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Nelson [10] proved that the Mehler transform is hypercontractive. More preci- 
( 0)~x2-- 20)xy + 0)~y 2 ) 

sely, the kernel (1-092) -1./~ exp 2 ~ i ~ ~  d# yields a contraction of 

LP(#) into Lq(/t), where/z is the Gauss measure, for co real, co2~ p - 1 1 < p < q <  oo. 
q - l '  

This has been extended to imaginary 0) by Beckner [3] (this enabled him to give a 
sharp version of  the Hausdorff-Young inequality) and to complex co by Weissler [16]. 
Several other proofs using widely different techniques have appeared [9], [6], [14], 
[111, [8], [1]. 

Weissler [17] proved that the Poisson integral f-"Po~f on the unit circle also is 
hypercontractive (for the Haar measure) with the above bound on 0). It will be proved 
in this paper (Section 6) that the same is true for the Poisson integral on a sphere in 
R s. It is an open problem whether this holds also in higher dimensions. 

The eigenfunctions of the Mehler transform and the Poisson integral are the 
Hermite polynomials and the spherical harmonics respectively, which are the ortogo- 
nal polynomials for the respective measures. 

In the present paper we use this as the definition of a family of operators for any 
probability measure on R d (Section 1). The general and still unsolved problem is to 
decide when the operators are contractions and, in particular, for which measures 
this holds with Nelson's conditions on co. It shown (Section 3) that this condition al- 
ways is necessary, but no general sufficient condition is known. However, several 
theorems (Section 4) prove the hypercontractivity property for one measure, assuming 
it for others, and these theorems enable us to prove the result stated above for a sphere. 

The final section treats multipliers on orthogonal polynomials of complex vari- 

ables. In particular, it is proved that II f(0)z) Ilq <= Ilf(z) l[p f analytic, 1o) 12 ~ p ~ 1, for 
certain measures on the complex plane, q 
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Nelson's work was motivated by quantum field theory. In this connection several 
authors have extended the result to more general operator semigroups, see [7] and 
the references listed therein. Other extensions have been made by Borell [5] and 
Peetre [12]. 

1. Definitions 

Let # be a probability measure on R d. We assume that the moments f x'd# 
exist. (e is used here and in the sequel to denote multiindices.) Hence, every polynomial 
belongs to LV(p), p<~o. For simplicity, we will only consider L p for p->l and 
only measures # such that the polynomials are dense in LP(p) for any finite p. This 
holds e.g. if the Fourier transform/~ is real analytic, or equivalently if f [xl"dlt ~- 
Cram m, m= 1, 2, .... 

Let Pk denote the space of polynomials in d variables of degree at most k, and let 
Qk be the orthogonal complement of Pk-1 in Pk (for the scalar product ff~dlz). 
The spaces Qk are orthogonal to each other and they span L 2, i.e. L 2 = O o  Qk. The 
operator T~ (alias T~(g)) that we shall study is defined for a complex parameter co 
by T,o(~a k qk)=z~ako)~qk, qkCQk. This defines T~ on the space of  polynomials, and 
it may be extended to L p if it is continuous. T1 is the identity and T o is the mapping 
f ~ f f .  Since 7"o,1=1, IIZ~llp, q_->l. {T,o} is a semigrogup; To, Ta=To, z, and thus 
II To,~[I p,, <--l[ Tall,, ql[ Zo~ [[ q,r. 

When d =  1, Qk is (at most) one-dimensional and hence spanned by a polynomial 
q~k. The sequence {~0k} is thus the sequence of orthogonal polynomials for the measure 
# and the operator T~ multiplies the k :th orthogonal polynomials by co k. 

When d >  1 we may select an orthonormal basis {9k, l}Z in each Qk. These yield 
together a sequence of orthogonal polynomials, although the sequence is in general 
not unique. For [col<l we define Ko~(x,y)=~k,t alk(pk,t(X)~Ok, l(y) (the sum con- 
verges in L2(p• Ko, is independent of the choice of {~0k, l}, and T,of(x)= 
f K~o(x, y)f(y)d#(y), i.e. T~ is an integral operator with kernel K~. The dimension of 

Qk is at most (k +d-1) .  Equality holds for every k if and only if the monomials x ~ 

are linearly independent in L 2, i.e. if and only if  the support of # does not lie in the 
zero-set of any polynomial. In that case we say that/~ is non-singular. The opposite 
extreme case is when the support of # is finite. Then L 2 has finite dimension, Qk = {0} 
for k~ko and the sequence of orthogonal polynomials terminates. 

