On the regularity of difference schemes

Part II. Regularity estimates for linear
and nonlinear problems

Wolfgang Hackbusch

1. Preliminaries
1.1. Discrete regularity estimate

Let L be an elliptic differential operator of second order. Usually, the differen-
tiability of the solution u of
(LD Lu=f (&), ulr=0,

is two orders larger than the order of differentiability of /. This property can be expres-
sed in terms of Sobolev spaces,

(1°2a) ”L_lngs(g)_,ﬂzu(g) =C
or in terms of Hélder spaces,

(1.2b) 1L M o @ywcrrsm = € (s >0, s integer).

For the notation of the various spaces and of the norm, see Section 1.3.
The discretization of the boundary value problem is written as

(13) Lhuh =ﬁn

where h denotes the discretization parameter (usually: grid size). Let H;(£,) be the
discrete analogue of H*(Q) (derivatives replaced by differences). Then we want to
prove the counterpart of (1.2a):

(1.4 L, = C uniformly in .

1
”H; @) ~HE* ()
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This inequality is called the discrete regularity estimate. It differs from usual stability
conditions. For example, the /,-stability of L, is expressed by

1.5 1L H@,- @,y = C  uniformly in A,

since l,=Hy(Q,). Note that (1.4) implies stability with respect to Hy(24).

1.2. Results of this paper

In the recent paper [6] we proved (1.4) for s€(—3/2, —1/2). Section 2 contains
quite a different technique for proving the regularity estimate (1.4) also for larger
orders s. While [6] makes no use of (1.2a), the new approach does. The following
general statement is proved: If the discrete regularity (1.4) holds for some s, if the
continuous regularity estimate (1.2) is satisfied for s€[s,, f] and if an additional
consistency condition is fulfilled, then the discrete regularity (1.4) holds for s€[so, 7],
too. This theorem is not restricted to Sobolev spaces.

In Section 2.1 we consider the special case of a square Q=(0, 1)X(0,1). The
square (or rectangle) is easier to treat since the boundary condition u|,=0 requires
no irregular discretization. There are some papers proving (1.4) with s=0 for a
square (cf. Guilinger [5]) or for a similar situation (cf. Dryja [4]). Here we show
Hj-regularity :
(L.6) 1L, a2 oy~ mtca,y = C
where A} differs from H; only slightly.

There are several papers on interior regularity, i.e. estimates of u, in an interior
region (cf. Thomée [16], Thomée and Westergren [17], Shreve [14]). [16] contains
an interior Schauder estimate. But there is no paper known to the author considering
the (global) discrete Holder regularity for a square. For this reason we show
Ci*(Q,)-regularity (0<a<2, az1):

(L7 IZ

|
B NEE(82,)~CET*(52)

[IA

C,

where € is a modification of Cj(£2,).

An arbitrary region Q requires irregular discretizations of the boundary condi-
tion. In Section 2.4 we analyse the Shortley—Weller scheme and the difference
method with composed meshes.

Section 3 contains some results for the nonlinear problem & (u)=0. Let
ZL.(u;)=0 be its discretization. We show that u€H'(Q) [or u€C*(2)] implies
that u, is bounded in H(,) [or C;(9), respectively] uniformly with respect to h,
provided certain discrete regularity estimates hold for the linearized scheme. Our
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approach is different from D’jakonov’s method (3], but similar to the technique of
Lapin [9]. Two examples are discussed. The first one contains a Schauder estimate of
the discrete solution. The second one is Lapin’s problem. We show the same results
under weaker assumptions.

1.3. Notation

W™P(Q) (m=0 integer, 1=p=o, QCR? denotes the space of functions
on Q with all derivatives of order =m in L?(). Its norm is 3y <m || DU s (2)>
where o is a2 multi-index a=(oy, ..., o), 2;=0, and

o] = oy 4. g, D* = @)(x...0x%).

For p=2 we write H™(R) instead of W™ 2(Q). H*(Q) for real s=0 is introduced,
e.g., in [10]. Hg(Q) is the closure of Cg () with respect to the norm of H*(Q).

C*(@) (0 <i=<1) is the space of functions that are Holder continuous with
exponent A. Its norm is |ully+ Ju|;, where

Nullo = sup {Ju(x)|: x€Q},
{u], = sup {lu(x)—u(xM/lx—x"|* : x, X€Q, x=x'}.

C" @) (m=0,1,2, ..., 0<l<1) contains Holder continuously differentiable
functions with finite norm X, j<m [ D*ullo+ Sjaj=m DUl

The norm of a Banach space X is always denoted by [[-[x (e.g. [ - [am))-
If X and Y are two Banach spaces, the canonical norm of operators 4: X—~Y is

l4llxsy = sup {|4x]y/lxx: O # x€X}.

Difference schemes are described by means of the translation operator 7. We con-
sider only the two dimensional case. T, and T, are defined by

T m =ul+h ), Tw (& n=ul n+h)

(¢, m): grid points, h: grid size). T* (x=(a,, %,): multi-index) denotes
T =TxTp.
The differences with respect to the x- and y-directions are

=k N (T—1), 9, =h"'(T,—I) (I: identity).



6 Wolfgang Hackbusch

Differences of higher order are
0" =030y (a = (a, o))

The set of grid points is 2, e.g., Q,={(x, )€Q: x/h, y/h€Z}. F(L,) consists of
all grid functions defined on @,. In Section 2.2 we also define @, Q,. F,(Q,)
is the set of grid functions u, defined on @, with u,(x, y)=0 for (x, y)€ @\ 2.

2. Regularity of discrete linear boundary value problems

2.1. A general theorem

Let
2.1) Lu=f (ue X° €Y

be a boundary value problem. Either L is a differential operator and the homo-
geneous boundary condition of u is incorporated into the definition of the Banach
space (cf. (1.1)), or (2.1) represents the differential equation L% =f* and the boun-
dary condition Lfu=fT,

Usually, there exists a scale of Banach spaces X*°, Y*(s€I) with X'cCX5,
Y'cY® for t=s so that
(2.2a) L: X% Y5 is bounded for s€l.

Under suvitable conditions L maps X°® onto Y*:
(2.2b) L~1: Y~ X* is bounded for s¢l.

This is the continuous regularity. Special examples are (1.2a,b): X*=H**2(Q)N
Hy(Q), Y’=H*(Q) and X°*=C**S(Q)NH}Q), Y*=C*({), respectively. In the
second case the index set / must contain no integers. For a proof of (1.2a, b)
see Lions and Magenes [10] and Schauder [13] or Miranda [12].

