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1. Introduction

We are concerned with the question of when a continuous k-dimensional
manifold ES R is a Helson set. Therefore we are concerned also with how the
transform /i decays at infinity when p is a bounded Borel measure with support
contained in a manifold E. The object is to understand the extent to which an £
of a given dimension, and perhaps a given smoothness, can “participate” in the
arithmetic structure and the harmonic analysis of Euclidean space. J.-P. Kahane
and N. Th. Varopoulos have used Baire category arguments to produce examples
of interest; our productions are more nearly constructive but use similar ideas.
Kahane has shown the existence of Helson curves in R" for #=2; we include con-
structions of such a curve, and of a Helson surface in R® as well. The latter con-
struction is sufficiently general to allow us to outline the construction of Helson
k-manifolds in R™ for n=k+1 and to give reasonable upper and lower bounds for
their Helson constants.

It is well-known that sufficiently smooth manifolds E support measures whose
transforms decay at infinity at a rate which is related to the curvature of E. The
lemmas of van der Corput offer one such result. Bjérk has shown that C* manifolds
which have, in a general sense, no “flat spots” support measures whose transforms
tend to zero at infinity. Helson manifolds cannot support such measures. However,
T. Hedberg constructed a continuous Helson graph Eg in R? which supports a measure
e with transform tending to zero at infinity on the cone Co={(x, y): |y/x|=tan 6},
for each 0<f<n/2. Katznelson and Korner have a more restrictive construction
which improves this result. We show that the decay phenomenon exhibited by Hed-
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berg is common to all continuous graphs in R?. Various extensions of this result
and that of Bjork are also provided for k-dimensional manifolds in R". Those results
yield a lower bound for the Helson constants of a k-manifold in R™.

We begin by explaining our conventions and terminology. Let M=M(R")
be the Banach algebra under convolution whose elements are the bounded Borel
measures u on R, with the total-variation norm. The transform fi is the function
on R" given by

AO) = [ e du ().
For an element f of the subalgebra L'=L(R"),

foy= [ . e " f(x) dx.

Rn
The transform maps L! one-to-one onto an algebra of continuous functions vanishing
at infinity which we denote by A=A4(R") and endow with pointwise operations
and the norm || £} 4=Ifl:. The transform is then an isometric isomorphism. The
Banach space duals of Cy=Cy(R") and A are respectively M and PM=PM(R").
The elements v of PM, called pseudomeasures, are the distributions whose trans-
forms are in L=(R"). For fcA and vEPM,

vy = [ o F@IE) dx;

[vilear = 191]ce.

For a closed set ECR", let M(E) be the subspace of M consisting of the measures
with support contained in E. Let M_(E) and M (E) be the subspaces of M(E)
consisting of the measures that are continuous and discrete, respectively. Let PM(E)=
{véePM: E contains the support of v} and PF(E)={y¢ PM(E): $(y)—-0 as y>==}.
The elements of PF(R") are called pseudofunctions. Let 4(E) be the quotient algebra
AJI(E), where I(E) is the ideal {fcA:f~1(0)2E}, and define Cy(E) analogously.
The natural norm-decreasing inclusion map: A(E)S Co(E) has adjoint: M(E)C
A(E)*. A set Eis a Helson set if it is a set of interpolation for the algebra 4, that is
if A(E)=Cy(E), or equivalently if its Helson constant

a(E) = sup {[ fll sey: f€A(E) and || fllcyey = 1}

= sup {ufl: peM(E) and |af.. =1}
is finite. Let
#.(E) = sup {}jull: ne M_(E) and |a]. = 1},

2,(E) = sup {|ull: p€M,(E) and |« = 1}.

A set E is a Sidon set if o,(E), called the Sidon constant of E, is finite.
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Most negative results, as to when a manifold E cannot be a Helson set or when
the constants of E must be large, are based on the connection between «(£) and
the behavior, for measures u€ M(E), of ji near infinity. The term “Helson set”
arose in honor of the paper [7], where it is shown that if ES R and M(E)nPF(F)
contains a nonzero element, then a(F)=e. The same is true for R", and in fact
the following stronger result is now well-known.

1.1 Proposition. Ler ES R, and let © be a unit vector in R". Suppose that
there exists a nonzero measure ucM(E) such that for every >0 there exists d
such that |i(y)|<e whenever |t-y|>d. Then a(E)=eco.

We give but an indication of a proof. If rq, ..., 7,6 R and

dvn (x) = Z;I:lgk eirk o d/l (x)’

where g=-—1 or +1, then v,e M(E) and 9,(y)=2;_,&f(y—rc7). Evidently
if || increases sufficiently fast with &, then |[v,lpp<(14+ 25 K73 llttllpa- But
for many choices of the signs &, |v,|=Vn/3 |zl — by an argument like that of
[13, p. 143] or [15, p. 18]. The result follows. The method of [3] also works.

On smooth manifolds it is relatively easy to find cases of u such that i decays
quickly at infinity. In particular many authors, with interests in harmonic synthesis
and number theory ([14], [15], [22], [8], [9], [2], to mention a few) have studied the
decay at infinity of é where ¢ is the surface area form of a smooth manifold. Litt-
man [17] showed that if at each point of a smooth #-manifold ES R"*! (smooth
depends on n but is at least C?), k of its n principal curvature vectors are nonzero,
then 6(»)=0(|y|™™® as y-—c. For many Cl-manifolds ECR'"* the result
of Bjork [1, Prop. 1.2] gives 6€Cy(R*Y). Hence a(E)=ec for all such E’s. As we
shall see, even for manifolds E that are not very smooth, the behavior of £ at infinity
for pu€e M(E) is an attractive condition from which to obtain lower bounds for
o(E).

Positive results began with Kahane’s 1968 study of the still-unanswered rear-
rangements problem of N. Lusin. He proved among other results that if f<1, and
H, is the metric space of nondecreasing Lip (f) functions on [0, 1], then every
pair (¢;, ¢2) in the metric space H;XHy, except for a set of first category, para-
metrically defines a Helson curve in R?; and similarly in R® (see [11] or [12, Section
VIL9]). In 1970 Varopoulos (see [27], [24], [25]) proved that Sidon manifolds of
dimension n—1 are abundant in R". In fact, except for a set of first category, all
real-valued functions in C*(R"~") have Sidon graphs in R" (where C* is the space
of functions whose partials of order [s] are continuous and in Lip (s—[s])). How-
ever, for s=1 none of those manifolds are Helson sets, as we shall show.

