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1. Preliminaries 

1.1. Discrete regularity estimate 

Let L be an elliptic differential operator of second order. Usually, the differen- 
tiability of the solution u of 

(1.1) L u  = f (g2), U[r = O, 

is two orders larger than the order of differentiability o f f  This property can be expres- 
sed in terms of Sobolev spaces, 

(1.2a) []L-l[ln,(a)~n~+,(~) ~_ C 

or in terms of H61der spaces, 

(1.2b) [[L-l[[o(~)~o.,(~) <- C (s > 0, s # integer). 

For the notation of the various spaces and of the norm, see Section 1.3. 
The discretization of the boundary value problem is written as 

(1.3) L~u~ = A ,  

where h denotes the discretization parameter (usually: grid size). Let HT,(f2h) be the 
discrete analogue of H'(~2) (derivatives replaced by differences). Then we want to 
prove the counterpart of (1.2a): 

(1.4) IIL~-lll~/s <_- C uniformly in h. 
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This inequality is called the discrete regularity estimate. It differs from usual stability 
conditions. For example, the /z-stability of Lh is expressed by 

(1.5) IlL h [IHo(i2h)~HhO(g2h ) = C uniformly in h, 

since 12=H~ Note that (1.4) implies stability with respect to H~(f2h). 

1.2. Results of this paper 

In the recent paper [6] we proved (1.4) for sE(-3/2 ,  -1/2) .  Section 2 contains 
quite a different technique for proving the regularity estimate (1.4) also for larger 
orders s. While [6] makes no use of (1.2a), the new approach does. The following 
general statement is proved: If  the discrete regularity (1.4) holds for some So, if the 
continuous regularity estimate (1.2) is satisfied for sE[so, t] and if an additional 
consistency condition is fulfilled, then the discrete regularity (1.4) holds for sE[so, t], 
too. This theorem is not restricted to Sobolev spaces. 

In Section 2.1 we consider the special case of a square f2=(0, 1)X(0,1). The 
square (or rectangle) is easier to treat since the boundary condition U[r=0 requires 
no irregular discretization. There are some papers proving (1.4) with s = 0  for a 
square (cf. Guilinger [5]) or for a similar situation (cf. Dryja [4]). Here we show 
H~-regularity: 

6) -1 -< C, (1. IlZh IIA~(~O~H~'(oO = 

where /1~ differs from HI only slightly. 
There are several papers on interior regularity, i.e. estimates of uh in an interior 

region (cf. Thom6e [16], Thom6e and Westergren [17], Shreve [14]). [16] contains 
an interior Schauder estimate. But there is no paper known to the author considering 
the (global) discrete H61der regularity for a square. For this reason we show 
C]+'(Oh)-regularity ( 0<=<2 ,  c ~  1): 

L -1 < (1.7) ][ h IIc~(~h)~c~+~(a~) = C, 

where C~ is a modification of C~(f2h). 

An arbitrary region f2 requires irregular discretizations of the boundary condi- 
tion. In Section 2.4 we analyse the Shortley--Weller scheme and the difference 
method with composed meshes. 

Section 3 contains some results for the nonlinear problem S~ Let 
~eh(Uh)=0 be its discretization. We show that uCHt(g2) [or u~Ct(O)] implies 
that Uh is bounded in H~(f2 D [or C~(O), respectively] uniformly with respect to h, 
provided certain discrete regularity estimates hold for the linearized scheme. Our 
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approach is different from D'jakonov's method [3], but similar to the technique of 
Lapin [9]. Two examples are discussed. The first one contains a Schauder estimate of 
the discrete solution. The second one is Lapin's problem. We show the same results 
under weaker assumptions. 

1.3. N o t a t i o n  

wm'p(~'-~) (m>:O integer, l<:p<_-~, f 2 c R  a) denotes the space of functions 
on f2 with all derivatives of order <=m in LP(f2). Its norm is ~l=l<=mllD~u[lzpco), 
where a is a multi-index ~=(a~, ..., ~a), c~j ->0, and 

lal = ~ , + . . . + ~ ,  z~: = o l , l l ( 0 ~ , . . . 0 x ~ , ) .  

For p =2  we write H"(O) instead of W ~' 2(0). H~(Y2) for real s:>0 is introduced, 
e.g., in [10]. H~(f2) is the closure of C~(Y2) with respect to the norm of H~(f2). 

Ca(D) ( 0 < 2 < 1 )  is the space of  functions that are H61der continuous with 
exponent 2. Its norm is Ilu]}0+lul~, where 

llull0 --- sup {Iu(x)f: x ~ } ,  

tula = sup { lu(x) -u(x ' ) l / l lx -x ' l l  a : x ,x 'EO,  x ~ x ' } .  

Cm+a(D) (m=0,1 ,  2, ..., 0 < 2 < 1 )  contains H61der continuously differentiable 
functions with finite norm ~l,l~z[{D~u[[o+~l,t=,,ID~u[a. 

The norm of a Banach space X is always denoted by [[. Hx (e.g. [1" ][n,,<z)). 
If  X and Y are two Banach spaces, the canonical norm of operators A: X ~ Y  is 

IIAlJx-+y = s u p  {llAxlly/llxllx: 0 ~ xEX}.  

Difference schemes are described by means of the translation operator T. We con- 
sider only the two dimensional case. T~ and Ty are defined by 

(T~u)(r ,~) = . ( r  ,I), (Tyu) (#, ~) ----- u(#, ~ + h )  

((~,q): grid points, h: grid size). T" (a=(~x,~y): multi-index) denotes 

T= = r ; ~ r ~ , .  

The differences with respect to the x- and y-directions are 

& = h-l(T~--I), Oy =- h - l (Tr -1 )  (I: identity). 
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Differences of higher order are 

= = 

The set of grid points is Oh, e.g., Oh -=-- {(x, y)  ~ O : x/h, y/h~Z}, if(Oh) consists of 
all grid functions defined on Oh. In Section 2.2 we also define Oh~Oh. if0(Oh) 
is the set of grid functions Uh defined on ~h with Uh(X,y)=O for (x,y)~Oh~O h. 

2. Regularity of discrete linear boundary value problems 

2.1. A generaltheorem 

Let 

(2.1) Lu  = f (uEX~ ~ 

be a boundary value problem. Either L is a differential operator and the homo- 
geneous boundary condition of u is incorporated into the definition of the Banach 
space (cf. (1.1)), or (2.1) represents the differential equation L a u = f  a and the boun- 
dary condition L r u = f  r. 

Usually, there exists a scale of Banach spaces X s, YS (sEI) with X t c X  ~, 
y t c y s  for t>=s so that 

(2.2a) L: X ' -~  Y~ is bounded for sEI. 

Under suitable conditions L maps X ~ onto Y~: 

(2.2b) L-X: Y ' ~  X s is bounded for sEI. 

This is the continuous regularity. Special examples are (1.2a, b): X'=HS+2(O)A 
H~(O), YS=HS(O) and X'=C2+~(~)AHI(y2) ,  Y~=C~(O), respectively. In the 
second case the index set I must contain no integers. For a proof of (1.2a, b) 
see Lions and Magenes [10] and Schauder [13] or Miranda [12]. 