Discretize the boundary value problem (2.1) by

(2.3) Lyu, = f, (h€H),

where the discretization parameter 4 varies in the set Hc(0, «) with 0¢H. Egq.
(2.3) may be a difference scheme or a finite element discretization. The discrete func-
tions u, and f; of (2.3) belong to some vector spaces (e.g., u,€ Fo(Q,), /1€ F(Q24),
cf. Section 1.3). Endowing these vector spaces with discrete counterparts of the norm
of X*® and Y*, respectively, we obtain two scales of discrete function spaces Xj, Y;
with

I-lxg=Cl-lxgs I-llyz=Cl-llye (s,2€l, s=t heH)
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The discrete regularity estimate is
29 1L ysaxe =€ for all heH,

where C is a generic constant independent of A.
The inverse estimate allows us to estimate finer norms by means of coarser norms:

@9 Il = Rl (=1, heH).

This condition implies that the sets of elements of X, and X, coincide.
In order to compare functions u€X*® and discrete functions u,€X, we have to
introduce restrictions R, and R, and a prolongation P,:
RyXs— X5, RiYs ¥, P.Yi-Y"
Assume that R, and P, are bounded (uniformly with respect to hcH):
(2.6a) Ryl xs.xs = C for all heH,
(2.6b) IPyllys.ys=C for all he H.

The product R, P, maps Y} into itself. For ‘smooth’ functions u,, R,P,u, should
approximate u,. More precisely, the interpolation error should satisfy

@7 1R P,—1Ilys .y = CH™*  (O=t—s=%;, hCH),

where I=identity and x;=order of R,P,. Examples of P,, R,, R, are given in the
following sections.
The consistency of the discretization L, can be expressed by

(2.8) ILyRy,—R,Ll e .ys = Ch—* (0 =t—s =%, heH),

where % denotes the order of consistency.

Note that it suffices to prove (2.7) and (2.8) for s=t—x; and s=t—1x, res-
pectively. Then (2.7), (2.8) follow for all larger s because of (2.5).

The following theorem requires a discrete regularity estimate for L, correspond-
ing to the spaces Xy, Y5, and the regularity estimate (2.2b) for the continuous opera-
tor L. Then higher discrete regularity can be proved.

Theorem 2.1. Let x>0 and assume

2.9 IC[0, =), 0¢l, In[t—x, )@ for all 0#¢t€Ll
Suppose

(i) discrete regularity (2.4) for s=0,

(ii) continuous regularity (2.2b) for all 0=scl.
Assume that there are P, R,, R, with

(iii) estimates (2.6a, b) for all 0==scl,
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(iv) estimate (2.7) for all 0#tcl, s€IN[t—x, 1),
(v) consistency (2.8) for all 0=tcl, s€ln[t—x, 1),
(vi) inverse estimate (2.5) for all s,t€l, s<t.

Then the discrete regularity estimate (2.4) holds for all s€l.

Proof. Split L, " into
L' = R,L™*P,~L;'((L,R,— R, L)L~ P, +(R,P,— D).

Assume (2.4) for some s=0. Then the following estimate holds for all t€In{s, s+x].
The subscripts X;—~X;, Y,~>Y;, ... are abbreviated by f--s:

NZiMese = IR esel L7l Pall s H 0 ool L g olll L R = Ry L s el L s | Pl
+| R, Py— 1, = C+Chs—[Ch*—s+Ch*—5] = C".
This proves (2.4) for In[s, s+x]. The case of general s€I follows by induction. [

The regularity (2.4) is a special kind of stability. Together with the consistency
we obtain the following convergence estimate.

Corollary 2.1. Let y=x¢ (cf. (2.8)). Under the conditions of Theorem 2.1 and
Jor a right-hand side f, in (2.3) with

I fo=Rifl ys = CH || fllyser (s, s+y€ED)
the solution u, of (2.3) satisfies
IRyu— e = CHV | fllysrs (s s+9€L, w= L71f).
Proof. Use Ryu—uu=L; (L,R,— R, L)LY+ L;*(R,f—f5)- ]

Theorem 2.1 requires discrete regularity for s=0. Weakening this assumption
we obtain

Corollary 2.2. Replace assumption (i) of Theorem 2.1 by
IIL;III ¥ =C for all he H

>Xe =
with some &¢=0 and modify the assumption on 1 suitably. Then
(2.10) 1L Yooxg-s = C

holds for all s€l.

Finally we present a useful lemma about the perturbation of L, by lower order
terms.

Lemma 2.1. Let &>0, 6=0, n:=¢—68. Assume that L, satisfies the discrete
regularity estimate (2.4) for all s€I=[t—n,t]. Let I, be a perturbation of L, with
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lower order than L,:

Ul s yors =€ for all s4+8€[t—n, t+34].

Suppose that L,+1, fulfils the non-optimal regularity (2.10) for s=t. Then L,+1,
satisfies the regularity estimate (2.4) for s=t, too

We remark that I=[t—n,t] can be replaced by {s=t—n+idc[t—n,1]: i
integer}u{t}.

Proof. By induction we show

”(Lh+ lh)—1 ” Yi--XEmE¥10 = Ci'

First observe that this holds for i=0 because of (2.10). Now assume the estimate is
valid for some i. Using (L,+1)™' = L;*~L;'l,(L,+!,)~' one obtains

ICLn+ 1) ™ imrmer ens = ClLz Mo

FILi =t g nsmt~er it vs Hali—erisor—erg+nyall (L H 1D Hior-sris = Cigns

provided that r—e+(i+1)d<t. After a finite number of steps t—e+id=¢ is
reached and the regularity of L,+1, is proved.

In Lemma 2.1 we needed the non-optimal regularity of L,+1,. This condition
can be replaced by the regularity of the continuous operator L+1.

Lemma 2.2. Let s<t and assume:

(i) L and L+1 satisfy the regularity conditions (2.2a,b) for s and t (instead
of s in (2.2a,b)),

(ii) Ly* fulfils the regularity estimate (2.4) for s and t (instead of s),
(iii) I is a term of lower order: |Ijl| xz-y:=C,

(iv) consistency: ||LyRy—RyL] xtys=CH ™%, Illth—ﬁhlllxt»yiﬁCh’—s,
(v) f#0 implies lim |Ryflys=0 for all fc¥*,
B0

(vi) Py and Ry are uniformly bounded: | Py y:.y=C, |Ryllys.vs=C,
(vii) the estimate (2.7) holds for R,P,—I,

(viii) the embedding Y'C_.Y* is compact.
Then there is hy such that

I(E,+1) M, = C

for r=s,t andall h = h,, heEH.