Examples. 1. Gauss measure in R1; d#=(2n)-l/2e-~/2dx. The orthogonal 
polynomials are the Hermite polynomials, 

K,o(x, y) = (1 --co) -~/2 exp ( 
0) 222 2~oxy + ro~ y 2 I 

2( 1 -- co 2) ! 
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and To is the Mehler transform. This is the case studied by Nelson [1] and 
others. 

1 
2. Symmetric two-point (Bernoulli) measure; d/~=~- 6_1+ 51. Here q~o=l, 

~01:X and To~(a+bx)=a+bogx. Thus [lT, ol[p,~<:l if and only if 

( [a + bco[q + la-  boglq )i/q <= ( la + b l" + la-  b [" ) ~/', 
2 2 a, bCC. 

This "two-point inequality" is an intermediate step in [3], [9] [16]. For real co and 

p~_q, it holds if [o91 <- ] ; P -  1 [4], for complex co, see [16]. 
- V q - 1  

3. Uniform (Lebesgue) measure on the unit sphere in R d. Qk is the space of all 
spherical harmonics of degree k [1 5]. Hence, if f is an harmonic polynomial, T~, f(x) = 
f(ogx). Thus, if 0<09<  1, To, is the Poisson integral and Ko the Poisson kernel. The 
case d =  1 is Example 2, d = 2  was studied by Weissler [1] and d = 3  will be treated 
in Section 6. 

An alternative approach is the following: Let xl. . .  xa be random variables. Let 
Pk be the space of  polynomials in them of degree at most k and orthogonalize as 
above for the scalar product Eft,. The two approaches are clearly equivalent, letting 
p be the joint distribution of  the random variables. Both approaches may be extended 
to infinitely many variables. 

2. Positivity 

Theorem 1. IIZ~llp, a=llT~tlp, q=ltZ,o[lr.p,, where p,p" and q,q" are conjugate 
exponents. 

Proof. The first equality follows from T, of= T~f, and the second by duality 
since * - T,~ -- T,~. 

Theorem 2. The following are equivalent 

i) IlT,0llp, p = l  for every p, l < p < o o .  
ii) llZo, lh,x= 1 

iii) I[ Z~[I •, ~ = 1 
iv) T,~ is a positive operator 
v) K,~(x,y)>=O a.e. (For Io91<1.) 

Proof. i )~i i )  by p ~ l ,  ii)r by Theorem 1, ii) & iii)=,i) by interpolation, 
and iv)c:~v) by definition. 
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ii)=,iv). By the definition of To, fTo, fd#=ffd#, fEU. Hence, if f _ 0 ,  
flT,~fl<=llfll~=ff=fTo, f and thus To, f~O a.e. iv)=~ii), flT~,fl<=fT~,lfl= 
f If]. 

It follows from this, and also from Theorem 3 below, that these properties are 
possible only if -1<_-o9<_-1. They obviously hold for co=0, 1. 09= - 1  is treated in 
Theorem 5. 

Problem. Is T~ always a contraction in L p for 0<o~<1? 

For the examples 1~3 above, the answer is yes, since the kernel is positive. 

3. A necessary condition 

In the section we assume that /z  is not a Dirac (one-point) measure. 

Theorem 3. I f  [I Toll~, q= l, then 

( q - 1 ) l c o l 4 - ( p + q - 2 ) ( R e  oa)Z-(pq-p-q+2)(Im co)2+p-1  _-> 0, 1o912 _<- p/q. 
(1) 

Note. For fixed p and q, the set of allowed co is thus bounded by a quartic curve. 
lcol2~p]q only serves to exclude the exterior of the outer branch of the curve. There 
are several equivalent forms of the condition, e.g. 

lcoal2+(q-2)(Re coa) 2 <= la l2+(p-2)(Re a) ~ for all aEC. (2) 

Other forms are given in [16]. 