In Section 2 we treat negative results in R?% as to when a curve cannot be a
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Helson set or when «(E) must be large. In Section 3 we construct a Helson Lip (1)
curve in R%. In Section 4 we return to negative results, generalizing to R". In Sec-
tion 5 we construct a Helson surface in R® and show how to construct a Helson
k-manifold in R™ for n=k+1.

2. Negative results for plane curves

Let G, be the graph in R? of a real-valued measurable function defined on
some set Y of finite, positive Lebesgue measure. Let u, denote the measure on
G, obtained by lifting Lebesgue measure “dx” from Y to the graph; that is, let

J@du, = [, 8(x, f(x))dx for PEC(G)
or equivalently
fy(u,v) = fye'i(""+”f(")’ dx for (u, v)€R2

For XCY, let p; x denote the restriction of u, to the set {(x,/(x)): x€X}.

We are concerned with the behavior of fi; at infinity under various conditions
on f. Our treatment will progress from simple results with easy proofs toward
niore general and technical ones. As the remarks make clear, we are in some cases
just refining or simplifying earlier work.

2.1 Lemma. Let feC*(I) and gcC(J), where I and J are compact intervals.
If f[(Dog'(N)=@, then pgxp, is absolutely continuous.

Proof. For (x, p)eIXJ, let (u,v)=T(x, p)=(x+y, f(x)+g(»)). We claim that
T is one-to-one. If it were not, then there would be points x,x€I and y,y'¢eJ
such that x4+y=x"+)" and f(x)+g(MN=f&)+g(). If a=x+y, then f(x)+
gla—x)=f(x)+g(a—x’), and it would follow that f’(t)—g’(a—¢#)=0 for some
tcJ, which cannot be. The claim is proved. The Jacobian of T'is F(x, y)=g'(»)—
Sf’(x), which never vanishes on IXJ. Thus by a change of variables, fi,f, is the
transform of an element of L (R?):

fp(s Dy (s, D = [, emIGD Grnsera0) gy dy
X

= f e~ &0 w0 F-1(y v) du dy.
Td xJ) ?
The lemma is proved.

The following result is in Bjork [1, Prop. 1.2]. Our 2-dimensional proof is
elementary. Let |S| denote the Lebesgue measure of a set S.

2.2 Theorem. If f€C'a, b] and |(f))2(»)|=0 for each y, then y} is absolutely
continuous. In particular, p €PF(G;) and a(G,)=<=.
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Proof. The hypothesis implies that the distribution function y—|(f")™1[y, <))
is continuous. Thus for each =0 there is a partition »,, ..., », of the range of
S7 such that for each j from 1 to n—1, |B;|<s, where B;=(f")"[y;, y;+1]. The
set B; is a union of disjoint closed intervals. Its interior contains a compact set
Aj, a finite union of closed intervals, such that [4;|>|B;|—(¢/n). Let p; denote
Hrla, and let v=2"_, u;. Then =@+ > u;, where  is absolutely continuous
by multiple applications of 2.1. Since |3 3] =(max |ulD) 3 llull<elud, it fol-
lows that ||uj—wll<3e|lul. Since & was arbitrary, it follows that g} is absolutely
continuous. The Theorem is proved.

Remarks. Slightly modified arguments show that 2.1 and 2.2 hold equally
well for functions f that are strictly convex on [a, b]; but we shall deal with that
class by another approach, which yields a rate of decay for fi,.

One may study the behavior of fi,(r7) as |r|—~eo, a distinct question for each
unit vector t€R® It is useful to write [,(rt)=—[e " di(r), where A(f)=
{x: g(x)=t}| is the distribution function for g(x)=1-(x, f(x)). Hedberg (sce [6]
and [16, p. 48]) presented cases in which /i ; vanishes at infinity in certain cones, sets
of the form {rr: r€R, 1€ U} where U is a closed arc, and cases in which the func-
tion r—f,(rt) is in A(R) (d2 is absolutely continuous) for certain z. Under the
assumptions of 2.2, the latter condition holds for every 7. Information about the
rate of decay of fi,(r7) as |r|—>e can be obtained from an integrable Lipschitz
condition on the Radon—Nikodym derivative of di (see [12, p. 14]). Tt is easy to
obtain when f is strictly convex, as we are about to explain.

When f'is continuous and convex on [a, b], then f” is defined and continuous
except at worst on a countable set. Wherever “f’(x)” is not defined in the usual
sense, let it denote f'(a*) if x=a, f’(x™) if x=>b, and either one if a<x<b. With
that convention in force, f” is defined and nondecreasing on [a, b].

2.3 Proposition. Let f be continuous and convex on {a,b]. Let t© be a unit
vector in R%, and let g(x)=1-(x, f(x)) and g'(x)=t-(1,f'(x)), and choose c such
that |g’(c)|=min {|g'(x)|: a=x=b}.

(i) For each t=0 and r=0,
¢)) [, (ro)| = 2(1+2n/0) inf{e > 0: —i—min (lg’'tc—9), lgc+o))) = TIJ},

where we interpret g'(x) as « if x4¢[a, b].
(i) If t=(cos B, sin B) and |f'(x+h) —f'(x)|=¢|h| on la, b], then

) A, (o) = 4 l/ 5172571;—[” for all r 0.
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(i) If |g’(c0)|=m=0, then
e (ro)] = 2n/;ﬁ]r[ for all r 0.

(iv) If f is strictly convex, then fi (rt)—~0 as |r|-co.