We note that the O (A ™) terms in (iv) and (vii) can be replaced by o(1)



10 Wolfgang Hackbusch

Proof. It suffices to prove t-regularity since as in the proof of Lemma 2.1 #-regu-
larity implies s-regularity by using (L,+l) ‘=L;'—(L,+1) ‘LL;

Assume that the regularity of L,+/, does not hold. Then there would be a
sequence h;~0, f, €X; such that

(Ph = (Lh+lh)L;1 n° ”f;,u ¢+ = 1’ ”(0}’” Yli -0 (h = hl)

Because of (vi) the sequence {P,,i f'u} is bounded in Y. By (viii) there is a subsequence
{h} such that F:=P, f, converges in ¥*:
F = lim FEY®.
The estimate
L= 140 = ho,~LL; f) e = M0, + CIA
(cf. (ii), (iii)) and (vii) yield
IF 0. = CHER, F I, = C7 A~ C I (R P,~Dfl,.

= (CC) (U~ )~ C"H=* ~ 1/(CC) for h=hy ~0,

ensuring F3#0.

In the following part we shall show F=0, too. This contradiction would prove
the lemma. By (i) F=0 follows from (L+I)L~'F=0. Hence by (v) it suffices to
show | Ry(I+IL ) F|lys-~0 (h=h,~0). Since F,~F in Y, it remains to prove

nﬁh (I+IL™HF | e 0 (h=h, 0.
But this assertion follows from
R,(I+IL™YF, = RAP,(I+1, LD f,+(IL7P,— P,I,L; V) £}
= R, Pyoy+{{R ] — L, RIL P+ 1, Ly [L, R, — R, L1L™ P, + 1, L7 [R, P,— 1]
+[I-R,PILL Y (h=hy)
and (i-iv, vi), since the brackets [...} yield O(#'—%). |

Corollary 2.3. The condition (v) of Lemma 2.2 can be replaced by the following
assumptions.
(vy) Y* dense in Y°,
(ve) 1 full vz Z 0N Pufill v+, 6=0, forall fye Y,
(v3) 1 PaRy—Illyt y»=CH~" (even o(1) suffices).
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Proof. Choose fcY*such that || f—f| y==&:=0| f||¥+/[2(6+C)]. Then one con-
cludes from (v;, v, V3, vi) that
IR £l v; = IR, fI Y:—”Rh(f—f)” o S|P, R, fll,,—Ce
= 0| Fllys— NPy Ry— D Flys— Ce = 8[| fllys— 6+ Cle—=C" 1| f Iy
This estimate yields lim | Ry f| vz =6] flys—(0+C)e = %5llf” y==0. ]

Another formulation of Lemma 2.2 is given in [18].

2.2. Difference scheme in a square

We start with the simple case of the square Q=(0, 1)X(0,1). Let h=1/N
and define

Q, = {(x, »)EQ: x/h, y/h€Z}, Q, = {(x, y)€Q: x/h, y/h€Z}.

Denote the grid functions defined on Q, by #(Q,), and by F(Q,) the set of grid
functions on @, satisfying the boundary condition: u,(x, y)=0 for (x, y)€ @\ Q-
Let L be the differential operator
.11 L = ad*/0x*+bd?[0y?+cd[ox+dd[dy+e
with variable coefficients satisfying
a, b, ¢, d, ecW»=(Q)
(2.12)
a(x,y)=e=>0, b(x,y)=e=0 for all (x,y)cQ.

The boundary value problem is (1.1): Lu=f (), ulp=0. Tﬁerefore, we choose
the following spaces:

¥ :{HO”S(Q) for s€[—1,0] s = —1/2,
Hs(QnHY(Q) for s=0
dual of X —* for se[—1, —1/2),
Ys =3 H1(Q) for se(—1/2, 2), s # 1/2,

{feH"1(Q): f(0,0) =f(0,1) =f(1,0) =£(1,1) =0} for s€(2,3].
For the exceptional value s=2 we define Y* by interpolation: Y2=[¥3, Y )
(cf. [10]).
Note that Hi(Q)=H'(Q) for 1€[0,1/2] and H(Q)=L3*(9Q).

Lemma 2.3. Assume that A=0 is not an eigenvalue of L. Then (2.2a) and the
continuous regularity (2.2b) hold for scl:=[—1,3]\{—1/2, 1/2}.
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Proof. For |s|=1, |s|%1/2 use the result of Kadlec [8] and interpolation. The
proof for s=1, s€I is given in the appendix of [7]. [ |

Discretize (1.1) by L,u,=f, with
Q13 L, = aT['9%+bT; 132+ (I+T N, + (1+T Bo,+e (hi€Z).

X; and Yj are the vector spaces #,(Q,) and F(Q,), respectively. For simplicity we
define the norms only for the integers s=k€{0,1,2,3}. We denote[ 3, _; >0 g4/*1/2
by |g4l},s, » where 0"g,(P) involves only values of g, belonging to Sj. Set

Iyl e = [ 2720 1wl g 172 (k=0,1,..),
Iy =[50 2 k=1,
1Sl ye = sup {(12[ Zp 0, ,(PY 1, (P): tyll 0 =1} (k= 0).

For k=3 fcY?® satisfies f(0,0)=...=0. This property cannot be translated into
f4(0,0)=...=0 since (0,0)¢Q,. Therefore define

with analogous definitions for f(0, 1), f(1,0), f(1,1). Then we set

1Ny = [ 5201505 o, + 42T ©, O+ 7, DE+|F (L, O))2+] F (1, DT
(k =2, 3).

Theorem 2.2. Let L, be the difference operator (2.13) in the square Q, with coef-
Jicients satisfying (2.12). Assume l-stability (1.5), Then the discrete regularity estimate
(2.4) holds for s=0, 1,2, 3. Inparticular for s=3 one obtains (1.6) with H;(Q;):=Y}.
The regularity can be extended to s€l (cf. Lemma 2.3) if the norms of Y3, Y3, are
suitably defined.