Proof Let ~0 be a real linear function with fq~d#=O and f~o~d#=l. Thus 
q~ Q1. We use the binomial expansion to compute ][ 1 +e~0llp for small (complex) e. 

f 11 + ~ 1 . ~  = f (1 +2 Re ~q~ + lel 2q~)plzd# 

2 2  l p p  

+ o (1~1.) = f ( 1  +v Re ~ + --~ (I.12 + (v -  e)(Re ")9 e2} d.  + O (1~I ~) 

= 1 + ~  (l~12+(p-2)(Re e)2)+O(l~lz), 
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whence by the binomial expansion again, 

Ill+eq~llp = l + l ( l e l Z + ( p - 2 ) ( R e  e)e)+O(le]3). 

This formula also yields 

II To~(1 +ecp)[]q = II 1 + eogcp[lq = 1 +~- (Io9~I, + (q-2)  (Re o9~)2) + o (1513). 

Comparing these two expressions, taking e=6a and letting 6~0 ,  we obtain (2). 
With a=x+iy ,  (2) expresses the positivity of  a certain quadratic form. This is equi- 
valent to the statement that the determinant and trace of  the coefficient matrix are 
positive, which is (1). (We omit the elementary computations.) 

o9, the condition is logic_I/ o-- , 1 if and IogI- l Remarks. 1. For real 

if p=>q. For imaginary og it is /o9[~=min(p--1, 1 ) .  
q--1 

2. If  p > 2 > q ,  (1) allows ]co]> 1. However, we may in this case improve the theorem, 
at least if the support of/~ is infinite, by taking ~oCQ, and repeating the argument. 
This yields ]o9"12<-p/q, and since n may be arbitrarily large, [ogI =< 1. (This is obvio- 
usly also sufficient for []T~,][p,~=l when p>-_2>=q.) 

3. Theorem 3 holds aIso for p <  1. It follows that if .q>p, T o never is a contraction 
o f L  p to LL If  q<-p, ][Tdl = 1 is possible only if co= • 1, at least if the support o f #  
is infinite. 

4. p = q = l  yields -1~o9<_-1 as stated earlier. If  p = l < q ,  or dually if p < q = ~ ,  
[[T,~[lp, q= l  if and only if o9=0. 

The surprising fact is that the necessary condition (1), which comes from small 
perturbations of  a constant function, in some cases also is sufficient. This is e.g. true 
for the Gauss and two-point measures for p<=q unless possibly if 3/2<p<=q<2 
or 2 < p ~ q < 3  [16]. The condition is also sufficient for real o9 when # is the uniform 
measure on a circle [17] or a sphere in R 8 (Section 6 below). 

To show that the condition not always is sufficient we use terms of  higher order 
in the binomial expansions. In probabilistic terminology, the following theorem states 
that the variables xl. . .  xn and linear combinations of  them have skewness zero and 
non-positive excess. 

I f  I]To,]lpq=l with og=++_VPa---~l for some p and q such that Theorem 4. 

l < p ,  q<~o and p r  then E~o3=0 for ~oEQ1. l f  this holds for all q>p, then 
Eq~a-<_3(E~o2) ~ .for ~oEQx. 
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Proof Let ~o6Q I and e be real. We may assume that f~:d#=l, Then 

1 2 ~ 1 
f[ l+e~0[Pd~ = f ( l  +pecp+~ p(p-1)e ~p +-ff p(p-1)(p-2):e" 

' ) + ~ -  p (p -1 )  (p - N) (p - N) . '  q: d~+O(l~l 5) = 1 

1(p-l):++p(p-1)(p-2): f @+~-~p(p I>(p-2>(v-3)~'f @+o(I~D. + y v  

1{ 1 + eqo[{~, 

1 1{ P(P l)e3 I+~  - f<p3+~'~-~p(p--l)(p-2)(p-3)8"f~o') = ~ + 3 ~ T  - v(v-1)(p 2):  