Discretize the boundary value problem (2.1) by 

(2.3) LhUh=fh (hEH), 

where the discretization parameter h varies in the set H c ( 0 ,  oo) with 0EH. Eq. 
(2.3) may be a difference scheme or a finite element discretization. The discrete func- 
tions Uh and fh of (2.3) belong to some vector spaces (e.g., uhE if0(~h), J~E if(Oh), 
cf. Section 1.3). Endowing these vector spaces with discrete counterparts of the norm 
of X s and Y~, respectively, we obtain two scales of discrete function spaces X~, Y~ 
with 

I1 "llxg ~- Cll "[Ix~, 11 .lly~ <-- Cl[ "[Irg (s, te l ,  s ~_ t, h e n ) .  
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The discrete regularity estimate is 

--1 ~ C (2.4) l[Lh [[Y~X~ for all h~H, 

where C is a generic constant independent of h. 
The inverse estimate allows us to estimate finer norms by means of coarser norms: 

(2.5) 11 "llx~ ~ Chs-' 1[ "[[x~ (s ~_ t, hEH). 

This condition implies that the sets of elements of X~ and X], coincide. 
In order to compare functions uEX ~ and discrete functions un~X~ we have to 

introduce restrictions Rh and Rn and a prolongation Ph: 

R~:x'-~ x~, R ~ : r ~  r~, eh:r~--, r'. 

Assume that R n and Ph are bounded (uniformly with respect to hEH): 

(2.6a) I]Rh[[xs_x~ ~_ C for all hEH, 

(2.6b) ]LPh[lr~r,<_ - C for all hCH. 

The product KnPh maps Y~ into itself. For 'smooth' functions uh, I~hPnUh should 
approximate u h. More precisely, the interpolation error should satisfy 

(2.7) []Rheh--Illrg~rg~ Ch t-s (O<=t--s~--gt, hEH), 

where/--identity and xx=order of J~hP h. Examples of Ph, Rh,/~n are given in the 
following sections. 

The consistency of the discretization L h c a n  be expressed by 

(2.8) I[LhRh--RhLllx,~rg <-- Ch t-~ (0 <= t--s <- gc, hEH), 

where gc denotes the order of consistency. 
Note that it suffices to prove (2.7) and (2.8) for s = t - x z  and s = t - Z c ,  res- 

pectively. Then (2.7), (2.8) follow for all larger s because of (2.5). 
The following theorem requires a discrete regularity estimate for L h correspond- 

ing to the spaces X ~ Y~, and the regularity estimate (2.2b) for the continuous opera- 
tor L. Then higher discrete regularity can be proved. 

Theorem 2.1. Let ~>0  and assume 

(2.9) Ic[0 ,  oo), 0E/, In[t--~, t) ~ ~ for all 0 ~ tEL 
Suppose 

(i) discrete regularity (2.4) for s - 0 ,  
(ii) continuous regularity (2.2b)for all Or 

Assume that there are Pn; Rh, Kn with 
(iii) estimates (2.6a, b) for all O~s6I, 
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(iv) estimate (2 .7)for  all O~tEl, s E I n [ t - z ,  t), 
(v) consistency (2 .8)for  all O~tEL sEIc~[t-~, t), 

(vi) inverse estimate (2.5) for all s, tel, s<t.  
Then the discrete regularity estimate (2.4) holds for all sE L 

Proof Split L~ -1 into 

L ;  1 = RhL-1Ph--L;I[(LhRh-- RhL) L-1Ph +(RhPh-- I)]. 

Assume (2.4) for some s=>O. Then the following estimate holds for all tEIn[s,  s+u] .  
The subscripts t s t X ~ X h ,  ... are Yh-+ Yh, abbreviated by t-~s: 

IIZ;~ll,-,, --<- l[ Rhll t-.,ll Z-1][,~tll Phil t-., q-II 1 [I ~-,llZ;lll s~[[I LhRh -- Rh L I[,_.~IIL -1J[,-., II Phi[ ,-., 

+ll/~nPh-Ill ,- .~] <= C + Ch'-t[Cht-s + Ch '-~] ~- C'. 

This proves (2.4) for ln[s, s+~] .  The case of  general sEI follows by induction. II 

The regularity (2.4) is a special kind of  stability. Together with the consistency 
we obtain the following convergence estimate. 

Corollary 2.1. Let ?~-~c (c f  (2.8)). Under the conditions of  Theorem 2.1 and 
for a right-hand side fh in (2.3) with 

I IA-Rhf l l rg  <- Chrllfllr,+~ (s, s+ wE I) 

the solution un of  (2.3) satisfies 

I[RhU--uhllxg <= Chrllfllr,+~ (s, s+~El, u:= L-~f ) .  

Proof Use Rhu--uh=Lhl(LhRh--RhL)L-l f  q-L~X(Rnf--A). II 

Theorem 2.1 requires discrete regularity for s=0 .  Weakening this assumption 
we obtain 

Corollary 2.2. Replace assumption (i) of  Theorem 2.1 by 

Z-~ IJ h IIr.o.x,-o <- C for all hE H 

with some ~>0 and modify the assumption on 1 suitably. Then 

(2.10) L -~ II h Ily~.x~-= -< C 

holds for all sEL 

Finally we present a useful lemrna about  the perturbation of Ln by lower order 
terms. 

Lemma 2.1. Let e>0 ,  5>0 ,  q:----e-6. Assume that Z h satisfies the discrete 
regularity estimate (2.4) for all sE l=[ t -q ,  t]. Let lh be a perturbation o f  Lh with 
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lower order than Lh: 

[]lhl[xg~yU~ <= C for all s + 6 E [ t - q ,  t+6]. 

Suppose that Lh+lh .fulfils the non-optimal regularity (2.10)for s=t.  Then Lh+l n 
satisfies the regularity estimate (2 .4)for  s=t ,  too. 

We remark that I = [ t - q , t ]  can be replaced by { s = t - q + i 6 E [ t - q ,  t]: i 
integer}w {t}. 

Proof By induction we show 

II(Zh + lh)-~llyg~xg_~+,~ <-- C i. 

First observe that this holds for i = 0  because of (2.10). Now assume the estimate is 
valid for some i. Using (Lh+lh) -~ = Z~l--L~llh(Lh-klh) -1 one obtains 

I[(th q- lh)- l[[ t . t - t+(i+ l)6 "~: C[[L;Zll~_.t 

+llLffmll,-~+r Il lnllt-,+~-~t-,+(i+ x)nll(Lh + lh)-lllt-,,-~+ia <= Ci+~, 

provided that t - e + ( i + l ) f < t .  After a finite number of  steps t -z+i6>=t is 
reached and the regularity of  Lh+l h is proved. | 

In Lemma 2.1 we needed the non-optimal regularity of Lh+ lb. This condition 
can be replaced by the regularity of the continuous operator L+I.  

Lemma 2.2. Let s < t  and assume." 

(i) L and L +l  satisfy the regularity conditions (2.2a, b ) f o r  s and t (instead 
o f  s in (2,2a, b)), 

(ii) L~l  fulfils the regularity estimate (2.4)for s and t (instead o f  s), 
( i i i )  I h is a term of  lower order: ][lhllxg~vg<=C, 
(iv) consistency: [ILhRh-- R~LIIx,~ r~ <:Ch t-~, ][lhRh-- ~hl[lx,~ yg <=Ch t-s, 
(v) f ~  0 implies li_._m_m [[/~hfl[ rg > 0 for all fE Y~, 

h~O 
Ph and Rh are uniformly bounded: IlPhllr~.rt<_-C, I[~nllr,~rg<=C, 
the estimate (2.7) holds for RhPh--I, 

Y t c ~ Y S  is compact. 