Proof. Define R, and R, by
(Run) (%, ) = B2 [ [ 1oy 1y mngatt (G, 1) dE dy

for (x,y)€Q,. (2.6a) holds for sc{l,3}. The coustruction of prolongations P,
is described by Aubin [2]. Special care is needed to satisfy P,u,=0 at the corners
of Q. Thanks to the definition of Y} the estimates (2.6b) (s€{1,3}) and (2.7)
(s, 2€{0, 1, 3}, s=t=s5+2) can be fulfilled. Obviously, (2.8) is valid with consistency
order x.=2, ie., for s=0, =1, and s=1, 1=3. Also (2.5) is trivial. Now apply
Theorem 2.1 with I={0, 1,3}, »=2. The regularity for s==2 follows by interpo-
lation. |
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2.3, Difference scheme in a square, continued

This section contains the proof of regularity with respect to Holder spaces. We
will use Lemma 2.1 rather than Theorem 2.1.

The following spaces X; and Y; correspond to C*(Q) with zero boundary con-
dition and to a subspace of C*"*(Q), respectively. s varies in 7=(2, 3). The norms
are

{ Uyl aern = 2y = 10%0, ), §h+21a[ =k |3“uhl,1,gha u,€F(2)
1l yson = o o H 1L, o +H 407,00 B1417, (i B+ Chy 1)

+{fA—h, 1=n)]],

where |00yl 5, is the maximum of all 9*v,(P) with P such that (0"2,)(P) involves
only v,(R) with RECS,. |04v4/s 5, is the maximum of all 0%, (P)—0",(Q)|/[distance
(P, Q))* with P and Q as above.

We consider the same difference scheme as in Section 2.2 and show (1.7).

Theorem 2.3. Let L, be the scheme (2.13) with coefficients a, b, c, d, e€C***(Q),
A€(0, 1). Assume l,-stability (1.5). Then the discrete regularity estimate (2.4) holds
with X7 and Y, s=2+21, as defined above (hence (1.7) with a=1, Ci *=Xp**,
Ci=1;"").

Proof. (i) In the first step we show that without loss of generality the coefficients ¢

1
and d may be taken to be zero. Set I, = —2-[c(I+T;1)3x+d(]+Ty‘ )d,]+e—a and

L,=L,—1,. For ¢ large enough L, is also lystable. Let Hy=Y;"', H;,=X;"
with X7, Y; from Section 2.2. According to the comment following Theorem 2.2,
the norms of Xj, Y} can also be defined for nonintegers t (cf. [6]). Then Theorem 2.2
yields

1Ly o s = C

The discrete analogues of the embeddings C*(Q)c. H*(Q), H*+*(Q)c.C*+*(Q)
are
” ° ”H,f = C” : ” YR+’ ” ® ”X’}+i, = C" * ”Hgfrf'.

Combining the three inequalities we obtain

1L, =C  (@A=s-2.

S+a_, yl+ad
Yyt Y,

Obviously, /4,: Xit*>Y2** is uniformly bounded. Note that the estimate of
R/, (h, B)] +...] follows from the zero boundary condition ,€%,(&2,). Applying
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Lemma 2.1 with I={2+A}, e=6=1, one obtains that Xj-regularity of L, implies
X:i-regularity of L,. In the following we write L, instead of L,.
(ii) Define f,(P)=0 at PcQ\Q, and extend the function by reflection:

Jox% )= =fi(=% )= —filx, =), fill =%, )= ~fo(1+x, 1), ... for  (x, )€
Let Q,={(x,»)€(—1,2)X(—1,2), x/h, y/h€Z} be the extended domain of f.
Obviously,

2.14) 150 o = 1 Fol caa

holds, where | fill caes,y=1/lo,s,+|fls,s,. The solution u, is to be extended in the
same way, whereas the coefficients a, b are extended symmetrically: a(—x,y)=
=a(x, y), etc. Note that L,u,=f, holds for the extended domain Q,. The interior
Schauder regularity proved by Thomée [16] yields

(2.15) Nl goez = I u,,llc’_au(gh) = C[luhl,,,gh-l-l]ﬂ,llc’f@h)] = C/”f;‘"C’:t(gh)
thanks to (2.14) and
lunlo, 0, = Cllunl m2+2@,y = C’| full i o) = C” l fil cayy -

Note that the needed estimate of [16] requires only a, b6C*(R®) as fulfilled in our
situation.

(iii) Let f,€#(Q,) and define £, at PcQ\, by £,(0, »)=fi(h, ), fu(l, y)=
f,(1=h, y), ..., except at the corners where we set f,(0, 0)=f,(1, 0)=/,(0, )=
f(1, D=0. We have

@.16) 1 ey = 1 fyllygon:

Piece-wise linear interpolation of f£,(0, vh), 0=v=1/h, gives a function g.€CHD),
1=(0,1), with |glc*ay=lfillcz@,y and £(0)=g(1)=0. Extend g/a(0, ) to a
2-periodic function g with g(—t)=—g(¢). The function

G(x,y) = cox [ exp(=V1+(—n/x) g(n) dn
with co=1/f=_exp(—V141%) dt satisfies
GO, y)=G(x, 0 =G(x 1)=0,
2.17) GeC***(Q), |Glasaqm = Cllglermys

G (0, ) =g ().

Choose y€C=(R) with x(»)=1 for y=1/3, x(»)=0 for y=2/3 and define
u (x, y)=G(x,y) x(x). Using (2.17) and

”gucj,(R) = C”glllcza) = C,”f;‘llcf,(gh) = C’”f;,” Y}?+z
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we obtain
I|ulllcg+;,(gh) = C”.f;‘” Y’?-(-;,'

Since the restriction u; , of u, to the grid points of ,, belongs to %,(£2,), the estimate
(2.18) Il ul’hlleu =C| /| Y2+

holds. Set f, ,=Lyu; ,€F (). Obviously, (2.18) implies | fi sl yz++=C] fall v2++.
In addition the third part of (2.17) proves

2.19) |l YR —1, (B, W) = CHALf, s
while £, 4(x, 0)=/.4(x, 1)=£.4(1, »)=0 implies
@200 1f, G0 1f,, 00 1= 1f,, (A= )= CHI ] e

Analogously, f;, (j=2,3,4) can be defined so that (2.19) holds for x=1-—h
or y=h or y=1—h, respectively. By virtue of (2.19/20) the function f, ,=f,—
o1 fin extended to () as in (i) satisfies

1 fonllcamy = ClAlypen-
Hence, the solution of L,uy ,=f,, can be estimated by
1ty pen = ClLAppe

(cf. (2.15)). The proof is concluded by noting that u,=37_, u;,; and using (2.18). [

2.4. Difference schemes in a general domain

In the following we assume QcR? to be a domain with smooth boundary. In
this case the continuous regularity is well-known. However, the analysis of the dif-
ference scheme is more difficult, since the discretization is irregular at points near the
boundary. We illustrate the application of Theorem 2.1 by special examples.