1 1 1 2 
+-~" 7" ( 7 - 1 )  ( l p ( p - l > 8  '1 +0(181'> 

1 
= l + l ( , p - - 1 ) a  +-~- (p --1) (p -- 2> ~' f :  

+ ~___g (p_ 1)(p_ 2)(p_ 3 ) : f  ~o4 - (p-IP8 ~' + O (Iris)" 

Substituting this expression for both sides in {I 1 + eco~o{l a = {I T (1  + ~q~)I1 q -<-- II 1 + eq~ll ~, 
we see that the zero and second order terms cancel. Thus the third order term on the 
left hand side is smaller than the one on the right hand side, and replacing e by --e 
we see that they must be equal. Hence fq )3=0  or (q-1)(q-2)e)3=(p-1)(p-2), 
but the latter equation implies (q-2)(q-1)-a/2=(p-2)(p-1) -a/2 which is im- 
possible since q#p and (x-2)(x-1) -~/z is increasing. 

Since also the third order terms cancel, we obtain from the fourth order terms 

((q_l)(q_2)(q_3) f q:_3(q_l)3) (p-1 1~<= (p_l)(p_2)(p_3) f q)4_3(p_l) a 

(q-p)(pq-p-q-1)  f rp 4 <= 3(q'p)(pq-p-q+ l), 

and we obtain f~o4_-<3 as q ~ , .  

Theorem 5. IIT-allp, p =  1 / f  and only if p = 2  or # is symmetric about its center 
of mass. 

Proof. We may without loss of  generality assume that the center of  mass fx d# 
is the origin (cf. Theorem 7). Then # is symmetric if and only if ff(x)dg= 
ff(-x)d~t, fED. In that case T_lf(x)=f(-x) and thus IlZ, dlp,p=l. 

Assume that IIT-allp, p = l  and that p is not an integer. Then T - l ,  being its 
own inverse, is an isometry and hence II 1 + aq~ll p = II 1 -- eq~ II p, where tp ~ Q1- Compute 
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f [1 • as above, carrying out the binomial expansion further on. All terms of 
even degree cancel, but the terms of odd degree have to be zero. From this follows 
that every odd order moment fx 'dl  ~, I~1 odd, is zero and hence f f (x)dp= 
f f ( - x ) d #  for every polynomial f ,  whence /~ is symmetric. 

I f p  is an integer ~2,  we may by Theorem 1 replace p by the conjugate expo- 
nent, and, by interpolation, by e.g. 2.5. 

For [co I < 1, the Mehler kernel and the Poisson kernel are continuous. Since the 
circle is compact, the Poisson kernel is bounded whence the Poisson integral is bound- 
ed even on L 1 to L =. However, for the Mehler transform, (1) is necessary also for 
boundedness. This follows from explicit calculations with f(x)=e "x o r  e axe. Conver- 
sely, if there is strict inequality in (1), the Mehler transform is bounded [6], [16], [121. 
Hence, if p<=q, at least in many cases the transform is a contraction whenever it is 
bounded. If  p>q this fails unlessp or q equal 2 [16]; if p > 2 > q  the Mehler trans- 
form is bounded for some co with Io~l>l. 

Example 4. z%distribution. (Laguerre polynomials.) d/~ =(27rx) -x/~ e -~/2 dx, 
x >  0. We may regard x as the square of a normally distributed variable y. Thus the 
polynomials in x are the polynomials in y having only terms of even degree. 

To~(#) is the restriction of To(v ) (v the Gauss measure) to these polynomials. 

Hence To (#) is bounded if 1/~ satisfies the sufficient condition for the Gauss measure. 
Conversely, if To(#) is bounded it follows by computing norms for eaX=e ay~ that 

(1) holds for (-~. In particular, for real 09, To(#) is a contraction (or bounded) if and 
only if - m i n  ( ( p - l )  2, ( q - l )  -2, 1)<=~o<-min (1, (p~l)/(q-1)). The same is true 
for z2(n), n =  1, 2, ... and in particular for the exponential distribution. 