(vi) 
(vii) 

(viii) the embedding 
Then there is h o such that 

II (th + lh) -xl[ r f, -x~. -<= C for  r = s, t and all h <: ho, hEH. 

We note that the O(h t-~) terms in (iv) and (vii) can be replaced by o(I). 
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Proof. It suffices to prove t-regularity since as in the proof  of  Lemma 2.1 t-regu- 
larity implies s-regularity by using (Lhq-lh)-X~-L~l--(Lhq-lh)-llhL~ 1. 

Assume that the regularity of  Lh+lh does not hold. Then there would be a 
sequence h ~ 0 ,  fhfX~, such that 

rPh--- - - (Zh+lh)Zhl fh  , Ilfhllrg= l, [l~0hllr~-~0 (h=hi) .  

Because of  (vi) the sequence {Ph,fh) is bounded in yr. By (viii) there is a subsequence 
{hk} such that Fk: =Ph~A~ converges in Y~: 

F = lira FkEY ~. 
k ~  

The estimate 

1 = II f f l  r~, = It q~h- lht-~ifnl} rt, ~ 11 ~ohll rg+ C" I]ffi  r~, 

(cf. (ii), (iii)) and (vii) yield 

IIFfi  ys => C -~llE n Fk][ y~ ~> C-X]lfhllyT--C-ll[(-RhPh--I)fh[] yg 

(CC')-x(1--llqghlly?),C"ht-~ ~ 1/(CC') for h = h k ~ 0, 

ensuring F ~ 0 .  
In the following part we shall show F = 0 ,  too. This contradiction would prove 

the lemma. By (i) F = 0  follows from (L+I)L-1F=O.  Hence by (v) it suffices to 
show ][~h(l+It-1)Fllr~-~O (h=hk-~O). Since F k ~ F  in Y~, it remains to prove 

IlRn(I§ -,-0 (h = h k -,- 0). 

But this assertion follows from 

~h (/ '~ IL -1) Fk = Rh {Ph (I+ In L ;  1)f  h + (IL-1Pn - Ph In L ;  1)fh} 

= Rh Ph ~oh + {[Rh l -- lh Rh] L -  1 Ph + lh L ;  1 [Lh Rh---gh L] L -  1 p .  + lh L ;  1 [gh Ph -- ] ] 

+[I--RhPh]lhL;1}fh (h = hk) 

and (i-iv, vi), since the brackets [...] yield O(h*-~). | 

Corollary 2.3. The condition (v) o f  Lemma 2.2 can be replaced by the following 
assurnp lions: 
(vl) yt dense in Y~, 
(Vz) Ilfhll rg ~--61]Phfhl] r-, 6>0 ,  for all fhE r~, 
(va) liPnRn-Illr,~r~<=Ch t-~ (even o(1) suffices). 



On the regularity of difference schemes 11 

Proof. Choose TE yt such that [[ f - f l l  Y" ~ e: = a II f II r~/[ 2 (6 + C)]. Then one con- 
cludes from (vl, v2, va, vi) that 

=> II-~ fll II/~h y~, IIrh.R h y.--C~ [l/~hf[lr,~ h r',~- ( f - f ) l l  => 6 f[I 

>= ,~[l f llY.-ll(eh-Rh- I) f llr.-Ce >- 6[I f l lr.-( ,5 + f ) ~ - C '  h'-'ll.lrllr, 
1 

This estimate yields lira II/~hfll Y~-->6llfll r ~ - ( 6 + c )  ~ = ~ 6[Ifll r , > 0 .  I 

Another formulation of Lemma 2.2 is given in [18]. 

2.2. Difference scheme in a square 

We start with the simple case of the square f2=(0, 1)• 1). Let h = l / N  
and define 

(2 h = {(x, y)Ef2: x/h, y/hEZ}, ~h = {(x, y )E~:  x/h, y/hEZ}. 

Denote the grid functions defined on Oh by ~-(f2h), and by ~-0(~h) the set of  grid 
functions on Oh satisfying the boundary condition: Uh(X, y ) = 0  for (x, y)EOh\Oh. 

Let L be the differential operator 

(2.1 1) L = aO~/Ox ~ + bO2/Oy 2 + cO/Ox + dO/Oy + e 

with variable coefficients satisfying 

a, b, c, d, eEW 2,~ ((2) 
(2.12) 

a(x,y)>=e>O, b(x,y)>=~>O for all (x,y)Es 

The boundary value problem is (1.1): L u = f  (f2), utr=O. Therefore, we choose 
the following spaces: 

X s = [H01+s(f2) for sE[--1,0] s r  
tHl+S(f2)nH~(~?) for s ~ 0  

[dual  of X -s for sE[-1,  -1/2) ,  
ys = |H~- I (O)  for sE(--1/2' 2), s # 1/2, 

[ {fEH~-a(f2): f(O, 0) = f ( 0 ,  1) = f ( 1 ,  0) = f ( 1 ,  1) = 0} for sE (2, 3]. 

For the exceptional value s = 2  we define Y~ by interpolation: y2=[y3, y1]1/2 
(cf. [10]). 

Note that H~(f2)=Ht(O) for tE[0,1/2] and H~163 

Lemma 2.3. Assume that 2 = 0  is not an eigenvalue of  L. Then (2.2a) and the 
continuous regularity (2.2b) hold for sEI: = [ -  1, 3 ] \ { -  1/2, 1/2}. 
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Proof For tsl<=l, Is lr  use the result of Kadlec [8] and interpolation. The 
proof for s >  1, sEI is given in the appendix of [7]. II 

Discretize (1.1) by Lhuh=fh with 

- 1  ~ 2 - 1  2 C d (2.13) L~ = aTx O~,+bT; O,+-~(I+r2t)Ox+--~(I+T~-l)Oy+e (h-IEZ).  

X~ and Y~ are the vector spaces ~'0(Oh) and ~(Oh), respectively. For simplicity we 
define the norms only for the integers s=kE {0, 1,2, 3}. We denote [~l~l=j~e[O~gh[2] ~12 
by [gh[j,s~, where O~gh(P) involves only values of gn belonging to Sh. Set 

= ' lu l ,J ( k = o ,  1 . . . .  ) ,  

[Ifhflr. = sup {h2[Z, Ea.fh(P)uh(P)[: Iluhllx. = I }  (k --= o ) .  

For k---3 fE y3 satisfies f(0,  0) . . . . .  0. This property cannot be translated into 
f ,(0,  0) . . . . .  0 since (0, 0)([~h. Therefore define 

f(O, O) = 2f(h, h ) - f (2h ,  2h) 

with analogous definitions for f(0, 1), f (1 ,  0), f (1 ,  1). Then we set 

II f[I r# = [Z~-o ~ [LI~,.~+ h'-2~(lf(0, 0)12+ If(0, 1)1~+ if(1, 0)12+ I f ( l ,  1)[~)] 1/2 
( k = 2 ,  3). 

Theorem 2.2. Let L h be the difference operator (2.13) in the square f2 h with coef- 
ficients satisfying (2.12). Assume lz-stability (1.5). Then the discrete regularity estimate 
(2.4) holds for s =0, 1, 2, 3. lnparticular for s =3 one obtains (1.6) with /~(f2h) : = Y~. 
The regularity can be extended to sE1 (cf. Lemma 2.3) i f  the norms of  Y~, Y~ are 
suitably defined. 