2.4.1. Shortley—Weller scheme

Poisson’s equation —Au=f(Q), u=0(I') can be discretized by the Shortley—
Weller scheme (cf. [6], [11, p. 203]). (L,»)(P) is the usual five-point formula if all
neighbours (x+%h, y), (x,yth) of P=(x,y) belong to Q,={(x,»)EQ: x/h,
y/h€Z}. Otherwise the second derivative is discretized more generally. E.g. in the
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case of (x, Y)EQs, (x+h, )EQ,, (x—xh, )eI=0Q (0<x=1) the derivative —u,,
is approximated by
(2.21)

citn(,3) = b [ ) = u b )~ b, )
where wu(x—xh, )=0 because of the boundary condition. If P, and
Q=P+ (0,h)cQ, are grid points, we neglect a possible part of the boundary I
between these points. Hence, neighbours with respect to the grid are also neighbours
with respect to the discretization.

The norms of Xy=H;(Q,) and X,=H;(@,) must be defined carefully. If
the norm of Hj(8,) also involves differences of the form (2.21), then the inverse
estimate (2.5) holds with C depending on the minimum of all ». Since »x may be-
come arbitrarily small, the inverse estimate (2.5) is not valid.

It is easy to define the norms of Lj and Hj:

M4l 2,y = = {13 cq. 1, (P2

Nl aca,y = A 2@yt Zrecn Ziar2 1041

where G,={(x, »)ER?*: x/h, y/h integers} is the infinite grid. 9; (i=1,2) are the
first differences: 9,=9,, d,=4, (cf. Section 1). Here, the grid function , is extended
by zero on G,\Q,. The norm of H;'(8,) is the dual norm

1)l 10y = 9P {0 S, 4, (PIB, P 10| o gy = 1}

The extension by zero cannot be used for H3($;), since this space is the discrete
analogue of H2*(Q)nHy(Q) and not of H(Q). We must use differences of values
at points P; with dist (P;, P;)=h in order to satisfy the inverse estimate (2.5). Let O,
be the set of all points P=(x,y) with P€Q, or P<I' and either x/h or y/h being
an integer. 9, differs from Q, by the set

r,= ‘Qh\gh

containing the intersection points of the lines x=vh and y=ph with the boundary
I'. PcQ, are the points involved in the difference formula (2.21). The second x-diffe-
rence at (x,y)€Q, can be defined by .

(D<) (x, y)

h=2[u(x+h, p)—2u(x, y)+u(x—h, )] if (x, ), (xxh, y)EQ,,
P 2u(x+xh, y) _2u(x——h, ¥) + 2u(x—2h, y)
A+22+») T4 24
if (x—h,y), (x—2h, »)EQ,, (x+xh, y)ET,
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and by a similar expression in the case of (x+1, 3), (x+2h, p)EQ,, (x—xh, P)eT,.
The distances of the points are h and (1+3)h and not h and »h as in (2.21). This is
necessary to ensure the inverse estimate (2.5). D, u is defined analogously. The
description of the mixed difference D, u at a point near the boundary usually involves
more than four grid points. E.g., D,, can be defined by a difference formula using the
six grid points (x%h, y), (x+h, y+h), (x, y+h), (x,y+20)€Q,, (x,y—nh)ely.
Then the norm of Hj(82,) reads as

D) oy = {05y T8 Speq, (1D, 24, (PEHID u, (PID+ID u (P

The following theorem establishes the Hj-regularity of the Shortley—Weller
difference scheme.

Theorem 2.4. Suppose that QCR? is a bounded domain with the uniform C3-
regularity property (cf. [1,p. 671). Then the Shortley—Weller scheme satisfies the
regularity estimate

1L =C

LD~ HX@,)
Proof. We want to apply Theorem 2.1 with I={0, 1}, x=1:
Yy =Hi (@), Yi=LyQ), XP=Hy(Q), X}=H}Q).

According to the suppositions (i)—(vi) of Theorem 2.1 the proof consists of six
steps.

Step 1. Discrete regularity for s=0. This result is contained in [6], but it can
also be obtained directly by estimating the scalar product (u,, L,u,). Let L,=
L +1}, where Ly and L} are the differences with respect to x and y. Extending u,
by zero outside of £,, we obtain

(tty, Liuy) = hzZpgg,, u (PYL§u)(P) = hZZPEGhIaxuhlz

2 2
9 _ _ 2
#1500 ([ 1] 0@+ [1 -2 dup |+ ezt
where the sum X is taken over all PcQ, with P+(h, 0)6Q, and Q=P—(h,0)¢ Q,.
2, is a similar expression for the case P, P—(h, 0)¢Q, and P+(h, 0)¢ Q. x=x(P)E
(0, 1] is the number defined in (2.21). The inequality 2abz= —A%a*—b%*/A* yields

1
I REL ] 2= bt S, 0%

This estimate and the analogous one for L] imply

Cuys Lyuyy 2= 0.96h% 3 o 10,143

i=1,2
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Since  is bounded, the right-hand side is the square of a norm equivalent to | - |g1a,)-
The inequality (s, Lyup)=cluslm @,y with ¢>0 for all w,€H,({,) proves the
desired Hj-regularity.

Step 2. Continuous regularity for s=1. See e.g., Theorem 37,1 of Mi-
randa [12].

Step 3. A restriction satisfying | Rylla2nmi-n2z=C has to be defined. Let
u€ H2(Q)nHy(Q). There is a continuous extension operator E: H2(Q)—H?2(R?)
(cf. Adams [1, p. 84]) yielding #i=Fu. Define a provisional grid function @, by the
mean value

B (P) = [, i 800 P)dxdy[ [ ) dxdy, Bu(P) = (%, 3): [P—(x, y)] = h}
for Pe@,. The construction of %, implies

= Cllu| =C'l|u|

I uhu HX@®) H2R?) H*Q)'

Unfortunately, #,(P) does not satisfy #,(P)=0 at points PeI', =0\, on the
boundary. Therefore, R,u is the following modification of #,:

#,(P) if  PEQN\y,
R (P) =10 if Pery,
solution of (L,R,u)(P)=0 if Pecy,
where
vn = {P€Q,: not all neighbours of P belong to Q,}

is the set of points near the boundary,
The difference 8,=%,—R,u satisfies d,=1#, on I',, L,8,=L,d, on y,, 6,=0
otherwise. Split §, into 8;+48;, where

& = B(Ts)s Lydh = 0(a), 8} = & = 0(Q,\yw), &} = O, L,d5 = Lytty ().

