~ there is a constant C p > 0  
such that 

l(2~i>DP(098~)(~, r c p o +  I~I) -)~i Z,_~pK,,(~). 

The claim then follows easily from the preceding estimate. 

Proof of  Claim 2.3. Let a be an arbitrary multi-index. Then 

(2rtiz)'K(x, z) = f i,. e-"ie"cg~a(x' r 
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in distribution sense. Since a~S ~ there is a constant C~>0 such that 

f , ~  I(a>)(x, r dr <_- g~0(,)fa" 0 + I{I) -~'a dg <-- c,g=0(a) 

if I< is large enough. Thus (i) and (ii) follow easily. To prove (iii), note that 
K(xo, Xo-Z)f(z) is absolutely integrable in z and hence Fubini's Theorem implies 
the result. 

4. Weighted Sobolev spaces 

Let zEC. We denote by J~ the pseudo-differential operator with symbol 
g 

(1+4rc21~[2) -'g. Since 

wEAp(R") for I < p<~=~ LP(R ", wdx) c 5 a', 

it follows that J~(LP(R",wdx))c6 e'. For -~o<s<r  and l < p < ~ ,  Miller 
has defined in [16] the weighted Sobolev space of order s, denoted by Lf (R", w dx), by 

(nn, w dx)  = I , ( L "  (n", w 

If fEL~(R", w dx), then the norm of [[fl[~,n of f is defined by I[fll~,n=[IJ_~fl[r 
L~(Rn, w dx) is a Banach space with norm IlfLl,,n. For elementary properties of 
weighted Sobolev spaces, see Miller [16]. Using Theorem 2.1 and the proof of 
Theorem 3.1 in Grushin [8], we get 

Theorem4.1. Let cr~S m for - o o < m < ~  and wEAn(R" ) for l < p < ~ .  
Then for any sE (-0% oo), T, is a bounded linear operator from L,P(R ", w dx) into 
L~_m(R n, w dx) and there exist a constant C > 0  and a positive integer N such that 

lOgO> (x, r 
IIT=flI,-,,,p <-- Cl[fl[,,~ ~l=+al<=N sup (1 + [~l) "-1=1 

for all f in L~(R", w dx). 

Remark. Theorem 4.1 is a generalization of Theorem 3.1 in Grushin [8]. 
Miller in [16] has obtained a version of the Sobolev's Theorem for weighted 

Sobolev spaces. In order to give another weighted version of the Sobolev's Theorem, 
the following two lemmas are necessary. 

Lemma 4.2. Let wEAn(R" ) for l<p<oo .  Then for sufficiently large k>0,  
f a ,  (1 + Ixl)-%(x)dx< ~. 

Proof. See for example Lemma 1 in Hunt, Muckenhoupt and Wheeden [10]. 

Lemma4.3. Let wEAn(R" ) for l < p < ~ .  Then wCAq(R") for some qE(1,p). 

Proof See Lemma 2 in Coifman and Fefferman [5]. 
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Let wEAp(R') for l<p<~o .  Then by Lemma 4.3, it is possible to define 
qw, p by 
(4.1) qw, p = inf{q: 1 < q < p and wEAq(R')}. 

We can now give another version of the Sobolev's Theorem for weighted Sobolev 
spaces. 

Theorem4.4. Let wEAp(R")for l < p < o o .  Suppose that sE(,o% ~) is such 
that sp>nq~,p. Then for any compact subset K of  R", there is a constant CK>O 
such that 

sup Iv(x)1 <= CKIIvlls,~, vE ~. 
x E K  

$ 

Proof. Let vE6e. Setting f=~-l{(l+4rc~[~]2)T~}, then v = J J = G s , f ,  
where Gs is the Bessel potential of order s. See Schechter [18, Chapter 6] or 
Stein [19, Chapter 5] for properties of Bessel potentials. By H61der's inequality, 

1 1 

(4.2) Iv(x)[ {fR-[Gs(x-y)f'w(y) p-1 dy}Tllfllp" 

Now the p'th power of the first term in the right hand side of (4.2) is equal to 

1 

(4.3) (flrlal+ flrl~l)[G~(x-y)lP'w(y) P-~ d y =  11(x)+I2(x). 