4. Changing the measure 

Theorem 6. I f  IITo(~)llp, q=flTo(V)lrp, q=l and p~q  then ilTo(/ZXv)lIp, q=l ,  

Proof Qi(/z)| and Qk(lZ)| ) are orthogonal in LZ(#• unless 
i=k and j=m. Hence Q.( /~•  Q~(/~)| and thus T,o(/~• 
To(#)QTo(v). The theorem now follows by an application of Minkowski's ine- 
quality [4], [3]. 

Also if p>q and Ko(#) or Ko(v) is positive, the conclusion holds [13]. 
Iterating and passing to the limit, we see that the theorem also holds for infinite 

products [10]. 

Theorem 7. If IITo(~)llp, q-- 1 and h is an affine mapping of R d onto itself, then 
[IT~(h(/t))llp,q= 1. 

Proof. We regard Xl . . . . .  Xa as d random variables. It is obvious that these gene- 
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rate the same spaces of polynomials, and hence the same operator as the transformed 
variables. 

We may also do injections, increasing the dimension, but for projections severe 
restrictions are needed (at least for the following proof). 

Theorem 8. Let the projection ( x , y )~x ,  xER al, yER d2, map It to v. If" 
l[Z~,(/~)llp,q=l and either 

a) for any monomial y~, the conditional expectation E(y~]x) is a polynomial of  
degree at most I~l in x, or 

b) p = 2  or q=2 ,  
then llTo,(v)ll~,p-- 1. 

Proof. Pn(v), the polynomials in x of  degree at most n, is a subspace of  P,(/t) 
and the embedding is an isometry for the LP-norms. 

Now assume a). I f  ~p(x)EQn(v) and x~y p is a monomial with ]~l+l/~l<n, 
f~o (x)x'yad~ = f~o (x) x'E(yalx)dv = 0, since x~E(yPlx) is a polynomial of degree less 
than n. Hence q~(x)d_P,-l(#), i.e. ~o(x)6Qn(it). Thus Q,(v)=Q,(p) and conse- 
quently To,(v) is the restriction of To,(/~) to functions of x only. (Conversely, condition 
a) is necessary for this to be true.) Thus IIZ~(v)[I <--I[Zo,(#)ll. 

In general, we have only Q,(v)cP,(#) .  Let f6Q,(v). Then f : ~ o f k ,  fk6Qk(it). 
Hence T[l (#)Tz(v) f=T~X(i t ) ( z" f ) :~o  Z'-kfk is a polynomial in the complex vari- 
able z. Thus TTX(it)Tz(v) is an analytic family of mappings. Since T71(#) Tz(v) is an 
isometry of L2(v) into L2(#) when [zl=l, IlZ=~(l~)Z~(v)ll2,2<--I by the maximum 
principle. Hence, if p = 2 ,  IlZo,(v)ll~,~<=ll Z~(~)ll~,qll T~-,~(It) To, (#) l[ m, 2 <= l . The case 
q = 2  follows similarly or by duality. 

Given two measures on R a, their product is mapped to their convolution by the 
mappings (x, y ) ~ ( x + y ,  y ) ~ x + y  (x, yERd). Combining Theorems 6, 7 and 8 we 
obtain the following corollary. 

Corollary 1. Let # and v be probability measures on R a. Assume that p<=q, 
I[To,(~)ll,,~=llZo,(v)ll,,~= l and either 

a) E(y ' lx  + y) is a polynomial in x + y of  degree at most I~l for every multiindex 
~, o r  

b) p = 2  or q=2 .  
Then [] T~(/ t .  v)[la,p = 1. 

Theorem 9. Let It, p~, Its, ... be probability measures on R d such that p is non- 
singular, ~tn~l~ weakly and sup f[xlmdit~<~, r e : l , 2  . . . . .  I f  IlZo,(/~n)llp, q=l  for 
n = l , 2 ,  ..., then IlZo,(~)l[~,~--1. 