It can be shown that |5;(P)|=|a,(P)| is bounded by Chlju] m@, @y ot PETy.
The strong diagonal dominance of the matrix L, restricted to the near boundary
points vy, implies

”6}11”14:(0;‘) = C [hzzperh l(s; (I’)IZ]I/2 = C/hz [ZPGF,, ”ﬁ”ZS(Bh(P))]l/z = C”hzuﬁ ”HI(RQ)

Estimating differences by integrals of derivatives we obtain

IL,83(P) = |L,%,)(P) = Ch~"]u] for Pcy,.

H(By,,(P))
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The strong diagonal dominance again shows that:

1031 = Ch*[(Lytmy)], |

pLke) =
= C*[ Zpey, WL, &P = C B[ Sren 830y, oyl = C7 I sy
Hence, the grid function §, satisfies

16,1 = Ch7?5 )

L2

= C'la| = Cul

R HXG3) — L 700 T R HYR?Y) HY(Q)'

Here, we used the fact that the inverse estimate | - | z2=Ch~2| -] .2 holds because

of the definition of the norm of Hi.
The estimates of #, and &, imply

IR ) = 1] sy + 18 0 yayy = €1l ey

Step 4. The estimate | R, P,—1I| 12 a-1=Ch has to be proved for a suitable choi-

ce of Pyand R,. Let P,be the piece-wise constant prolongation (Pyu;)(x, y)=1,(Q)

h h h ~
— yQ———<y§yQ+—2—', and let Rhu be

. ) h
with Q=(xp, yo) if xQ——-5<x§xQ+2 5

defined by
i (x, y)dx dy/ f 5, ) dxdy if PEQN\y;.

(R (P) = {f Pryal)
0 if Pey,.

~

where #i=Fu and y,cQ, are defined in the preceding Step 3.
Let v,¢H,(Q,) and u,cL*(Q,). Split v, into v}+v; with vy=v,, (restric-
tion to y,) and vj=w,—v;. The definitions of P, and R, yield

Ko, IR, P~ D] = [0k, LB, P~ TTuw)] = Kok, )] = 03 o 19,0
Using [[v3]l 22,0 =Ch o4l mra, (cf. [6, Lemma 2.2]) we finish the proof of the de-
sired estimate.

Step 5. Consistency HL,,R,,—ﬁhLﬂHmH‘l,_.Hh-1§Ch. Let v,cHy(3,) and
uC H2(Q)nHy(R) be arbitrary, extend u to #=FucH*(R%® and set

H(P) = 0,(P) for PEQN\7y, v,(P)=0 otherwise.
The new functions satisfy

136 = Clsanys Wlags = €l oy

Let G,={(x,y)€R2: x/h, y/h integers} be the indefinite grid in R? and define

restrictions R, and R, on the grid G, in the same way as R, and R,, resp., are defined
in Q,\,. Furthermore, denote the five-point formula in G, by L,, while L=—4
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is the negative Laplacian in R2 The first term of

(o [L, R, ~R,I] u>Li(n) = (1, [zh R,—R,L18) 126" (v, 8, [L,R,—R, L) L

can be analysed by Fourier techniques yielding the bound Ch|vp|| p2full p2. The sup-
port of v,—, is y;. Since L, R,# as well as R, L# vanish on y,, we obtain

(v, IL,R,—R, L]u) ey = (5, IL,R,—R 1] ‘7>L,2, T @]Y;‘, L(R—R) ‘7>L,z @’

where vy, is the restriction of v, to y,={P€Q,: P neighbour of y,}. By
@l LR, = BB = I, | lL, R~ R )il 3 = Chlv,|, il
the estimates result in

Kv,» [L,R,— R Llu)| = Chlv,| |u]

H ﬂ(f?h)l HYQ)'

Hence, the consistency condition is proved.

Step 6. The inverse estimate | -[|g2z=Ch~'| |41 holds by definition of the
norms. Since all suppositions of Theorem 1.1 are fulfilled, the H}-regularity is valid
for the Shortley—Weller scheme L,. ]

2.4.2. Inhomogeneous boundary conditions

Discretize the boundary value problem
—Au=f (), u=g (I

by the Shortley—Weller scheme with u,(P)=g,(P) for P<I'. The right-hand sides
f, and g, are obtained by suitable restrictions: f,=Ryf, g,=Rjg. Here R}:
H3(I')~>H;*(I';) can be defined as follows: (Ryg)(P)=(mhd"" [k (EQ(En)
di dy, where K(P)={QcR?*: |Q—P|=h} and E: H¥*(I')~>H?*R?) a suitable
extension.

We define  ¥;=Ly(Q,) X Hy*([',), where I',=Q,\Q, is the set of boundary points
involved in (2.21). The norm of HY*(I',) is

I&all 372,y = inf {”vh“H,?(ﬁh): Uhlp, = 8hy-

Proposition 2.1. Let Hy(Q,) be defined as above (without u,=0 on G\ Q,).
Then Hj-regularity holds for the inhomogeneous Shortley—Weller scheme:

I3y = CUL N 2o+ gorngs )
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Proof. Choose u,€Hy(2) with g=vyr, and | gallmp,w =lval a3@,-
Define w, by wy(P)=v,(P) except for those P¢cQ, corresponding to irregular
discretizations. Here we determine w, from (L,w,)(P)=0. w, satisfies w,=g,(I"})
and [ Lywy| 22,y =Clwel 2@y =C’llval m2@,)=C 'l gul u3/2a,). The application of
Theorem 2.4 for the right-hand side f,=f,—L,w, yields the desired estimate. J

2.4.3. Discretization by composed meshes

As a last example we discuss an unusual discretization: a difference scheme on
composed meshes as proposed by Starius [15]. Assume that the boundary I' of Q
is sufficiently smooth. Let Q; (i=1,2,3) be subregions of Q with boundaries I';
(cf. Fig. 1). Assume that a given

Fig. 1

transformation maps the annular strip Q\ Q, between I'; and I into a rectangle R.
The inverse transformation maps a regular square grid of R into a curved grid Q7
of O\Q;. Let QFcQ beausual square grid. The boundary value problem (1.1),

Lu=f(Q), ur=0()

with a second order differential operator L with smooth coefficients (a more general

boundary condition Bulr=g is also possible) is discretized by
222 Liup =/t @)

4 =
Uhirnoa = 0
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on the curved mesh Q; and by
(2.22b) Liuf = f7 (2D

on the square grid QF. Here, ;! and (7 denote the interior points of Qf, QF: Pis
an interior point of Qf, if (2.22a) evaluated at P involves only u7(Q) with Q¢ QL.
The non-interior points of 7\ Q7 belong either to I' (then uf=0 by (2.22a))
or to I'y. Let I1% be a prolongation (interpolation) of grid functions defined on Q7
to functions defined on Q. Set

(2.22¢) ut(P) = (IT%up)(P) for PeQANT;.
Similarly define
(2.22d) uB(P) = (1 uff)(P) for PcQPN\SP.