Proof. (i) Since the statement (1) is the same for —z as for 7, we may suppose
that the second coordinate of 7 is nonnegative and hence that g is convex and g’
does not vanish identically on any open subinterval of [a, b]. We leave to the reader
the cases c¢=a and c=b>b, and suppose that a<c<b. Using an estimate of van
der Corput [28, V.4.3(i)], we find that

. . o-irax) ._*ZTE_._
_/;+a (x. f dxl fC+ ! dxl frg’(c+e)|
Therefore
. 2
f:e"m'(x’f(x» dxl = s+|Tg/(En+—8)|"

2 t
which is bounded by & (1+Tn] provided |rg’(c+e)|=— A similar estimate
€

applies to the integral from a to ¢. The statement (1) follows.
(i) The choice of ¢ and the hypothesis of (ii) applied to g’(x)=cos S+ f’(x) sin B
yield that |g’(cte)|=pesin B|. By (1), with ¢=2xr,

la,(ro)] = 4inf {&¢ > 0: |sin B] 0e*/2n = 1/Jr|}

for r=0, and (2) follows.
(iii) Apply (1), taking the limit as ¢-0.
(iv) In (1) set: for e=>0 set t=}e and let |7l = oo,

2.4 Theorem. Iffis strictly convex on |a, b], then p;€PF and hence a(G)=c-.

Proof. Let n be an arbitrary positive integer. For 1=j=n, let [q;, bj]C
(xj 1> X;), where x;=a+(j/n)(b—a), such that 3 (b;—a)f=(b—a)(1—(1/n)).
Let p;= Hrifa, b Then il <(d—a)/n for each j, and [u,— 3 p;|<(b—a)/n. Let

U; ={z: ©-(1,f(x)) = 0 for some X€(x;_y, )}

Since f” is strictly increasing on [a, b], the sets U; are disjoint and the quantities
m;=inf {[t-(1,f'(x))|: @;=x=b;, t4U;} are positive. Let m be the smallest m;.
Then |f;(rt)|=2n/m|r| for every j and every unit vector t¢ U;, by 2.3 (iii). For
each t the inequality fails for at most one j; hence lﬁf(rt)|§27t(n—l)/m[r|+
2(b—a)/n. The theorem follows.
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Remarks. Every convex curve y has a well-defined arc length parametrization: -
y={p(s): 0=s=L}. Let p, be the measure in M(y) defined by:

[odu,=[To(p()ds for eCQ).

If y is convex, the estimate (1) holds for f,(rt) when g(s)=7-p(s). Thus the decay
of fi,(r7) as |r|~o> depends on the “curvature” of y at the points where 7 is the
normal. For example, suppose that s, is the only zero of g’(s)=cos 6(s), where
0(s)=arg p’(s)—arg t is increasing with s. Then, using the usual convention for ¢,

’ 1 : 4 1 4
|g'(soE8)| = E(Sm 0(50))|6 (so)|e = 5 10'(so)| &
for all ¢ sufficiently small. If 6'(s,)>0, then by (1) (putting =2n)

0, (ro)l = 4 V[ar[r0 (s)] = 4 V]4ns'Bo)/r],

for all sufficiently large |r| (depending on 6,=0(s,)). Assume now that y is strictly
convex. Then s is a function of w=arg p’(s). If we also assume that s(w) is abso-
lutely continuous, then we can use the maximal function for 57,

1 ,
S(w) = itl}()) ;‘[Im_“!d s'(u) du,

as follows: If w,=0,+argz, then
s (g) — s (@)|/|lwg— ] = S(wy) for all w.

Thus |4,(r7)| =4V}4nS (wp)/r| for all r=0. This is the basic ingredient in a result
of Svensson [26, Lemma 2.1 and Theorem 5.1].

If f is convex but not strictly convex, then G, contains a linear segment L and
|ii;| will converge to u,(L) along the line normal to L. One might hope that if f is
C! and not affine on the whole interval [a, b], there would still be some nonzero
measure p€PF(G;). According to 2.2, that is the case when the distribution ¢(y)=
[(f) 7y, )| is continuous. The result in fact depends on the behavior of ¢ near
its discontinuities and on the sets (f7)~1(y) which have positive measure and give
rise to those discontinuities. The next result suggests a sense in which 2.2 and 2.4
are best possible.

2.5 Proposition. Let Y be a perfect compact subset of [0, 1] such that PF(Y)=
{0}. (For example, Y could be the Cantor set {2 i ;377 g;=00r1}.) Letg
be a continuous increasing function on [0, 1] with range [0, 1] that is constant on
each interval contiguous to Y. Let f(x)=[;g(t)dt. Then PF(G,)={0}.

Proof. Let vEPF(G;). Let H={(x,f(x)): x€Y}, and set H'=G\H. If
z€H’, then z lies on the interior of a linear segment LC H’; if z belonged also to
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the support of v, then there would be a function g€ A(R?» such that 0gve PF(L),
which cannot be. Therefore supp v H. For every t€R, the element v, defined by:
9,(s)="9(s, t) for s€R, belongs to PF(Y) and hence is zero. Therefore v=0 and
the proposition is proved.

So far we have discussed only graphs that are fairly smooth, but now we turn
to cases when f'is at best continuous. We shall show that whenever f is continuous
and 0€[0, n), there is a measure u€M(G,) and an arc U of length 8 on the unit
circle such that £ vanishes at infinity in the cone {rc: r€R, 1€ U}. It will follow
that «(G,)=2 whenever f is a continuous function of bounded variation. Those
results depend on a differentiability condition that is set forth in the next lemma.

For a set QS R, considered as a subset of the range of the tangent function,

let P(Q) denote the cone {(r cos 8, rsin0): r€R and tan [9_—2)6 Q}. Thus for

example,

P({0ph = {(r cos O, rsinf): r€ R and —% <0< -g-},

P([0,1]) = {(rcos 0, rsin@): reR and -% <6< %}

2.6 Lemma. Let f be a real-valued measurable function defined on a set Y of
finite, positive Lebesgue measure. Suppose that for some meR and ¢=0,

3) lim sup

xe¥, x>x, X—Xg

M—_ﬂx_o)_m] — o forall xeY.

Choose 0, and 0, such that P([m— o, m+g])={(r cos 0, r sin 0): r€ R and 0, <6 <0,}.
For 0,<0<80,, let ﬁa(r):ﬁf(r cos 6, rsin 0). Then the mapping 0—hy is a contin-
uous mapping from (0, 0,) into L\(R). In particular, p € Co(P(Im—o—e, m+o+el)
for each €-0.