Proof. Define Rh and /~h by 

(Rhu)(x, y) = h-~ f f l._r lY_,l~_h/zU(~, n) d~ dq 

tbr (x,y)EOh. (2.6a) holds for s~{l, 3}. The construction of prolongations Ph 
is described by Aubin [2]. Special care is needed to satisfy Phuh=O at the corners 
of 12. Thanks to the definition of Y~ the estimates (2.6b) (sE {1, 3}) and (2.7) 
(s, tE {(3, 1, 3}, s<=t<=s+2) can be fulfilled. Obviously, (2.8) is valid with consistency 
order •  i.e., for s-=0, t = l ,  and s = l ,  t=3.  Also (2.5) is trivial. Now apply 
Theorem 2.1 with 1= {0, 1, 3}, ~=2.  The regularity for s = 2  follows by interpo- 
lation. II 
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2.3. Difference scheme in a square, continued 

This section contains the proof of regularity with respect to H61der spaces. We 
will use Lemma 2.1 rather than Theorem 2.1. 

The following spaces X~ and Y~, correspond to C~(~) with zero boundary con- 
dition and to a subspace of C~-2(~), respectively, s varies in I=(2,  3). The norms 
are 

[[ fh{[ r~,§ = [fhlo o~ + [fh a s~, + h -4  [ / f h ( h  ' h)[ + [fh (1 - h, h)[ + I f ( h ,  1 - h)l 

+ I f ( l - h ,  1-h)l], 

where IO~VhlO, Sh is the maximum of all 8%h(P) with P such that O%h)(P) involves 
only Vh(R) with RCSh. 18~vhla, s~ is the maximum of all IS~vh(P)--8~Vh(Q)l/[distance 
(P, Q)]~ with P and Q as above. 

We consider the same difference scheme as in Section 2.2 and show (1.7). 

Theorem 2.3. Let Lh be the scheme (2.13) with coeJficients a, b, c, d, eEC2+X(~), 
2E(0, 1). Assume l:stability (1.5). Then the discrete regularity estimate (2.4) holds 
with X~ and Y~, s = 2 + 2 ,  as defined above (hence (1.7) with a=2,  r2+~_v2+~ ~ h  ~ h  , 

Proof. (i) In the first step we show that without loss of generality the coefficients c 
1 i 1 and d may be taken to be zero. Set lh - ~-[c( I+T2 )3 ,+d( I+T~ )3x]+e-cr and 

ls v t  + l [_it  __ v t - - 1  
~ h ~ - L h - - l h  . For c~ large enough Lh is also /:stable. Let ,~h=~h , -~0,h--~h 
with X~, Y~ from Section 2.2. According to the comment following Theorem 2.2, 
the norms ofX~, Y~ can also be defined for nonintegers z (cf. [6]). Then Theorem 2.2 
yields 

I IL~ll~,%~ ~ C. 

The discrete analogues of the embeddings CX(f2)c~Ha(f2), H2+a(~)c~C~+X(f~) 
are  

I I . I I~  <- Cl[.lly2§ II-IIx~+~-<- CIl'llu:,+*. 
Combining the three inequalities we obtain 

Obviously, lh: X~,+z-~Y] +z is uniformly bounded. Note that the estimate of 
h-a[[fh(h, h)[ + ...] follows from the zero boundary condition UhC~0(Qh). Applying 
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Lemma 2.1 with 1={2+2}, e = 6 = 1 ,  one obtains that X~-regularity of Ln implies 
X~-regularity of Lb. In the following we write Ln instead of J~h. 

(ii) Define fh (P)=0  at PEDh\~h and extend the function by reflection: 
J ~ ( x , y ) = - f n ( - x , y ) = - J ~ ( X ,  --y), J~(1- -x ,y)=-- fh( l+x ,y) ,  ... for (x,y)En h. 
Let ~h= {(x, y)C(--1, 2)•  2), x/h, y/hCZ} be the extended domain of j~. 
Obviously, 

(2.14) [Ifhll c U ~  ) = I[ fhl[ c~(a,) 

holds, where [Ifh][ct(s~) = Ifhl0,s.+ lJh]a,s~. The solution uh is to be extended in the 
same way, whereas the coefficients a, b are extended symmetrically: a ( - x , y ) =  
=a(x, y), etc. Note that Lhuh=fh holds for the extended domain t~n. The interior 
Schauder regularity proved by Thom6e [16] yields 

Ilxg = < C[lUhlo, a,+llfhl[ ] < C'llfnll (2.15) [lu h +4 Iluhllc~§ = c~(~)  = c~(~)  

thanks to (2.14) and 
P 

lun[o ,o~  <-- Clluhll~g+~(oh) <---- C '  IlfhllH•(o.)<= C [IJ~lIc#(o~). 

Note that the needed estimate of [16] requires only a, bEC~(R s) as fulfilled in our 
situation. 

(iii) Let fh~( f2n )  and define fh at PE~n\Oh by fh(0, y)=fh(h, y), fh(1, y)=  
f~(1 --h, y), ..., except at the corners where we set fh(0, 0)=fh(1, 0)=fh(0, 1)= 
fh(1, 1)=0. We have 

(2.16) Ilfhllr  ) = II fnll rg+~" 

Piece-wise linear interpolation of fh(0, vh), 0<=v~l/h, gives a function g~C~(I), 
I=(0,  1), with Ilglllc~(r)<=llfhllc~(~h) and gx(0)=g~(1)=0. Extend g~/~(O, .) to a 
2-periodic function g with g ( - t ) = - g ( t ) .  The function 

G(x, y) = CoX f~_= exp( -  Ill + (y -- rl)2/x 2) g(rl) dq 

with eo=l/ f~_= exp (--I/1+ t ~) dt satisfies 

6(o ,  y)  = G(x,  O) = G(x,  1) = O, 

(2.17) G~C2+~(~), llG]lc,+~r <= CI]gllc~(R), 

G~ (0, y) = g (y). 

z~C=(R) with g ( y ) = l  for y<-l/3, Z(y)=0 for y>-_2/3 and define Choose 
ul(x,y)=G(x,y)  g(x). Using (2.17) and 

I lg l l c  ~ (R) <-- CIIg~llc ,' (n <= C'II~llc~-(~,,) 
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we obtain 
Ilulllc,+~(~h) ~- CII fhll r,+~. 

Since the restriction Ul,h of Ul to the grid points of ~a belongs to ~ the estimate 

(2.18) llUl, hllx~+ . -<_ Cll fhII r~+, 

holds. Set fl,h=LhUl,h~,~(ff2h). Obviously, (2.18)implies Ilfl.hllr~+*~--fllfhIIr,:~. 
In addition the third part of (2.17) proves 

(2.19) [fl, h(h, vh)-fh(h, vh)l <- Challfhll r#+*' 

while f~,h(x, 0)=f~,h(X, 1)=f~,h(1, y )=0  implies 

(2.20) lf~,h(X, h)[, If~h(X, 1--h)l, Ifx, h(1--h, y)l <-- Ch~llfhllr#+~ �9 

Analogously, fj,h (j=2, 3, 4) can be defined so that (2.19) holds for x = l - h  
or y=h or y = l - h ,  respectively. By virtue of (2.19/20) the function f0,h=J~-- 
~ = 1  fj,h extended to ~0(Oh) as in (ii) satisfies 

ll fo, h [Ic~(sTh) ~ CIl fhI[y~+.. 