Since wEAq(R ~) where q=qw, p by Lemma 4.3 and (4.1), H61der's inequality with 
p - 1  

r -  implies that 
q - 1  

1 1 p 1 

(4.4) "l(X)<={fiyl<=lw(Y) q-* ay}-;{fi~olGs(y)l,-qay}7. 
p 

Using the estimates of G, at the origin and at infinity, fa .  [Gs(y)[-~-qdy<oo. 
p 

It is easy to see that w q-1 is in L}oc(R~). Thus I,(x)<r uniformly in xER" 
p, 

by (4.4). To estimate Is(x), first note that w 1,-1EAp,, (R"). Hence the estimates 
of G, at infinity imply that, for every k>0 ,  there is a constant Cr, k>O such that 

1 

(4.5) I~(x) <-- CK,~ f l,l~_~ (l + lYl)-kP'w(y) P--~ dy, xE K. 

If we choose k large enough, then Lemma 4.2 implies that 
1 

flrt_~l (1 + [yl)-k~"w(y)-~-~dy< ~. 

By (4.2), (4.3), (4.4) and (4.5), the proof is complete. 
For s0<sl, 0<-0-<1 and s=(1-O)so+Os~, it is well known that the inter- 

polation space [L~o(R'), L~(R')]o defined by the complex method in Calder6n [3,4] 
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is L~(R") with equivalent norms. For a very good and rapid introduction of the 
complex method, see Schechter [18, Section 5 of Chapter 1]. In order to give a 
weighted version of the above mentioned interpolation result, we need Lemmas 
4.5 and 4.6. 

Lemma4.5. Let wEAp(R ~) for l < p < o o ,  fEL~(R", wdx) for -~o<s<~o  
and ~E6r Then - <- If(q~)I-Ilf[Is, pl[~11, where [l~[{-s,v',w' & the norm o f  ~9 in 

1 

L~s(R", w ~-1 dx). 

Proof Since 5P is dense in L~(R", w dx), it is sufficient to prove that 

lfR,~O(X)~b(x)dx[-<l[q~[[s,,[[~b[]_s,,,,w, for all q~E5 p. But this follows easily from 
Plancherel's Theorem and H61der's inequality. 

By Theorem 1,2 or Theorem 4.1, we easily obtain 

Lemma 4.6. Let wE Ap(R") for l<p<o~ .  Suppose that a, b are real numbers 
such that a<b. Then for any sE(-oo, oo), there exist a constant C > 0  and 
positive integer N such that the norm of  the operator 

�9 p n p n ar_~,_iv. Ls(R,  w dx) ~ Ls_,(R,  w dx) 

is <-C(l+lvl)  N for a-<#-<b and -o~<v<~o.  

The0rem4.7. Let wEAp(R") for l < p < ~ .  Then for so<s1, 0-<0-<1 and 
s = (1 - O)so + Osl, 

[L~0(R", wdx), LffI(R", w ax)]o=L~(R", wax) 

with equivalent norms. 

Remark. In the proof of Theorem 4.7 given below, we shall use the terminology 
and notations in Schechter [18, Section 5 of Chapter 1]. 

Proof o f  Theorem 4.7. Let Ho=[LP~o(R", w dx), L~I(R", w dx)] o. Suppose 
that uEH o and ~>0 are given. Then there is an f in H(L~o(R", wdx), 

s~ 
L~(R",wdx)) such that f (O)=u and IIflln-<l}u]lo+e. Let 2y(~)=(l+4n21~]2)2 

for j = 0 , 1 ; ; t =  2t and g(z)=~-t{Ao~'f(z)}.  Now ~.0U:J_~_~)~0_~ ~. Since 
20 

f(z)EL~o(R", wdx) for 0-<Re z-<l, it follows from Theorem 4.1 and Lemma 4.6 
that g(z)EL~o_~ORo~(R", wdx) and there exist a constant C > 0  and a positive 
integer N such that 

(4.6) I[ g(# + iv)[[(~o_~)u,p <: C ( I +  [v[)N[[f~ + iv)[f~o,p 

for 0-</z-<l and -oo<v<~o.  Since fEH(L~o(R ~, wdx), L~(R ", wdx)), it follows 
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that f ( I+iy)ELP(R ", wdx) and hence by Theorem 4.1 and Lemma 4.6 again, 
there exist a constant C1>0  and a positive integer N1 such that 