We assume that (2.22¢) involves only values of up(Q) for Q€Q,>Q,, while (2.22d)
involves only u;(Q) for Q€Q\ Q.

By (2.22a—d) the solution u,=(u;', uf) is determined. For the sake of consis-
tency we define f;* from f;? by:

=oAL
The discrete spaces Li(QF) and H;(27nQ,) are defined as usual. For the definition
of H3(2%), use the differences with respect to the transformed (rectangular) grid.
Proposition 2.2. Let s=0. Assume that
(i) the scheme (2.22a—d) is l,-stable, i.e.,
N30 2 oy T 1280 12 omy = ClA 2 oy,

(ii) L and LE are elliptic (cf. [17]),

(iii) distance (I'y, I';)>¢, with ¢ independent of h,

(iv) the interpolation I1® is sufficiently accurate,

(v) the coefficients of L, Ly, L}, the boundary T, and the transformation of the
strip O\ Q, into R are smooth enough.
Then regularity holds in the following form:

A ) B _— B
” uh ”H,f+ 2(9#)_*_ ” uh ”H:+ Z(anga) = C”fh ”H;(QE) i
Note that the regions Q7 and QFfnQ, overlap.
Proof. The interior regularity of L? yields
B 4 B B - B
142 e sngnan = €U 1 g+ 172 e ) = ISP o -

(cf. Thomée and Westergren [17]). By the assumption on II® the boundary values
(2.22¢) of ui* at I'y can be estimated with respect to H;"¥*(Q!nI';) (in the sense of
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Section 2.4.2) by C||f;’|mxes. Considerations similar to those of Sections 2.2 and
2.4.2 show

14 sy = €U s F1 A 0 H1 P e ) = O

Remark. An analogous regularity estimate holds for Holder spaces Cj.

3. Regularity of discrete nonlinear boundary value problems
3.1. Main theorems
We want to show that under suitable assumptions the discrete solution of the

nonlinear problem is as regular as the solution «* of the continuous boundary value
problem

3.1 L) = 0.
Denote the discretization of (3.1) by
(32 Zi(w) = 0.

Assume wu*¢X' and define wf=R,u*cX; [cf. (2.6a)]. The consistency order of
P, is x if
(33) | L@, = Chmint=9 (s = 1),
The derivative of %, is denoted by L,:
Ly, (v3) = 0%, (vy)/0v;-
Assume that L, satisfies the Lipschitz condition
G4 . ”Lh(”h)~Lh(wh)ng»Y;§ Ch“‘(lvh—whHX: forall v, W;.EK;:,S(")’
where
K2 () = {o, X5 lo,~u] ., = rh¥).
The following result guarantees the existence of a discrete solution of (3.2):
Theorem 3.1. Let u*c X' be a solution of (3.1). Assume (3.3), (3.4), and
(3.5) 1L @D,y = Ch™e
for some s, A, u, @ with
min (%, t—s) > max (A+29, p+9).

Then there exists hy>0 so that for all h<h, the discrete problem (3.2) has a solu-
tion u,€K} (7).
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Note that for ¢=0 (3.5) follows from the (non-)optimal regularity (2.10) with e=¢
and (2.8).

Proof. Apply the Newton—Kantorovi€ theorem (cf. Meis and Marcowitz [11,
p. 282ff]). The iteration

up =y, = uh— Lt () Z(uh)

converges to €K} [(r) if
(3.6) Cyh® = 1/2,

where e=min (%, —s)—max (1+29, u+¢). Cy is determined by the constants
involved in (3.3—5). Therefore, Theorem 3.1 is proved with h,=Q2Cy) "
The next theorem proves the discrete regularity of w;,:

Theorem 3.2. Let u*¢X' be a solution of (3.1). Suppose that there is some s
such that the following conditions hold:

(i) discrete regularity estimate (2.4) for Ly,=L,(u}), ie., (3.5) for =0,
(ii) consistency (3.3) with x=t—s,

(iii) Lipschitz condition (3.4) for all A=y in some interval [uy, u,), where

Ho=t—s and p, arbitrary with p,<p,, ‘
(iv) inverse estimate (2.8),
(v) lluill xe=C.

Then for h=h, (h, sufficiently small) there is a solution of the discrete equation (3.2)
with
(3.7 HuhllX;f = C forall h<HN(O, ho]'

Proof. Let he HN(O, hy). Set p=p,—e(h), where g(h)= —log 2Cy)/logh with
Cy as in (3.6). By virtue of Theorem 3.1 we have €K} (r). Hence [u,—uy|x:=
=rh*. The assumptions (iv) and (v) imply

= C =0+ = C'+C7]2CY = C.

e P

Xt
Since the right-hand side is independent of A, (3.7) is proved. 1

In Theorem 3.2 u varies, while s is fixed. The same result can be obtained if
u<x 1is fixed and s varies in [f—u—n, 1—u), n=0 arbitrary.

Corollary 3.1. In the case of a non-optimal estimate (3.5) ¢=0, the estimate
(3.7) requires (ii)—(v) with A+o=pcp,, u,).

Our main interest is the regularity of u,. Usually, one is more interested in conver-
gence:
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Corollary 3.2. Assume (3.3), (3.4), (3.5) with s=t—x, 0=0, A=u, for ail
HE(x—n, %), n=0 arbitrary. Then the estimate
[luh—u:IIX;_x =Ch* (h=h)

holds.

Proof. Set p=p(h)=x—e(h), ¢(h) as in the proof of Theorem 3.1. Theorem
3.1 implies [lu,—up| xz-~=Ch*=2CC\h*.
An application to the stationary Navier—Stokes equations is given in [18].