Proof. Consider first the case m=0. We may suppose that 6, lies between
—mn/2 and 0, and of course 8;= —80,. Since u, is approached in norm by measures
tsx for compact sets XS Y that approach Y in Lebesgue measure, it suffices to
prove the result for the case of compact Y. When Y is compact (3) implies first
that £ is uniformly continuous and bounded on Y and then that fis Lip (1) on Y.
In particular f extends to a Lip (1) function on R which is thus differentiable a.e.
on Y in the usual sense. In any event, the sets

D, = {xEY: l&);)—:—ﬁ(—yll = g for some y€Y, 0 < |[x—y| < n‘l}
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are open relative to ¥ and form a decreasing sequence that, in light of (3), satisfies
ND,=0. Let 0<d<1. Then there is some D, such that [¥Y\D,|>(1-06)|Y]
Set Y;=Y\D,,. Decompose Y;into subsets Xi, ..., X,, each with diameter =m ™1
Let X be any one of the X;’s with positive measure.

Fix 0€(0,,0,), let t=(cos0, sinf), and let go(x)=t1-(x,f(x)) for x€Y.
Since |f’|<g, the restriction on # implies that gg(x)=cos 8+f"(x)sin 8 is posi-
tive and bounded away from 0 on Y. Moreover g|X is strictly increasing. Denote
its inverse by u,. Then u, is Lip (1), and differentiable a.e., on its domain, and
the distribution function A,(2)={xcX: g,(x)=t} is absolutely continuous, with
Zg equal to —uy= —1/gf(us(¢)) on go(X) and zero elsewhere. Let hy=—4;. Then
ho€ LY(R) and

o) = [T emrthy(dt = — [T et diy(n) = [ e~ dx = (o).
Let
0o(t) = {gg(tq9 () = cos 0+1"(up (1)) sin @  for 1€gy(X)
¢ 1 for 1¢g,(X).
Let y, be the indicator of g,(X). Then

10 10
2 (D)  0,0)

(= [ [pm0 o],

Iho—hyll = f I %Ou® |

—co

which an exercise will show tends to zero as 6-#. The lemma is proved in the
case m=0. A suitable rotation of the coordinate system allows the reduction of
the general case to that one.

Lemma 2.6 gives no information on the rate of decay of fi;, that depends on
the set Y. Rather it is an extension of the earlier results concerning C* and convex
functions and the result of Hedberg [6]. We present some of its implications in the
next theorem. Since (3) is equivalent to “f=h|Y (a.e.) for some / that is differentiable
a.e. on ¥,” as noted, we will use the simpler terminology.

2.7 Theorem. Let f be a real-valued function defined and differentiable a.e. on
a set Y of finite, positive Lebesgue measure. Let o be the distribution function,

o(t) = [{xeY: f(x) = 1.
() If o is continuous at each point of a closed set Q, then € CO(P(R\Q)).

(i) If o is discontinuous at ty and Yo=(f")"1(t,), then

0 # Ay €Co(P([ty—2, to+2]))
Jor every &=0.
(iii) If o is discontinuous at each of n distinct points ty, ..., t,, then «(G,)=n.
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Proof. Let £=0. Choose an integer N=>0 such that
6(N—1)<¢ and |Y|—e<o(—N+1).
Choose an integer K=0 such that
lo(s)—a ()| <e whenever s€Qn[—N,N] and [s—t| <1/K.
Let Q,, ..., @, be a listing, from left to right, of the intersections
Qn[—N+k/K, —N+(k+1)/K] (0=k=2NK-1)
that are non-empty. Choose # such that 0<n<1 and

lo(s)—a()] < ¢/(J+1) whenever s€ ijl Q; and |s—t| <.

Let a;=min {s: s€Q;}, b;=max {s: s€Q;}, and I;=[a;+n, b;—n]. Then if 4;=
{xcY: f'(x)el}, Rsia € Co(P([a;, b;])) by Lemma 2.6. Let

J-1
B ={xev: POE-N4n, 0,110 U 11, g =ity +n, N-l},

J

noting that some or all of the intervals in that union may be empty. Since f” is
bounded away from Q on B, f5€ Co(P(R\Q)) by Lemma 2.6. If C is the com-
plement in ¥ of Bu UA4;, then |[C|<6¢ by the choices of N and #.

Choose M so that

las8(»)| <& whenever [y|>M and ycP(R\Q) and
lar1a,(0)| < ¢/J whenever |ly| =M, yeP(la;,b)]),
and 1 =j=J.

Then for every y€P(R\Q) such that [y||=>M, since y¢ P(la;, b;]) for at most
one value of j, and since [{x€Y; f'(x)€Q;}|<e,

2, ()] = |2,J'=1ﬁf|Aj(J’)+ﬁf]B(y)+ﬁf1c()’)| = ((J_l)E/J)+23+ |C| < Y.

Part (i) is proved.

(ii) Apply Lemma 2.6 with f|Y,, Y,, and ¢, in the roles of f, ¥, and m respec-
tively. Part (ii) is proved.

(i) Let Y,=(f")"(#%), and let v, be the probability measure |Y;|™'uyy, .
By part (ii) we see that we may select symmetric closed cones {, (1=k=n) such
that 9,€Cy({,) and such that the complement of {; is contained in {0}u{; for
each j=k. It follows that if v=n"'37_ v, then for |yf—~c limsup [P(y)[=
1/n. (In fact, equality holds, since for each k [9(rt,, —r)|~1 as |r|><.) For
each ¢=0 we may choose vectors y,, ..., », such that if u is defined by: A(y)=
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n=t >0 % (y—y), then |A(y)|=e+n~' for all y, while of course [u|=1. The
Theorem is proved.

Remark. Let f be as in the theorem and let Y,=(f")"'(¢,). Let t be the
unit vector orthogonal to (I, ¢,). Then the distribution function for the derivative
of fI(¥Y\\Y,) is of course continuous at y, so that the behavior of i (rt) as [r|>eo
depends entirely on f1Y,.

The next theorem organizes the results about continuous graphs. First, a
lemma.