(4.7) l[ g(1 + iv)lip <= C 1 (l  "~ ]vl)NI ]If(1 + iv)l}sx, p 

for - -oo<v<oo.  Let v E ~  Then h(z)=fa,  g(z)(x)v(x)dx is continuous in 
0 ~ R e z - < l  and analytic in 0 < R e z < l .  Moreover by (4.6), (4.7), Lemmas 4.5 
and 4,6, there exist a constant C ' > 0  and a positive integer N '  such that 

[h(#+ iv)[ <= 6"(1 + Ivl)N'lIfllH[IVllp,,w, 

h(z) 
for 0 ~ p < - I  and - - ~ < v < ~ .  Thus F(z ) -  satisfies the hypotheses 

llfllHllvllf ,,,, 
of Lemma 4.2 in Stein and Weiss [21, Chapter 5]. Hence there is a constant C a > 0  
such that IF(O)]<-Co, i.e., 

f R. g(O)(x)v(x) dx <= Col[fltollVllp,,w,. 

By Lemma 4.5, g(O)ELP(R",wdx) and [Ig(O)[Ip<=Co([lul[o+~). Since 5>0  is 
2 

arbitrary, it follows that IIg(O)llp<-_follullo. But g(O)=~-~{(l+47r21~l~)Tft }. Thus 
uEL~(R", wdx) and Ilulls, p<=follullo. 

Next suppose that uELP(R ~, wdx). Putting f (z):eZ~-~176 then 
f(O)=u. Since 2~ for 0 < = R e z ~ l ,  it follows from Theorem 4.1 
and Lemma 4.6 that f(l~+iv)ELPo(R ~, w dx) and there exist a constant C > 0  and 
a positive integer N such that 

I[f(iz + iv)l[~o, ~ <= C e - ~ ( l +  Ivl)Nllull~,p 

for 0 ~ / ~ - 1  and - ~ o < v < ~ o .  Furthermore, by Theorem 4.1 and Lemma 4.6 
again, f(I+iy)ELP~(R ~, wdx) and there exist a constant C , > 0  and a positive 
integer N~ such that 

[If(1 + iv)ll,~,v ~- G e  -~" (1 + [vl)N~ [lull,. p 

for . . . . . .  v<~o. Thus fEH(LPo(R ", wdx), LP(R ", wdx)) and there is a constant 
C2>0  such that I}fll~<=f~llUL, p, i.e., uEHo and Ilullo<=C211UL, p. This completes 
the proof. 

The following proposition is a special case of  a result in Lions and Peetre [15]. 

Proposit ion4.8.  Let l < p < ~ o  and - ~ o < s 0 < s l < ~ o  be given. Suppose that 
wE Ap(R"). Let S be abounded linear operator from LP0(R ", w dx) into LP0(Rn, w dx) 
such that S:  L~(R", wdx)~L~o(R", wdx) is compact. Then for 0~_0~1, 

S: [Lifo(R", w dx), LPx(R", w dx)]o ~ LPo(R n, w dx) 

is a compact operator. Similarly, i f  T is a bounded linear operator from LP(R ", wdx) 
into LP(R ", wdx) such that T: L~(R", wdx)~LPo(R ", wdx) is compact, then 
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for 0-<_0-1, 
p n T: L~I (R", w dx) ~ [L~0 (R", w dx), L,I ( R ,  w dx)] o 

is a compact operator. 

We can now give a weighted version of  the compact embedding theorem for 
Sobolev spaces. 

Theorem 4.9. Let wCAp(R") for l < p < o ~ .  Suppose that {Vk} is a bounded 
sequence o f  elements in L~(R', wdx). I f  r and t<s, then there is a sub- 
sequence {uj} o f  {vk} such that {rpuj} converges in Ltn(R ", wdx). 

Proof. There are three eases to be considered, namely, (i) O<=t<s, (ii) s > 0  
and t < 0  and (iii) t < s < 0 .  It is dear  that if Theorem 4.9 is true for ease (i), then 
it is also true for Case (ii) since for t<0 ,  the inclusion from LP(R ", wdx) into 
L~(R", wdx) is bounded. So we first suppose that O<=t<s. Let r>s  be such 
that (r-1)p>nqw, n where qw, p is given in (4.1). Let ~t be a multi-index. Then 
by Theorem 4.1, there is a constant C , > 0  such that 

(4.8) JlO"vll,-t.l,p ~ C~livll,,p, v ~ .  