Proof. It follows that fx~d~-~fx~dIt. L e t f b e  a polynomial of degree k. By 
assumption, the monomials x ~, l~I<_-k, are linearly independent in L2(/0, i.e. the 
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matrix (fx~x pd~t€ is non-singular. By continuity, so is ( fx~x  adl~.)~a and thus the 
monomials are independent in L2(p.) also, for every n except possibly finitely many. 
Order these monomials so that the degree [~[ is non-decreasing and apply in L2(p) 
and L 2 (fin) the Gram-Schmidt orthogonalization process to them to obtain orthogonal 
polynomials ~o~ and ~o~,.. The Gram-Schmidt process depends only on the scalar 
products and does so continuously. Hence qg~,~-~0~ as n~oo in the sense of con- 
vergence of the coefficients. Let f=z~a~q~ and define f~=z~a~q~.,~. Then 

f lLl"d~.-f IflPdlx = f Ifl'dlz.-f ]flPd~ --,- O, 

as n ~ o ,  and thus [Ifl]Lpoo=limllf~llLp(~,). Since T,o(/~.)f~=~a.col'l~o . . . .  it 
also follows that 

tl T~ (#)f[[Lq(~) = tim [L T~ (P.)f.IIL,(..) <= lim inf ~ fnllL~'r = I[ fllLP(tO. 

Examples. 5. Assume that p ~ q  and [IT~llp, q = l  for a symmetric two-point 
measure (all symmetric two-point measures are equivalent by Theorem 7), cf. Exam- 
ple 2. By Corollary la and induction, [[T,o[lp,q= 1 also for the binomial distributions 
Bi (n, 1/2). Normalizing these (by Theorem 7) and applying the Central Limit Theo- 
rem we conclude that the same is true for a normal distribution. This is implicitly 
done in the papers by Gross [9] and Beckner [3]. 

I f  p =2,  we may conclude that [1T~[[p,~= 1 for any finite or infinite convolution 
of symmetric two-point measures, cf. the proof of Theorem 10 below. 
6. I f  [I Z~ll~,~ = 1 for a normal distribution and p =< q, the same holds for all normal 
distributions in all dimensions. 
7. Weissler's [17] result for the circle and Theorem 8a yield [IZ~,[lp.q=l if co real, 

p<=q and co2~ P - 1  for the measure n- l (1 - x2 ) - l /~dx ,  - l < x < l .  (Chebyshev 
q - 1  

polynomials.) 

5. The infinitesimal inequality 

The following technique to obtain hypercontractivity inequalities for real co was 
invented by Gross [9]. We do not give the most general version. 

I =1 for all p ,q,  l < p ~ q < o ~  holds if and only if Z p ~  p,q 

I ~ak,  t r p - -  1 "~k/2 I[ 

for every polynomial ff~'ak,zCpk, t. This may be written I]z~bk, t(q--1)--k/~Ok, tllq <- 
<=l[~bk, l(P-- 1)-*/~q~k, tllp, q>=P, i.e. ll Y~bk, t(p-1)-*/zcpk,lllp is a decreasing functi- 
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on of p. This is checked by differentiation: (d/dr below is taken at r =  I). 

0 ~ ~ I[~bk, t(P--1)--k/~CPk, zlla 

1 d 
= - II f l lvlog I[ fllv + lp  I[ fll~-v ( f i f  Iv log ] f l  2 ( p -  1) dr flT, f Iv), 

for any polynomial f=~bk,t(  p -  l) -k/2 r Thus the hypercontractive inequalities 
with co=l/(p-1)/(q-1) for all p<q are equivalent to 

f l f l ' l og[ f l  < 1 d ' -  2(p-1-----~ d r f  IT"ffp+llfll~'l~ for all p, 1 < p<~o.  

Introducing the operator H defined by Hfpk,l=kfPk, l, SO that To,=o9 n, 
d 

7 f i T r f [ ~ d p = p R e f l f l P - 2 f H f d #  (this is the version used by Gross). 
a r -  ~ 

6. The sphere S 2 

We will now prove the promised theorem for the uniform measure on a sphere 
in R 3. We repeat that T is the Poisson integral so that the conclusion may be written 
llu(cox)llq<=lluIlp, u harmonic in the interior. 