2.8 Lemma. Let f be a continuous function with domain [a, b] and range |c, d}.
Then there exists a strictly monotone function g defined on [c, d] such that (g(1), y)€G,
for c=y=d.

Proof. Choose x; and x, in [a, b] such that f(x;)=c and f(x,)=d, and let
X, be the smaller of the two. Let

g(» =min{x: x = x, and f(x) = y} for y€[c, d].

It is easy to see that if x,=x,, then g is strictly decreasing and if x,=x,, then g
is strictly increasing. In either case, the lemma is proved.

2.9 Theorem. Let f be a continuous real-valued function defined on [a, b], where
a<b.
(i) There is a unit vector T and a positive measure v€ M(G,) such that $€Co({)
for every closed cone { not containing the directions =+1.
(i) If f is of bounded variation, then o (G,)=2.
(iii) If f is not of bounded variation, then o(G;)=mn/2.

Proof. (i) If fis constant, then 7=(1,0) satisfies the statement. If not, then
G, contains the graph of the function g provided by Lemma 2.8 and supports the
measure u, (for g, the roles of the x and y axes are the reverse of the usual). Applying
Theorem 2.7 to g, we find that either the function ¢—1|(g")7*[¢,=)| is continuous
and 2,€Cy(R?, or else it has a discontinuity at some 7, and t=(—1, g'(¢,)) sat-
isfies the statement.

(ii) If G, contains a straight line segment, then « (G,)=e. If there are dis-
joint intervals I; such that both Y;=(f")"(/;) and Y,=(f")"*(l;) have positive
measure, then 2.7, (i) and (ii), applied to f|Y;, yields two probability measures
u; in M(G,) such that g,€Cy((;), where {, and {, are closed cones and {,;U{,=R?
and it follows (as in the proof of 2.7 (iii)) that a.(Gp)=2. In all the remaining cases,
f’=r a.e. for some r, but the complement D of f((f")~*(r)) in the range of f has
nonzero measure. Then [,€Cy({) for every closed cone not containing the direc-
tion (r, —1). Obtain g as in Lemma 2.8 and let % be the restriction of g to D. Apply
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2.7 (i) or (ii) to A, obtaining a probability measure v€ M(G,) that is mutually sin-
gular with u, and such that (at worst) 9€ C,({’) where (' is a closed cone with (r, —1)
in its interior. It follows that o (G)=2.

(iii) For each positive integer n, choose a sufficiently small 2=0 so that
J&x+h)=f(x) foratleast 2n values of xin [a, b—/]. Choose nsuch points x, ..., X,
such that the 2n points x;, x,+h (for 1=j, k=n) are all distinct. Let g, be the
measure that places mass n1 at (x;, f(x;)) and mass n~'e*™"" at (x;+h, f(x;+1))
for each j. Then |u,|=2 and
4

A - = n 2rijin i) . [P YT L0 oos O d —
e, ©)] = 02 3 1 eeitimein] - [1Y24+2cos 0 df -

where the convergence is uniform for (u, ¥)¢ R%.. Note that the sum equals a Rie-

mann sum for the function g(x)=|1+¢*"*| on [0, 1]. Therefore | u,|/|l | PM.Z.%—&,,

where ¢,—-0, and hence o,(G,) %—; .

Remark. We suspect, but do not know, that every continuous curve y in R?
possesses (i) of 2.9. Indeed this is the case when one of the coordinate functions is
of bounded variation for then 2.8 applied to the other coordinate function yields
a G;Cy where fis of bounded variation (not necessarily continuous), hence dif-
ferentiable a.e. (see the argument in 4.4). There are continuous Helson graphs that
support measures that decay more than is indicated in (i) of 2.9. In particular in
[15, Section 5, Theorem 2] K&rner presents a construction, due to Katznelson, of
a Kronecker set y, in R? which is a (discontinuous) graph and which supports a
measure u satisfying p€ Co({(x, ¥): |y|=h(jx|)}), where kis any prescribed increasing
function on R. One can connect the “pieces” of their y, using the methods we sum-
marize in Section 3 to obtain a (continuous) Lip (1) Helson graph which con-
tains y,.

3. A Lipschitz Helson curve in the plane

The technique used to prove the following lemma is standard. For ¢=0, let
U(e)={z€R": |z| =9} Let T={z¢C: |z|]=1}.

3.1 Lemma. Let F be a finite independent subset of R". Let O<eg<1 and
0<ao. Then there exist 6=056(F,¢,06)>0 and ¢=g(F, ¢, 6)=>0 such that for every
Junction f: F—T there exists g€ A(R") such that:

® |f(X)—g(x+2)|<o for x€F and zeU(d);

(i) Jarg f(x)—arg g(x+z)| <o for x€F and zcU(p);
(i) |g(y)|=e* for y¢ F+U(e); and

(v) llgh=e™*
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Proof. Let F={x, ..., x,}. For k=(k, ..., k,)EZ™, let

p(ky=exp((loge) 37 k3)-

Then p is positive-definite, p€A4(Z™), and p(0)=1=|p|,. Let # be the charac-
teristic function of the coset 3 k;=1 in Z™; it is the transform of an idempotent
measure on 7™ with norm one. Then hpcA(Z™) and |hp|,=1. Define ¢ on Rj
by letting ¢ (2;';1 k;x;)=(hp)(ky, ..., k,) and letting ¢(x) vanish for x not in
the span of F. Then ¢€A(R)), |¢ll,=1, and ¢=¢ on F. For f: F-T, lety
be an element of (R})"=R" (the Bohr compactification of R") such that y=f
on F. Let y=¢ 1yp. Then YcA(R)), |¥|,=e', ¥ vanishes off the span of
F, and

W(STk;x;) = e 2% JTT f(x)ks

whenever > k;=1. Thus y=f on F, and [{|=¢* elsewhere.