Let K = s u p p  rp. Then (4.8), Theorem 4.4 and bounded inclusion between weighted 
Sobolev spaces imply that there is a constant CK>0 such that 

(4.9) sup [v(x)I+ ~]=l sup I(Djv)(x)t <= Crlrvif,,p 
x EK x EK 

for all v55 ~. Hence if {Vk} is a bounded sequence of  elements in L,P(R ", wdx), 
then (4.9) implies that {Vk} is a bounded equicontinuous sequence of functions on K. 
Using Aseoli--Arzda Theorem, there is a subsequence of  {Vk} which converges 
uniformly on K. Hence q~ is a compact operator from L~(R",wdx) into 
LP(R ", w dx). Since cp is also a pseudo-differential operator with symbol in S 0, 
~p is bounded from L,~(R ", wdx) into L,P(R ", wdx). By Theorem 4.7 and Proposi- 
tion 4.8, cp is then a compact operator from L~(R ", w dx) into 

[LP(R ", wdx), Lf(R", wdx)lt  = Ltr(R ", wdx). 

But r is also bounded from Lf(R", wdx) into Ltr(R ", wdx). Hence by Theorem 
4.7 and Proposition 4.8 again, q~ is a compact operator from 

[L?(R", w dx), L,r(R ", w dx)l ,_t = L~(R", w dx) 
r - - l t  

into LtP(R ", wdx). This completes the proof  of  Theorem 4.9 for Cases (i) and (ii). 
Using Lemma 4.5, the result is also true for Case (iii) by duality. 
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5. Fredholm operators 

We can now use the results obtained so far to give conditions o n  t r E S  m such 
that T, is Fredholm on weighted Sobolev spaces. We first introduce the following 
class Sg' of slowly varying symbols. See Grushin [8], Kumano-go [11] and Kumano- 
go and Taniguchi [12]. 

Definition. A symbol a in S m is said to be in S~ i f for all multi-indices 
and [1, there is a constant C,r such that 

lOUDest(x, 4)1 <- C,a(x)(1 + I~I) m-j=j 

]'or all x, ~ER" and limlxl_~=C,p(x)=O, for I[11~0, 

The following theorem on composition of two pseudo-differential operators 
can be found in Grushin [8]. 

Tlleorem5.1. Let trlES"~ and a2ES~'. Then there is a symbol trES'g, +~, 
such that T,, T, ,= T, and for any positive integer N, 

( -  2rci)-I'l 
~(x, ~)-Zf,l~N ~! (O~l)(x, ~) (aI~) (x ,  ~)cso ~ + ~ - N  

Using Theorems 4.1, 4.9 and the proof of Theorem 3.2 in Grushin [8], we obtain 

The0remS.2. Let aES~ for - . o < m < o o  and wEA~(R ~) for l < p < o o .  
Then for any sE(-~o, ~), T, is a compact operator from Lf+m(R", w dx) into 
LLI(R", wdx). 

From Theorems 5.1 and 5.2, we easily obtain the following generalization 
of Theorem 3.3 in Grushin [8]. 

Theorem 5.3. Let -oo<ml ,  m2< ~, triES r"~ and a~ES'~. Suppose that 
wEAp(R ") for l < p < ~ , .  Then for any sE(-~, ,  co), T, T, - T ~  is a compact 

p n operator from Ls+,,~+m~(R, wdx) into L~(R", wdx). 

The following theorem gives sufficient conditions under which a pseudo- 
differential operator is Fredholm on weighted Sobolev spaces. It is a generalization 
of Theorem 3.4 in Grushin [8]. See also Theorem 7.2 in Beals [1]. 

TheoremS.4. Let trES~ for - - ~ o < m < ~  and wEAp(R") for l < p < ~ o .  
Suppose that liminf(x.r I~(x, ff)l(l+lr Then for any s E ( - ~ ,  ~,), T~ 
s a Fredholm operator from Lf+~(R ", wdx) into Lf(R",wdx). 

The proof of Theorem 5.4 depends on Theorem 5.3 and is the same as the proof 
of Theorem 3.4 in Grushin [8]. 
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