Hence, the solution of LhUo, h=fo, h can be estimated by 

[luo, h [Ix~+* <= CIl~[I r~** 

(cf. (2.15)). The proof is concluded by noting that Uh = ~l= 0 Uj, h and using (2.18). II 

2.4. Difference schemes in a general domain 

In the following we assume S'2cR 2 to be a domain with smooth boundary. In 
this case the continuous regularity is well-known. However, the analysis of the dif- 
ference scheme is more difficult, since the discretization is irregular at points near the 
boundary. We illustrate the application of Theorem 2.1 by special examples. 

2.4.1. Shortley--Weller scheme 

Poisson's equation --Au=f(f2), u=0(F)  can be discretized by the Shortley-- 
Weller scheme (cf. [6], [11, p. 203]). (Lhu)(P) is the usual five-point formula if all 
neighbours (x+h,y),  ( x , y~h)  of P=(x,y)  belong to 12h={(x,y)~12:x/h, 
y/hCZ}. Otherwise the second derivative is discretized more generally. E.g. in the 
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case of (x, y)E f2h, (x +h, Y)E Qh, (x--xh, y)E F=OI2 ( 0 < z = l )  the derivative - u ~  
is approximated by 

(2.21) 

-u:,~(x, y) .~ h-2 [ 2u(x, y) 
~(1 + x) 

u(x-xh, Y)- l--~u(x +h, y)] ,  

where u(x-zh, y)=O because of the boundary condition. I f  PEg2 h and 
Q=P+ (0, h)Ef2h are grid points, we neglect a possible part of the boundary /" 
between these points. Hence, neighbours with respect to the grid are also neighbours 
with respect to the discretization. 

The norms of 0 1 - 1 ~ - Xh~-nh(,.Qh) and X.~=nh(~Qh) must be defined carefully. I f  
the norm of H~,(Oh) also involves differences of  the form (2.21), then the inverse 
estimate (2.5) holds with C depending on the minimum of all ~. Since • may be- 
come arbitrarily small, the inverse estimate (2.5) is not valid. 

I t  is easy to define the norms of L~ and H~: 

b/ 2 IluhllH~oO {H hllL~,~,,) + ~P~O,,Zi=x,2 ]OeUh]~}I/2, 

where Gh= {(x, y)ERZ: x/h, y/h integers} is the infinite grid. 0i ( i=1, 2) are the 
first differences: ~l=~x, O2=Oy (cf. Section 1). Here, the grid function Uh is extended 
by zero on Gh\Oh. The norm of Hh'l(~h) is the dual norm 

II uhl l~-~:o = sup {h2l~ e,oh uh (p) oh (e)l: II Vhll~r o = 1}. 

The extension by zero cannot be used for H~(Oh) , since this space is the discrete 
analogue of H2(f2)c~H~(f2) and not of  H~(f2). We must use differences of values 
at points P~ with dist (P~, Pj)>=h in order to satisfy the inverse estimate (2.5). Let ~h 
be the set of all points P=(x, y) with PE Oh or PEI" and either x/h or y]h being 
an integer. Oh differs from O n by the set 

V h = ~ h \ t 2 h  

containing the intersection points of the lines x=vh and y=ph with the boundary 
F. PEOh are the points involved in the difference formula (2.21). The second x-diffe- 
rence at (x,y)Ef2 h can be defined by 

(D~u)(x, y) 

[h-~[u(x+h, y)-2u(x, y)+u(x-h, y)] if (x, y), (x-t-h, Y)E~t,, 
=~h 2[ 2u(x+~h'y) 2u(x-h,y) . 2u(x-2h, y)] 

t--  2+,, 
if (x-h,y), (x--2h, y)E~h, (xq-ah, y)EFh 
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and by a similar expression in the case of  (x+h,  y), (x+2h,  Y ) ~ h ,  (x -~h ,  y)~F h. 
The distances of the points are h and (1 + z ) h  and not h and • as in (2.21). This is 
necessary to ensure the inverse estimate (2.5). Drru is defined analogously. The 
description of the mixed difference D~yu at a point near the boundary usually involves 
more than four grid points. E.g., D~r can be defined by a difference formula using the 
six grid points (x+_h, y), (x+h,  y+h) ,  (x,y+h),  ( x , y + 2 h ) ~ h ,  (x ,y-gh)CFh.  
Then the norm of H~(~h) reads as 

]1Uhl]n2(~Th ) = { llUh}l~(~)'i-hU Zpc~" (]DxxUh(P)l u q- }Dyyuh(P)]2)+ ]Dy~U,(P)]2)} ~. 

The following theorem establishes the H~-rcgularity of  the Shortley--Wellcr 
difference scheme. 

Theorem 2.4. Suppose that 0 c R ~ is a bounded domain with the uniform C 2. 
regularity property (cf. [1, p. 67]). Then the Shortley--Weller scheme satisfies the 
regularity estimate 

L -1 <C.  II h {IL~(o)-.~(o~)= 

Proof. We want to apply Theorem 2.1 with 1 =  {0, l}, u = l :  

Yh ~ = //~-l(~h), Yh 1 =  LhZ(ff2h), M = Hl(~h),  M = H2(~h) �9 

According to the suppositions (i)--(vi) of Theorem 2.1 the proof  consists of six 
steps. 

Step 1. Discrete regularity for s - 0 .  This result is contained in [6], but it can 
also be obtained directly by estimating the scalar product (uh, Lnuh). Let Ln= 

~c Y x Lh + Lh, where Lh and L~ are the differences with respect to x and y. Extending Uh 
by zero outside of  s h, we obtain 

(uh, L~ uh) = h 2 Z P  e .,, uh (P) (L~uh) (P) = h 2 Z p  ~ GalO:'Uhl 2 

where the sum 1;~ is taken over all PE On with P+(h, 0)E Oh and Q = P - ( h ,  O) ~ f2 h. 
I;z is a similar expression for the case P, P - (h ,  0)EOh and P+(h, 0)r h. •  
(0, 1] is the number defined in (2.21). The inequality 2ab>=-22a~-b2/22 yields 

1 
> - _ _ _  h g h2E~['"]+h~S~['"]= 25 2j~10.u,I. 

This estimate and the analogous one for L~ imply 

(uh, LhUh) ~= 0.96ha ~ p e ~  10,u~l ~. 
i=1,2 
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Since f2 is bounded, the right-hand side is the square of a norm equivalent to 1. [Hl(~h). 

The inequality (uh, thuh)>-_cluhl'n~(o.) with c>0  for all Uh~H](On) proves the 
desired HI-regularity. 

Step 2. Continuous regularity for s = l .  See e.g., Theorem 37,I of Mi- 
randa [12]. 

Step 3. A restriction satisfying IIRhl]tl~f)H~H~C has to be defined. Let 
u~He(f2)c~H~(f2). There is a continuous extension operator E: Hz(f2)~H~(R 2) 
(cf. Adams [1, p. 84]) yielding ~=Eu. Define a provisional grid function tTn by the 
mean value 

an(P) = f Bh(P) a(X, y)dx dy/ f ljh(r) dx dy, Bh(P) = {(x, y): [[P--(x, y)[[ =< h} 

for PEOh. The construction of ah implies 

Ila I1~(~ < Ctlull < c'tlutl  
h h) --~ HZ(R2) = H~( ~)" 

Unfortunately, ~h(P) does not satisfy ~h(P)=0 at points PEFh=~h\f2n on the 
boundary. Therefore, Rhu is the following modification of ~h: 

where 

(R~u)(p)=/~ h(P) 
[solution of  (LhR.u) (P)  = 0 

if PE (2h~h 
if PE F h 
if PETh 

7h = {PEOh: not all neighbours of P belong to f2h} 

is the set of points near the boundary. 
The difference 6h=ah--Rhu satisfies 6h=Oh on F h, Lh6h=Lhah on 7h, 6h=0 

otherwise. Split 6h into ~ 2 6h + 3h, where 

61 = ~ ( r 3 ,  z~al  = o (~) ,  al = a] = 0 ( a ~ \ ~ ) ,  a] = 0(r~), L~6~ = L~a~(~). 