Let u be a nonnegative function in A4(Rj) with finite support and norm one
such that 1—(¢/2)=u=1 on F (e.g. a Bochner—Fejér type kernel). If g=uw,
then ¢ may be regarded as a discrete measure on R” and § as a trigonometric poly-
nomial on R". We now extend ¢ as a function on supp u to an element of A(R"),
as follows. For #=0, let k, be a multiple of y * y, where y is the indicator function
of U(n), chosen so that [k, 4ry=1=k,(0). Then fc,,éO, and as n-0, sup fc,,—»O
and supp k,~{0}. Thus k,(y)dy converges weak * to Haar measure on R".
It follows that

llq % kr;”A = ”‘ﬁ;’.,,”Ll(Rn) - ]]é[]L1(Rn) = ”q”A(R;) = g1

as n—0. Therefore for # sufficiently small, the norm [ gk, 4r» is at most slightly
greater than ¢' and for x€F and z near zero, (gxk,)(x+2)=q(x)k,(z). There-
fore if & and g are sufficiently small (depending only on F, ¢, and o), we may take
g to be a multiple (at most slightly different from one) of gxk,. The lemma is
proved.

3.2 Theorem. There exists a curve I'R® which is the graph of a Lip (1)
Sfunction and such that «([)=3%22:5.196.

Proof. Let n=2, and let D={d;<dy<...<d,} and E={e,<e,<...<e,} be
two independent subsets of [0, 1]. Let v and 5 be independent unit vectors in R?,
and let v and #” be unit vectors perpendicular to t and 5 respectively. We define
P=P(D,E,t,n) to be the polygonal path whose 2n—1 vertices, in order, are
dit+en, dit+esn, dyt+eyn, ..., d,1+e,n. We shall call such a path an I-polygonal
path. Let s(P) denote the largest distance between two consecutive vertices of P.

Fix &>0. Using repeatedly the case n=1 of Lemma 3.1, we find that for
each o=>0 there exist a=ua(P, ¢) and g=g(P, g) such that:
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(@) for each function f: DT there exists g€ A(R) such that
(1) |g(dt-4")—f(d)] <o for each d¢D,
@ |gltr-n")—f(d)|g(tz- )| <o whenever deD and |1—d|<p,
(3 |g(tr-n')|=e? whenever dist (¢, D)=,
@) llglla=e7", and
() 1g(x)—g(MNl<o whenever |x—y|<a;

and such that

(II) for every function f: E—~T there exists g€ A(R) such that conditions
(1)—(5) hold with e, 4, 7, and E taking the roles of d, 1, #, and D respectively.

To construct a Helson curve, devise a sequence of I-polygonal paths P,=
PD,, E,, Tm, 1,,) such that s(P,)i0, that every point of P, lies within distance
a(P,,, m~) away from P,, and such that I'=1im P,, is a curve and not a singleton.
One may make I' the graph of an increasing Lip (1) function by choosing t,, and

i n
N, so that (say) argr, decreases to 0 and argy, increases to T

Let ueM(I') be a measure of norm one. To prove that I' is a Helson set it
suffices to find a positive lower bound for |ullp,- Let Q be a compact rectangle
whose interior contains I. Let >0 and choose a continuous function A: QT
such that ||Au—|p|| <B. Pick «=0 such that [A(u)—h(v)|<f whenever u, v€Q
and dist (4, v)<a. Pick m large enough so that m™1<pg/2, «,=«(P,, m H=<a,
and s(P,)<a. Let {d,,...,d,}=D,, lei, ..., e,}=E,. Let

Sl = 'Ul {arh,n—l—br'm bER: la_‘dj‘cm'n;n( = (Zm},
ji=

Sy = U {at,+btn: a€R, [b—e;n, - 1,] < oy}
j=1
. . e o . 1
Since I' lies within distance «,, from P,, I'S S;uS;. Therefore either {u|(S)) 2—5

‘ 1
or |u|(Sy) 23; we shall assume the former, the other case being equivalent to

deal with. Let g be a function in 4(R) satisfying (1}—(5), with e=m™ and with
f given by: f(d)=h(d;t,+e;n,). Define g, on R* by: g,(tn,.+sn,)=g(t). Then
g1 is the Fourier—Stieltjes transform of a measure with norm bounded by &7
The #;, coordinate of each point of S,~I' lies within distance ¢, from that of a
vertex of P,; hence |g(z)—h(z)|<38 for z¢S,nI'. The set I'\'S; is the union
of the disjoint sets

R, ={zeI\S;: [g(2)—h(D|g(2)]| < B},
R, = {z€I'\(S;V R)): |g(2)| < &%}
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Then I'=(S;nINVR,UR, and

o™ = [ gdul = |f, gdut [, gdu|—eIul.

Since
fslgdﬂ+legdu:fslhdﬂ+le lglhdu+ [ g=hdu+ [, g—lglhdu

= [p|(SD+ B+ [gul(R)+ B2+ 3B, || (S + By i1l(Ry),

where |B;|=p for 1=j=4, it follows that

1
Il pare™ = %II#II —2B— 4Bl = elul.

Since f=0 was arbitrary and since |yl =1,

lea = 5 (e— ),

which is at its maximum 3-32 when &2=1/3. This proves the theorem.

Remarks. The proof above is a variant on that of [18]. The Lemma 3.1 is
related to the powerful separation results that emerged with the solution to the
union problem for Helson sets (see [10], [24], [21]). For those results we recommend
[5, Chapter 2].

Varopoulos [27] showed the existence of convex Sidon curves in R% He showed
that in fact there exist continuous and strictly convex functions f such that G, is
the union of two independent sets E; and E,. One may show that for such graphs

1 .
ay(Gp) é? 5% as follows. If y,=(x; f(x;)) for 1=i=4 are distinct points on

G, then 7y, —7y,7y;—7,, by the strict convexity of f. In particular, if y,, v,, ys€ Ei»
then y;—y.+7y;4 E;. Let u be a discrete measure in M(G,) with norm one, and

. . 1 1
with finite support. Then either |,u|(E1)§—5 or [,u[(Ez)z—i; let us assume the

former. The first paragraph in the proof of 3.1 (see also, Theorem 2.1.3 of [6])
implies that if ¢=>0 and f>1, there exists g€ A(R}) such that f E, gau=|u|(E,

1
|gl=Pe on E,, and |g|,=pe""" Then e "*|ulpp=|f gdﬂ|§‘u|(E1)—E Be.