Theorem 10. Let # be the uniform measure on the unit sphere S ~ in R 3. I f  p<-q 

and _ ~ / p - 1  ~ / p - 1  q--1 <= co <-- ~ - - 1 '  then IIT~llp,~<_-l. 

Proof. The result is true for p=q. Hence we may assume that p<q and 

co = ]/(p - 1)/(q- 1). Let the projection (xl, x~, xa)-~xl map # to the one-dimensional 
measure v. Condition a) of Theorem 8 is fulfilled, and thus To,(v) is the restriction of 
To~(/~) to the set of  functions of xi. v is the uniform measure on [ -  1, 1] and the crucial 
fact is that this is an infinite convolution of two-point measures v,, viz. v,=(6~_,+ 
6_3-.)/2, n = l ,  2 . . . . .  Since IlTo(v,)]lv,q<_-l, Corollary lb, induction and Theorem 
9 yield ][T,~(v)][p,q~l in the case p = 2 .  Thus we have proved a special case: I f f  
is a function of xl only and p = 2 ,  then ][To, f[]q<-][f[[p. This preliminary result 
yields by the preceding section 

1 d 
f l f l ' l ~  <-- 2 dr f ]Trfl2+llfll~l~ Ilfll2, 

i f f  is a function of  xl only. 
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Next we remove the restriction p =2 by copying from the proof by Weissler 
[17] for the circle. Let fEC ~176 be positive and apply the last inequality t o f  ply. 

~ f f  l a f } Pl~  2 dr T~fP/2]'+ Ilfllglogllfllz,. 

Let u and v be the harmonic extensions o f f  a n d f  ~/* respectively to the interior 
B of S ~. By Gauss' theorem 

1 A ~fs, lr.f./=l~=f.,~,:=~L (:)  = ~ j ' ,  Iv, r. 

By Dirichlet's principle, this is less than 

- : • " ~f. Iv(u':"): 8,~(p-oL ~<u')= 1)Js 'dr 2 ( p -  2(p-- 1) 

This proves the infinitesimal inequality for an arbitrary p and a positive function f 
of xl only. Gross' machinery in the opposite direction yields IITofllq<=llfllp f f f a  
function of xl only. 

Finally, let f and g be arbitrary functions in Lffp) and Lr respectively, and 
l e t f and  g be the symmetric non-decreasing rearrangements of Ifl and Ig[. These are 
functions of Xl only. By a rearrangement inequality by Baernstein and Taylor [2] 

f gT~f =< f f  lg(x)llf(y)lK~o(x, y) <= f f  g(x)f(y)Ko( x, y) 

= f g r o f f < =  Ilgllq, l lT j I l~  <- Ilgllq, llfl[~ = Ilgllq, l[fllp. 

Since g is arbitrary [ITdllq<=llfllp. Q.E.D. 

Remarks. 1. It follows from the proof that I[T~(v)[[p,q=l for 

- V ( p -  1)/(q- 1) <--co- <- 1/(p - 1)/(q-  1), 

where v is the uniform measure on an interval. (Legendre polynomials.) 
2. The only part of the proof that depends on the dimension is the decomposition 

of v as a convolution of two-point measures. Thus, in higher dimensions also, hyper- 
contractivity for the uniform measure on the sphere is equivalent to hypercontrac- 
tivity for the projection ca(1-x2)(n-3)/2dx, and the general result follows from the 
case p=2.  

Conjecture. If # is the uniform measure on a sphere in R d, IITo, llp,q=l for 
- V ( p -  1)/(q- 1) -<co<= l / ( p -  1)/(q- 1). 
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We repeat that this is true for d =  1, 2, 3. Remark 2 suggests the following gene- 
ralization. 

Conjecture. The same is true for the measures c~(1 -x~)~dx on ( -  l, 1), 2 >  - 1. 
(Gegenbauer polynomials.) 

7. Analytic functions 

There is an analytic analogue of the theory developed in the preceding sections. 
We start with a probability measure/~ on C d and define the spaces Pk and Qk as be- 
fore but consisting of polynomials in z~, . . . ,z a. The  corresponding operator is 
denoted 2Po. Instead of the spaces LP(p), we study their subspaces HP(/t) spanned by 
the analytic polynomials. 