It can be shown that 16~(/ ')l=lah(P)l is bounded by ChIlulIH,(B~(p))for P ~ r h .  
The strong diagonal dominance of the matrix Lh restricted to the near boundary 
points ?n implies 

116hllL~<~) []a[i~,(Bh<p>) 1:2 C.h21lall x <= C[h2Zp~r, IS~(P)I2] x/2<- C'h2[Zp~r, ] ~- . . . . .  H'(,,) 

Estimating differences by integrals of derivatives we obtain 

ILh6~l(P) = ILha~l(P)~-- Ch-lllull~,(B~h<p)) for PC~. 
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The strong diagonal dominance again shows that: 

116211 < Ch2[[( L ~ )1 I[ h L~(n h) = h h rh t~(aD 

[ Z  Ith ah )l ] "h2[Z " ~ )]~/2 < ~:,,h~jl~j] = Ch~ Perh h2 (p 2 1/2 =< C Ps I[U[[H2(B2h(p) . . . . . .  B~(R~)" 

Hence, the grid function 6 h satisfies 

][0hllHho. ) --~ Ch-2ll@lL~(aO ~= C'II~I[~,(R~) ~ C"[]ul[H,(a ). 

Here, we used the fact that the inverse estimate 11 �9 J l / ~ ' ~ C h - 2 l ]  ~ IIL~' holds because 
of the definition of the norm of H 2. 

The estimates of ~h and 5 h imply 

[IRhullH~(o,) ~--[lal/N(a~)+l[@[~(o. ) =< CllUlln,(a ). 

Step 4. The estimate ]]/~hPh--I[] L~/~- ~ ~ Ch has to be proved for a suitable choi- 
ce of Ph and Kh. Let Ph be the piece-wise constant prolongation (Phuh)(x, y)=uh(Q) 

h h h h 
with Q=(xa, ye) if xa-~<x<=xa+~,ye--~<y<=ya+~, and let Rhu be 

defined by 

(.~hu)(p) = { fo Bh/,(e) ~(x, y)dx dy/ f Bh/2(p)dX dy if P~'~h')'h" 
if PCYh. 

where ~=Eu and ~'hCf2h are defined in the preceding Step 3. 
1 ,2 1 Let vh~HI(~h) and uhELZ(Oh). Split v h into ~)h-~f)h with V h=vhl~ h (restric- 

tion to ~h) and Vh=Vh--V h . 2  ~ The definitions of Ph and /~h yield 

Using ]]v~llz*(a,)<=ChllvhilH~(~,) (cf. [6, Lemma 2.2]) we finish the proof of  the de- 
sired estimate. 

Step 5. Consistency [ILhRh--KhL[IH, c~H~Hf~<=Ch. Let vh~H~(~) and 
uEH~(~)~H~(g2) be arbitrary, extend u to a=EuEHa(R ~) and set 

~(P)=vh(P) for P(f2h\yh,  Vh(P)=0  otherwise. 

The new functions satisfy 

--< llal[ ,(R ) :< c Ilull , a; 

Let Gh={(x,y)~R2: x/h, y/h integers} be the indefinite grid in R e and define 

restrictions kn and R~ on the grid Gn in the same way as Rn and/~n, resp., are defined 
in f2n\yn. Furthermore, denote the five-point formula in Gh by L~, while L=- - A  
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is the negative Laplacian in R 2. The first term of 
^ 

can be analysed by Fourier techniques yielding the bound ChllVhIln~llu[In~. The sup- 
port of Vh--~ h is ~h. Since LhRhff as well as/~hL~ vanish on ~h, we obtain 

(~h, [Lh Rh--~hL] u) ~(~.) = (~, [L h ~h - ~ L] ~)~,(~.) + (vl~;, L~ ( ~ -  ~) ~)~,(~), 
where vhlr ~ is the restriction of vh to ~={P~I2n:  P neighbour of ~n}. By 

the estimates result in 

I(v~, [Z h R~ . ~ t ]  u)[ <= Chl[ v~ll~d(o~)llull/~(a). 

Hence, the consistency condition is proved. 

Step 6. The inverse estimate [l" [lH~<=fh-~ll" IInL holds by definition of the 
norms. Since all suppositions of Theorem 1.1 are fulfilled, the HI-regularity is valid 
for the Shortley--Weller scheme L h. II 

2.4.2. Inhomogeneous boundary conditions 

Discretize the boundary value problem 

- - A u = f  (f2), u---g (F) 

by the Shortley--Weller scheme with uh(P)----gh(P) for PCF. The right-hand sides 
R 9 fh and gh are obtained by suitable restrictions: fh = h f ,  gh=Rrg �9 Here Rr:  

H3/2(F)-~H~/2(Fh) can be defined as follows: (Rrg)(P)=(nh2) -1 f K(e) (Eg)(r 7) 
d~d~, where K(P)={QCR2: [IQ-P]I<_-h} and E: H3/2(F)~H2(R2) a suitable 
extension. 
We define 1 2 3/2 Yh=Lh(S2h)• (Fh), where Fh=Oh\f2 h is the set of  boundary points 
involved in (2.21). The norm of H~/Z(Fh) is 

[Ighll14~/2(L~) - ~ -  inf {llvhliB~07h): Vhlr, = gh}. 

Proposition2.1. Let H~(~h) be defined as above (without uh=O on ~h\t2n). 
Then H~-regularity holds for the inhomogeneous Shortley--Weller scheme: 
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Proof. Choose vhEH](~h) with gh=Vhlr~ and ]lghllH]/dro=llVhllH](r~,). 
Define wh by wh(P)=vh(P) except for those PE~2 n corresponding to irregular 
discretizations. Here we determine wh from (Lhwh)(P)=O. w h satisfies Wh=gh(Fh) 
and []LhwhllL':~)<--Cllwhl[i:~(~)<=C'llVh[I.~:~=C'll ghlIB~/'(e~). The application of 
Theorem 2.4 for the right-hand side fh=fh--Lhwh yields the desired estimate. | 

2.4.3. Discretization by composed meshes 

As a last example we discuss an unusual discretization: a difference scheme on 
composed meshes as proposed by Starius [15]. Assume that the boundary F of 
is sufficiently smooth. Let ~?i ( i= 1, 2, 3) be subregions of ~2 with boundaries F~ 
(cf. Fig. 1). Assume that a given 

"-F 

Fig. 1 

transformation maps the annular strip ~?\f2n between F~ and/"  into a rectangle R. 
The inverse transformation maps a regular square grid of R into a curved grid ~2~ 
of ~2\~2 a. Let ~?~c ~2 be ausual square grid. The boundary value problem (1.1), 

Lu = f (f2), Ulr = 0 (F) 

with a second order differential operator L with smooth coefficients (a more general 
boundary condition Bulr=g is also possible) is discretized by 

(2.22a) a a = Lh Uh = f ~  ( ~ ) ,  A Uhlrne~ 0 
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on the curved mesh f2h a and by 
(2,22b) B B Lh uh = A  B ( ~ )  

on the square grid f2h B. Here, ~h a and ~)~ denote the interior points of (2n a, (2g: P is 
an interior point of f2h A, if (2.22a) evaluated at P involves only u~(Q) with Q~g2h a. 
The non-interior points of A ~ a (2h\f2 h belong either to F (then uhA=0 by (2.22a)) 
or to F3. Le t / /B  be a prolongation (interpolation) of grid functions defined on f2g 
to functions defined on f2. Set 

(2.22c) Uha(P)=(17"U~)(P) for P~f2hac~Fa. 
Similarly define 

(2.22d) u~(e) = (nau~)(P) for PEY2~\(2~. 