3.2. First example: Discrete Holder spaces

Consider the general nonlinear equation
(3.8) L) = @(X, ¥, U, Uy, Uy, Uy, Uy) = 0(Q), u=0()

in the square Q=(0, 1)><(0, 1) and assume that the solution «* of (3.8) belongs to
the Holder space C***(Q) for some A€(0, 1). This implies ¢(x, », 0,0, 0, 0, 0)=0
at the corners (x, ¥)=(0,0), (0,1), (1,0), (1,1). Therefore we choose

X244 = (ueC*+A(@): ulp =0},
ik = {feCH@): £(0,0) = f(O, D =7(1,0 =£(1, 1) =0}

for A€1=(0, 1).
A suitable discretization is

(3.9)
“gh(uh) = QD(X, Vs Up, 1/2(I+T;1)8x Uy, 1/2(1+Ty—1)3y Uy, Txula?c Uy, Ty_laguh) = 0.

The discrete spaces X;=Cj, Y; can be defined as in Section 2.3. The derivative
at uy=u*|g, is (2.13) with

a* (%, y) = @u, (% ¥, ui G, ), 12(I+T7 1D uf, ...),
b*=¢,,, c*=09,, d*"=09,, =0,
Define L, by (2.13) with
a(x, p) = @, (% y, w(x, ¥), i (x, ), u (%, ¥), 6hx (%, ), 13,(%, ),
and b, ¢, d, e, analogously.

Theorem 3.3. Let u*cC***(Q) be a solution of (3.8). Assume

(i) a(x,y), b(x, y)=e>0,
(ii) L, defined by a,b,c,d, e is ly-stable (cf. (1.5)),
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(ifi) a,b,¢,d, e are uniformly Lipschitz continuous in U, where UcQXR®
is a neighbourhood of {(x, y, w*(x, ), u¥, uf, uf,, u}):(x, y)€Q}.
Then for h sufficiently small (h<hy) there is a solution u, of (3.9) with

I ggor = C.

Proof. Apply Theorems 3.2 and 2.3. i

3.3. Second example: Discrete Sobolev spaces

We consider the same problem as Lapin [9]:
(3.10) Fw=-3m 2 a(xu au]Jra(xu rad &) = 0
’ N i=1 Bxi : ’ ’ 8xi 0 ’ ’ g o
in Q@=(0,1)"={xeR": O<x;<1 for 1=i=n} and w=0 on the boundary. The
discretization may be as in [9] or

h
(.11 L) = — 3 T o, (x—!—z-e,-, 120+T)) uy, 9, u,,)

+ao(x, up, Y2(I+T)d1ttys ...y 1/2(T+T)0n ) = 0,

where e;=i/-th unit vector, T;=T, and 9,=d, . Lapin requires almost ucC*(Q)
and restricts the dimension by n=3. We show that the weaker assumptions u¢ H*(Q)
and n=35 vyield the same result:

Theorem 3.4. Let u*c H*(Q)NHy(Q) be a solution of (3.10) with n=5. Then
the solution u, of (3.11) exist and

=C, Iluh-Rhu*H = Ch? (R, suitable)

! ”h"H,:(n,,) HX62,)
( Hy discrete counterpart of H'(Q), cf. Section 2) holds under the following assumptions:
h = hy, a, W= (U), agcW?r=(U),
da;(x, u*, up)ou,, =e >0, 1=i=n,

where U is a neighbourhood of {(x, u*, grad u*): x€Q}.

Proof (sketched). (i) Let wuj=R,w*cH3(Q,) and let u**=Iu}cC*(2) be
an interpolating function: u™|g =u;, w**|r=0. For a suitable R, and I, we have
G.12) lu* — u**| g2y = Ch*|u*| nu@),

(D™ x)| = Ch="Plu*wenrxy  (Ju] =4, 2= p =),

with K,={y€Q: [x—y|=Cxh} for some Ck.
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(ii) The dicrete regularity (3.5) (¢=0) of L, follows from Theorem 2.2 in the
case of n=2. But Theorem 2.2 can also be extended to n=2.

(i) (3.3) is to be proved for Y;=L;(€;), min (%, t—s)=2. It suffices to esti-
mate

Kk
(3.13) T79;a; (x+—;—e,~, 12T+ T)Hu*, 8,-u**]-—£—a,[x, u**, aaux' ]
9_ [ . 3“**] _R9 [ *_35]
(3.19) s a;|x, u*¥, 5% o, R, ox, a;| x, u*, o,

and similar differences for agy. Taylor expansion of the left term of (3.13) shows
(3.13) = BPO(C+ |y P+ |4 e 4 | - 42 e i s

where the derivatives are evaluated at x+ She;, [3|=1. Here we used [|u**|wi=m =
| u*maey. By virtue of (3.12) the estimate

e ) = Ch="®u* was
holds (p=6). Summing over @, we obtain

M Plia g,y = 1" 2xea, 03K, (x+8)he)” = Cllurg, o = Cl0 0 g = C,

since LF(Q)cH*(Q) for 2=p=10, n=5 (cf. Adams [1]). Using LI(Q)CH(Q)
(2=¢=10/3, n=5) for g=3, we are able to estimate

(17 by fur| flae*]

x.x,%, Huj‘;’; H'LZ(Q)

= Cllw}

W3,3(2) W2.6(02) HY) '

The obvious inequality || [ux x5, H 20,0 =Cllu*] gacqy and (3.12) imply (3.13)=0 (h?).
A similar estimate can be obtained for (3.14),

(iv) We have to prove (3.4) for Yi=H; '(Q,), X;=H}"'(Q,), s=1. For
s=1 (3.4) becomes

G15) L)L) u] )

— A _
= Ch™ v, —w| a0,

L3(R2,) H? (n,,)]

provided that v,, w,€Kj ((r). A rough estimate gives
ML, )= L, 0011 s = €10, = W0, )

Hlo, =W llgaluyl o+ 10, gall o =Wl N, 23
_r2 p-TE .

- n n _

= Ch (1+h Mo, Will g2 1 4all a2

-2
, €0 arbitrary. Hence, (3.15) [ie., (3.4)

. . n
if vy, wEKj 1(r) with pz=e+

-2
with s=1} holds for all u=A¢ [s+n—2—, 2] . Note that this interval is nonempty
since n=35.
(v) Theorem 3.2 and Corollary 3.2 yield Theorem 3.4. |