1
Therefore | ul| PM_Z_E(sl/“—ss/"), which has its maximum 2(5~°*) when e=1/5.
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4. Higher dimensions

Lemma 2.8 does not generalize, and we do not know whether 2.9(i) does.
But most parts of Section 2 have analogues in dimensions n>2.

Let E be a set of finite measure in R' and let f be a measurable function from
E into R, where 1=l<n. Let u€M(f(E)) be the nonnegative measure of norm
|E| given by: [r.gdu,= [5g(f(x))dx. Let u be a unit vector in R’. For a measur-
able set FCE, we say that f is differentiable relative to F in the direction u if for
each x¢F, the limit

Dorf) = tim LTI

X-+tucF

exists. When u and F are understood, we denote that limit by f'(x).

4.1 Lemma. Let f: E—~R" be a measurable function, where E is a set of finite
measure in R'. Let u be a unit vector in R'. Suppose that f'(x)=D, pf(x) exists
for each x€E, and suppose that M=sup, g | f'(X)|l is finite. Let ¢=0, and let

U= {z¢R™ |7l =1 and |t-f'(x)| = ¢ for all x€E}.

Let h(r)=[i(rt). Then
() h.cA(R) for each tcU, and
(i) the mapping ©—h, is continuous from U into L'(R).

Proof. 'We may suppose that |E|=0. Since f’(x) is the (a.e.) pointwise limit of
-1
K@=, e mya] ™ [ () —f@) () d,
it is 2 measurable function. Therefore E can be partitioned into disjoint measurable
o
sets E; (1=i=m+1) such that |U'i”=1 E,-|>[1 _-2—] |E| and || f'()—f"(Ml<e/3

whenever x, y€E; for some i=m. For each i=m, choose a closed set E;CE;
and then F;CE] such that |J], F|>(1—0)|E|, and such that for some &€(0, 1),

1/ Ge+aw)—f(x)—af ()| = || /3
whenever
X, x+oucF;, |o|=¢e and 1=i=m.

Let F be any of the sets F; that has positive measure. Decompose F into sub-
sets F; (1=j=k), each with diameter less than e. Let P be any of the sets F; that
has positive measure. Fix z in the orthogonal complement H of Ru, fix 7€U, and
let g,(0)=7-f(z+ou). Now if z+a,u and z+oau belong to P, then

g2 () — 8- (00) — (x— %) T - /(2 + %o u)| < | —2%| /3 < 20/3.
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Hence, assuming a>o, and 7-f" =0 (recall t-f" isoneof =-¢ or =g onP),

(a—ag)(M+0) > g (@) —g, (%) = (a—0)20/3.

Thus g, is strictly monotone in o on the set {«: z+oauc P}, and the measure dg,(x)
is absolutely continuous. If 7-f” is suitably extended, then

dg. () = |t -f(z+aw)| xp(z+ou) da.

Define T: P—~R' by: T(z+ou)=z+g,()u=z+pu. Then T is injective and both
T and T~ are continuous in measure when restricted to P and T(P} respectively
and, for almost all z¢ H,

dg7'(B) = ©-f (T~ (z+Bw) 4o (T "2 (z+Bu)) dB.
If A is the distribution,

Al@) = [{x€P: 1-f(x) = o
then

ICARYICAE S fT_l{((Z)X[aP%)mT(m xp(z+ow) dedz

= ./H f((z} x [y 2D N T(P) 1p(T 7 (z+ Bu)) !T ST (z+,Bu))| ~tdpdz

where T71and t.f(TY are suitably extended to all of [0y, a,]. It follows that
dJ is absolutely continuous and that in fact

h(B dB = di(B) = [ [, 1p(T 7+ puw) |t -#/(T ~ (2 +Bw)|~ dz] dB.

We shall show now that the mapping 7—#, is continuous from U into L'(R) and
leave it to the reader to replace P by E in the conclusions. Denote the dependence
of Tand H on t€U by writing T,, H,. Suppose that €U and let 7 be an element
of U that is near ¢. Let yx, be the characteristic function of 7,(P). The maps T,
T, are “projections™ of f on P; hence T,, T, are related by a map which is bicontin-
uous in measure, providing 7 is near ¢. Since 7T,—~7, pointwise as -0, this
implies y,(T.)—~ X«(Ta) in L}(R). Thus [(T,(P)NT.(P))V(T,(P)\T,(P))|-0 and
hence T, '~ T;' pointwise a.e. It follows by the convergence theorems of Lebesgue
that |4, —4,],~0 as 7-o0.

In the proof of Theorem 2.9, the part of a curve that at least behaves like a
linear segment (i.e., constant slope) is separated from the rest. The situation for
manifolds is analogous. Let E,SR!, and suppose that f: E,—~R" is differentiable
a.e. relative to the set E, of finite measure in the directions uy, ..., u,. Let A(x)
be the nXm matrix whose j® column is D, g, f(x). Let H, be the collection of
all subspaces of R" with dimension s. For each ScH,, the set

Ey(S) = {xcE,: range A(x) & S}
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is measurable. Thus there is a countable collection {E,(S})} such that S;€H, and
|Eqo(S;)[>0 (at this zero-th stage the only S; is {0}). Let E;=E,\ u;Eq(S)). Repeat-
ing, let E,=E\U{E,(S)): S;€H, and |E,(S;)|>0}. Continuing, we obtain E,2
E2..2E2E,; where k=n, |E,.{|=0, and for each s from 1 to k, |E,(S)|=0
forall S€H,_, andeither E,,,=F, or E\E,.1=U{E/(S): S¢H, and |E(S)|>0}.
Thus there is a countable collection {H;} of distinct subspaces of R" and a measurable
decomposition {F;} of E, such that

(1) range A(x)S H; for a.a. x€F;,

(2 |F;|=0, and

(3) if HC H; is a subspace, then

[{x€ F;: range A(x) & H}| = 0.

The one bad extreme case, when A(x)=0 a.e. (i.e., |E;|=0) does not occur with
graphs; we will deal with it in our extension of Theorem 2.9.