We assume that (2.22c) involves only values of u~(Q) for QC 02 D Oz, while (2.22d) 
involves only u~(Q) for QEf2\f2x. 

By (2.22a--d) the solution uh=(un a, u~) is determined. For the sake of consis- 
tency we define fh a from j~B by: 

= n B f ~ .  

The discrete spaces L~(O~) and " B Hh(Lr2h~(22) are defined as usual. For the definition 
of s a Hh(~'2 h ), use the differences with respect to the transformed (rectangular) grid. 

Proposition 2.2. Let s>=O. Assume that 

(i) the scheme (2.22a--d) is 12-stable, i.e., 

u a u B Ilf~ll II ~ II,=,o.,+ll ~ll , , ,o. ,  <= c - =h,-oa, - ~h,"h, L~] (L~), 

(ii) L~ and L~ are elliptic (cf. [17]), 
(iii) c~stance (F~, Fz)>g, with e independent of h, 
(iv) the interpolation 17 B is sufficiently accurate, 
(v) the coefficients of L, L~, L~, the boundary F, and the transformation of the 

strip f2\f2 a into R are smooth enough. 
Then regularity holds in the following form: 

UA UB <-- CllfffllH:<ae). II h llm+=(o~)+[I hllm+=(o.na= ) -  

Note that the regions f2~ and ohBnf2= overlap. 

Proof. The interior regularity of L~ yields 

11 u~llv +,(ag n a,) ~- C'(ll u~ll=~(ag) + Ilf~B iim(~.) ) <__ C Ilf~B II.~(a~) �9 

(cf. Thom6e and Westergren [17]). By the assumption on H B the boundary values 
H~+a/zzf2anF a (in the sense of (2.22c) of u~ at Fa can be estimated with respect to h ~ h 8J 
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Section 2.4.2) by CIIABII.g<~). Considerations similar to those of  Sections 2.2 and 
2.4.2 show 

U A -< / A A "4- B II hll~g+,<a~) = C (lluhllL, ca~)+llfs I1~<o~) [If~ ]ltzg(a~)) = Cl[f~llng(a~). I 
Remark. An analogous regularity estimate holds for H61der spaces C~. 

(3.5) 
for some s, 2, ~t, Q with 

3. Regularity of discrete nonlinear boundary value problems 

3.1. Main theorems 

We want to show that under suitable assumptions the discrete solution of  the 
nonlinear problem is as regular as the solution u* of  the continuous boundary value 
problem 

(3.1) -g~ = 0. 

Denote the discretization of  (3.1) by 

(3.2) 

Assume u* E X t 

s h is ~ if 
(3.3) IlLah(U~)[l~-- Ch min(~'t-s) (s ~_ O. 

The derivative of  s is denoted by L h :  

L h  (Oh) : 0 , , ~  h (Vh)/OV h �9 

Assume that Lh satisfies the Lipschitz condition 

(3.4) [ILh(Vh)--Lh(wh)[lx~y~ ~_ Ch-allvh--wh[lx ~ for all vh, whEK~,s(r), 

where 
K~(r),,, = {vhCX~: Ilvh-u~llx <= rh"}. 

The following result guarantees the existence of a discrete solution of  (3.2): 

Theorem 3.1. Let u*EX t be a solution o f  (3.1). Assume (3.3), (3.4), and 

ILL-~(u2)II , ,=< Ch-~ 
h Yg~Xg 

Leh (uD = O. 

u* R "  *cXt [cf. (2.6a)]. The consistency order of and define h = h" ' -  h 

rain (~, t - s )  > max (2+29,  /,+Q). 

Then there exists h0>0 so that for all h<ho the discrete problem (3.2) has a solu- 
tion Uh~K~,s(r). 
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Note that for ~>0 (3.5) follows from the (non-)optimal regularity (2.10) with e= q 
and (2.8). 

Proof  Apply the Newton--Kantorovi6 theorem (cf. Meis and Marcowitz [1 l, 
p. 282ff]). The iteration 

u ~ u ~ ,  u~ +~ ' - 1  �9 , = = Uh--Lh (Uh)~e~(uh) 

converges to uh~K~,,(r) if 
(3.6) CNh" <= 1/2, 

where e=min (x, t - s ) - m a x ( 2 + 2 O ,  /~+Q). CN is determined by the constants 
involved in (3.3-5). Therefore, Theorem 3.1 is proved with ho=(2CN) -1/~. 1 

The next theorem proves the discrete regularity of un: 

Theorem 3.2. Let u*6X t be a solution o f  (3.1). Suppose that there is some s 
such that the .following conditions hold: 

(i) discrete regularity estimate (2.4) for Lh-~Lh(u~), i.e., (3.5) for Q=0, 
(ii) consistency (3.3) with ~ t - s ,  

(iii) Lipschitz condition (3.4)for all 2=/~ in some interval I/q, /t~), where 
I z~=t - s  and I~1 arbitrary with p1<#2, 
im, erse estimate (2.8), 
Ilu~IIx~<=c. 
h ~ho (ho sufficiently small) there is a solution o f  the discrete equation (3.2) 

(iv) 
( v )  

Then for 
with 

(3.7) [{uhllx ~ <= C for  all hEHc~(O, h0]. 

Proof  Let hEHc~(O, ho). Set #=#2-e(h) ,  where e ( h ) = - I o g  (2CN)/log h with 
CN as in (3.6). By virtue of Theorem 3.1 we have Uh6K~,~(r ). Hence IlUh--U~[Ix~<= 
<=rh ~. The assumptions (iv) and (v) imply 

Iluhllxg <--II U*hlSXg+IlUh--U*I}h x,, = ' <  C" +C"h~-'+" = C" +C"h ~ = C" +C"/(2CN) = C. 

Since the right-hand side is independent of h, (3.7) is proved. | 

In Theorem 3.2 # varies, while s is fixed. The same result can be obtained if 
/z<~ is fixed and s varies in [ t - # - q ,  t -p ) ,  n>0  arbitrary. 

Corollary 3.1. In the case o f  a non-optimal estimate (3.5) ~>0, the estimate 
(3.7) requires ( i i ) - - (v )  with 2+~--p~[pl ,  P2]. 

Our main interest is the regularity of Uh. Usually, one is more interested in conver- 
gence: 
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Corollary 3.2. Assume (3.3), (3.4), (3.5) with s = t - x ,  0=0,  2_<-u, for  all 
pE(~-r / ,  z), q>O arbitrary. Then the estimate 

[lUh-U~llx~.. <- Ch ~ (h <- ho) 

holds. 

Proof. Set i~=-iz(h)=~-e(h),  ~(h) as in the proof of Theorem 3.1. Theorem 
3.1 implies [IUh--U~[lx~-,<=ChU=2CCNh ~. 
An application to the stationary Navier--Stokes equations is given in [18]. 