In fact, this version includes the earlier one. I f  the measure is supported on R a, 
we evidently get the same result with both definitions. However, in general it is 
possible to obtain better bounds for the analytic version, i.e. Theorem 3 does not hold. 
We obtain, by the same method but averaging over all e with the same modulus, the 

necessary condition /o91 ~= I/P-~ and we will soon show that this can not be improved. 
Now, there is no reason to stop at p = l ,  the theory works for p > 0 ,  a common 
phenomenon when dealing with analytic functions. 

The theorems in Section 4 hold with minor modifications: The mapping in Theo- 
rem 7 must be complex linear and in Theorem 8 (and similarly in Corollary 1) Condi- 
tion a) may be replaced by the now weaker 

II 2PiGTff][ p,q = 1 for all p <:q is equivalent to the infinitesimal inequality 

f [flPloglf I 1 d < - - - -  - Ref = 2p d r f  I~rf[pd#+llfu~'l~ [fl '-2fHf+llfllgl~ 

[9]. 

The theory is simplest when the measure is invariant for multiplication of the 
variables by a constant of modulus one. (Cf. Theorem 5 which expresses an analogue 
for the real theory.) In the sequel we assume that this is true. Then the monomials z ~ 
are orthogonal and ~f(z)=f(coz) .  Hence, [12Po[Ip, p = l  if and only if ]o91_<-1, 
p > 0 ,  and the sets {o9; ][ 2Pollp,a---1} are discs. In fact, z'A_zP~ ~ if [a[>[flI+ly[. 
Let us also regard/z as a measure on R ~a and define T o as before. Then z~EQI,I and 
~Po is the restriction of To to the analytic polynomials. Thus I[~Po~[lp, q<_-llTollp, q. 
We will now show that it is possible to have better results for To than for T o. 
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Theorem 11. Let p be either the uniform measure on the unit circle, (2n) -1 
e-1~12/2dxdy or (2n)-l(1-lzI2)-l /2dxdy,  Izl<a.  Then ~rl[o,[I,,,~=l, 
i.e. Ilf(coz)lflJq<=llf(z)ll~p, for Ico]<_-]/p~, 0 < y ~ q < ~ .  

Proof. I t  suffices, by continuity, to take 0=<r Choose n such that 

co<_]/np-1.  By Example 3, Example 6 or Theorems 10 and 8 (the third allowed 
[ n q - -  1 

measure is the projection of  the surface measure on the sphere in R3), 

[IT,o(lf[a/")li,q<=l[if[l/"lt.v=[[f[[~/". We will show that Tog(z)>~g(~oz) for any sub- 
harmonic function g. This, applied to If] a/", yields 

I[f(o~z)l]~ = [l l f (o)z)la/"l[~ <= Il T~ ([ f [1/Ol[~ <- Ilfllp, fE H L  

The pointwise inequality for subharmonic functions follows in the first case- 
since To is the Poisson integral and in the second case since the kernel is 
Ko~(z, w)d#(w)= (2n(1 -~02)) -1 exp (-[o~z--w[2/2(1 -o)2))dwadw2 which is positive 

and constant on circles around ~oz. In the third case, let g'(xa, x2, x~)=g(xl,  x2). 
Then T,og(xl, x2)=Pog'(xa, x2, ]/1 - x ~ - x ~ ) ,  where Po is the Poisson integral on 

S 2. Since g '  is subharmonic, this is at least g'(o)x~, ~ox2, o)V1-x~-x~)=g(a)xa ,  
O.)X2). 

In the first case the spaces H p are the classical Hardy spaces. (Special cases are 

given by Bonami [4].) 

Problem. For  which rotationally invariant measures in the complex plane is 

][f(coz)[lq<-[lf][v for f analytic and 
This class of  measures is closed under convolution by the analytic version of  

Corollary la). This yields other examples f rom the thre measures of  Theorem 11. 
A necessary condition, derived as Theorem 4, is f lz[4dl~<-2 (f[z]2d#) 2 which means 
that the real part  of  z has non-positive excess. 
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