3.2. First example: Discrete HOlder spaces 

Consider the general nonlinear equation 

(3.8) ~e(u) - ~o(x, y, u, ux, uy, ux~, u . )  = 0(~) ,  u = 0 ( r )  

in the square ~2=(0, 1)• 1) and assume that the solution u* of (3.8) belongs to 
the H61der space C~+~(~) for some 2E(0, 1). This implies ~o(x, y, 0, 0, O, 0, 0 )=0  
at the corners (x, y) = (0, 0), (0, 1), (1,0), (1, 1). Therefore we choose 

x ~§ = { u ~ C ~ + ~ ( ~ ) :  u[~ = o}, 

Y~+Z = {fEC~(~):  f(O, O) = f (O ,  1) = f ( 1 ,  O) = f ( 1 ,  1) = O} 

for 2EI=(0,  1). 
A suitable discretization is 

(3.9) 
"~h (Uh) = q) (X, y, Uh, l/2 (I .3ff Zs 1) ~x Uh, 1/2 (I-q- Z S 1) Oy Uh ' Ts 102 x Uh, T Z 10~ uh) = O. 

The discrete spaces X~-Ch,S s )z hs can be defined as in Section 2.3. The derivative 
: r  :r 

at Uh--U ]Oh is (2.13) with 

a*(x, y) = ~o,x~(x, y, u~(x, y), 1 /2(I+ T;-1)O~u; . . . .  ), 

b* : q),,,, c* = q),x, d* = cp~, e* = q).. 

Define Lh by (2.13) with 

(x, y) = ~o.~ (x, y, u* (x, y), u~* (x, y), u~ (x, y), u~% (x, y), u L (x, y)), 

and b, c, d, e, analogously. 

Theorem 3.3. Let  u*EC2+Z(~) be a solution o f  (3.8). Assume 
(i)  a(x, y), b(x,  y)_-->e>0, 

( i i)  L h defined by a, b, c, d, e is 12-stable (cf. (1.5)), 
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(iii) a, b, c, d, e are uniformly Lipschitz continuous in U, where 
�9 �9 , I is a neighbourhood of t(x, y, u*(x, y), u~, uy, u~ ,  

Then for h sufficiently small (h<ho) there is a solution uh of(3.9) with 

II uhll c.' + ~ ~- C .  

Proof. Apply Theorems 3.2 and 2.3. 

U c ~ X R  6 

3.3. Second example: Discrete Sobolev spaces 

We consider the same problem as Lapin [9]: 

(3.10) .L.e(u)-=-~Y" ~ f 
Ou 

"-2---I + a, (x, u, grad u) = 0 ~=1 Oxi alkx, u, O x  i l 

in Q=(O, 1)"={xER": O<x i< l  for l~_i~_n} and u=O on the boundary. The 
discretization may be as in [9] or 

(3.11/ ~,(u,) =~ --Z~=t r,-I O, a, (x +he~, l /2(I+ T~) u,, O, uh) 

+ a0(x, uh, 1/2 ( I+  7"1)01 uh,..., 1/2 ( I+ r,)a, uh) = O, 

where ei=i-th unit vector, Ti=Tx, and Oi=O~,. Lapin requires almost uEC4(~) 
and restricts the dimension by n ~  3. We show that the weaker assumptions uE H~(f~) 
and n_~5 yield the same result: 

Theorem 3.4. Let u*EH4(f2)nH~(s be a solution of (3.10) with n~_5. Then 
the solution uh of  (3.11) exist and 

llUhll~,(~ o <= C, Iluh-Rnu*llzcl(ah ) ~_ Ch ~ (R h suitable) 

(H~ discrete counterpart of H~( f2), c f  Section 2) holds under the following assumptions: 

h <= ho, ai~W3'~~ aoEW~'~(U), 

Oat(x, u*, u*,)/Ou~, >= ~ > O, 1 ~= i ~_ n, 

where U is a neighbourhood of {(x, u*, grad u*): xE g2}. 

Proof (sketched). (i) Let u~=Rhu*EH~(Oh) and let u**=Ihu~EC4(O) be 
an interpolating function: u** ~----u*h, u**[r =0. For a suitable Rh and In we have 

[I u * -  u**llH,(m ~ ChZll u*llu,(e), 
(3.121 

{(O~u**)(x)[ -<= Ch-"/Pllu*llw,=,,~(~) (1~1 <= 4, 2 <= p <_oo), 

with K~={yEf2: Ilx-yll<=CK h} for some CK. 
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(ii) The dicrete regularity (3.5) (0=0) o f L  h follows from Theorem 2.2 in the 
case of n=2 .  But Theorem 2.2 can also be extended to n>2 .  

(iii) (3.3) is to be proved for Y~=Lg(f2h), min (z, t - -s)=2.  It suffices to esti- 
mate 

h 0.**11 

0.* / 
(3.14) oXi - -~iJ '~h - ~ i )  

and similar differences for a0. Taylor expansion of the left term of 0.13) shows 

(3.13) 2 ** 3 u** u** -4- u** = h o ( C + l u x , x , I  + x,x,x, ~,~, - ~,x,~,x,, ,  

where the derivatives are evaluated at x + 3he~, [,9[~ 1. Here we used II u**l[ w~,-(m ~- 
Ilu*[ln,cm. By virtue of (3.12) the estimate 

lux,x,I <= Ch-'/~l] u*llw3,~(K ) 

holds (p=6).  Summing over Oh we obtain 

** 3 ~ hnX~co  h lu.~ (x+.9(x)hei)[6.< , , ~ ,, �9 6 Illu~,~ I IIL,(a~) = = C Ilu IIw~,~(~) <= C Ilu II/~,(~) ~- C, 

since LP(f2)cH2(f2)  for 2 <_--p _<-10, n ~ 5  (cf. Adams [1]). Using Lq(g2)cHl( f2)  
(2=<q=<10/3, n=<5) for q=3 ,  we are able to estimate 

, ,  I x,xl[IL~,(a) by I[u llw~,~(mllu llw,,~(m-Cllu*ll~,(a). 
The obvious inequality II lu,**~,~,~,lll L~(a~) ~- Cllu*ll n,(m and (3.12) imply (3.13) = O (h~). 
A similar estimate can be obtained for (3.14), 

(iv) We have to prove (3.4) for ~ ,-1 , ,+1 YT,=Hh (Oh), X],=Hh (~2h), s = l .  Fo r  
s =  1 (3.4) becomes 

(3.15) [IELn(vn)--Lh(wn)lUh}lL~,(na) ~_ Ch-Zl}vn-wnllH~,(ah)l]Uhlln~(a,). 

provided that v h, wh~K~,l(r ). A rough estimate gives 

II [L h % ) -  Zh (w h)] U h[I L~(~ o <= C {llv h -  whll W~,.IlUhlIH, 
+ II v h --  Whll~gll uhll ~'d' ~ + II v~ll~ll v --  Wll w~, ~ II uhll w k " }  

n - - 2  n - - 2  

~_ Ch " " ( l + h  u- " - " ) l l vh -w  hlln~,(nh)lluhlln~(ah), 

n - 2  
if vh, Wh~K~.l(r) with p_->e+ , e > 0  arbitrary. Hence, 0.15) [i.e., (3.4) 

n 

with s = l ]  holds for all /~=2~ ~ + - - - ~ ,  2 . Note that this interval is nonempty 
since n-<=5. 

(v) Theorem 3.2 and Corollary 3.2 yield Theorem 3.4. II 