4.2 Theorem. Let ECR', and suppose that f: E~R" is differentiable a.e.
relative to the set E of finite measure in the directions u,, ..., u,€R'. Let A(x) be
the nXm matrix whose j*™ column, A;(x), is D, gf(x). Then there is a measurable
decomposition {F;} of E and corresponding subgpaces H; of R" satisfying (1), (2),
(3) above. The pairs (F;, H;) are unique up to sets of measure zero, the directions
Uy, ..., Uy, and a reordering of subscripts. Moreover, let ;: R"—~H; be the projec-
tion map and let C(H;, o)={w€R": |rn;(0)ll=¢llw|} for any subspace H; and
0=0. Then:

(i) For each ¢=0, ﬁ,IFjGCO(C(Hj, 0))-

(ii) Suppose that there are at least k distinct pairs (F{, Hy), ..., (Fy, H{) among
the {(F;, H;)}. For each nonzero vector ® in the span H of Hjy, ..., H;
let r(w) be the number of nonzero projections among m;(w), 1=j=k. Set
s=min {r(@): w€H}. Then v=_3"|F]|usp, satisfies

lim sup [§(@)| = |v[|(1—s/k), for ¢ =0.

(iii) Suppose that there exist k distinct pairs (Fy, HY), ..., (F}, H;) among the
{(F;, H)} and 1=1 such that every choice of | distinct elements from
{H{, ..., H} spans R". Then v=3"* |F}| 7 usir;, has norm k and lim sup [9] =
I—1. Thus o (E)Y=k/(-1).

Proof. The existence of the pairs (F;, H;) was established in the preceding
paragraph, and the uniqueness follows from that discussion.

To prove (i) set F=F;, H=H;, and n=m; for some fixed j. We may assume
that H#={0} and that 4(x) exists everywhere on F. The subsets

Dy = {x€F: JA®)| = M)
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tend to_ “F i in,; measure as ,;M —eo. Thus we may assume }|4(x)] is bounded on F.
Let! U= {uER" ]]un——l, In(@l=e}, and fix ¢=0. Condition (3) implies that for
each ucU there exists 6(w)=>0 satisfying |{x€F: |ud(x)||=06()}|<e. Since U is
compact, |A(x)| is bounded, and u—uA(x) is continuous, we may choose S(u)=
¢0’>0 for some 6" and all Iue U. In particular there exist 6=0, a finite open cover
Ui, ..., Uy of U, and mzasurable partitions {P,}, of F where 0=r=m for each
1=i=k such that, for each i, |P,|<e and |u4,(x)[=5 for all wcU; and all
x€P, for each 1=r=m. Lemma 4.1 now ylelds the existence of an N, satisfying
lum,l_r(s'u)[<s/m whenever ucU,, |s|= r#0. Thus, setting N=max N,,, we
have

lanrGsw) = 27, lsip, (S| < e+(e/m)m = 2,

whenever ucU; and |s|=N for each 1=i=k. Since &¢>0 is arbitrary, (i) is
valid.

To obtain (i) we observe that for each =0, there exists ¢"=0 such that
each w€C(H, ¢) must lie in at least s of the cones C(H;, @'), 1=j=k; hence (ii)
is an immediate corollary to (i). The hypothesis in (iii) implies s=k-—(—1) in
(i) and this yields the desired property of v. Proposition 1.1 now implies o (E)=
kKI—1). .

The multiplicity properties of a given manifold in R* can now be estimated
quite easily providing a parametrization f: ECR'-~R" can be given which is suffi-
ciently nice. Thatis: u € Cy(H) for a subspace HER" if, for each nonzero ucH,
[{x€E: [|uA(x)|=0}{=0, in the notation of 4.2; just note that HnH} ={0} for
each j, and apply part (i) of 4.2. Thus any manifold in R” without “flat spots” of
positive measure (in particular, a strictly convex (n—1)-manifold) supports a prob-
ability measure in PF(R"). As we have seen (2.5), C* manifolds need not support
such a measure. Never-the-less they are never Helson sets. We need only verify
this for C* curves in R", since subsets of Helson sets are Helson sets. Qur proof is
basically a verification of the conditions in 4.2 part (iii).

4.3 Theorem. Suppose that yC R, n=1, is a C' curve. Then « (y)=-os.

Proof. The set of all linear manifolds in R" that contain a segment of y con-
tains a manifold of minimal dimension k, for some k=n. Hence a translate of y
has a segment in R*. Let o be this segment. Since k is minimal, no segment of ¢
lies in a proper linear submanifold of R*. Of course, o (y)=a. (). If k=1, ¢
is a linear segment, and we are done. Thus we may assume k=n=2 and o=y.
Let U={xcR": |x||=1} and let f: [a, }]~R" be a C! parametrization of y.

Suppose that we have chosen / points ¢, ..., ,€(a, b) such that the f7(¢;) are
distinct and such that every subset of the vectors {f"(t)), ....f’(#)} of cardinality
min (n,7) is independent in R". Let S be the collection of all r-dimensional sub-
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spaces spanned by every choice of r=min (rn—1, ) of those vectors. Each distinct
choice of r subscripts gives a distinct element of the finite set S. Let Jc[a, b] be
any set with nonempty interior. If JS u(f")~1(H), HE¢ S, then one of these closed
sets, say (f)"'(H,), must contain an interval 7; hence f{(¢t)-» must be constant
on [ for each v¢ Hy ; ‘hence the segment f(I) lies in a translate of H,, contrary to
our assumption. It follows that there exists a #,,€J such that f'(s:,)¢ UH,
H¢S. Therefore every subset of {f’(t)), ...,/ (¢,+1)} of cardinality min (n, /+1)
is independent. Thus for any positive integer / and any choice of opensets J, ..., J;C
[a,b] there exist £;6€J; such that {f’(t,),...,f(t)} satisfies our independence
property. Fix such an [ and choice of points. Note that every choice of n vectors
Xy, -oes X, from f7(8), ..., f7(8) with distinct indices forms an independent set in R".
Thus Un(n"{x;}*)=0; hence there exists 6>0 such that the set

B, = {xeR": x| < &)

satisfies  Uu({x;}-+Bn...n{x,}* +B;)=0 for all choices of the X, ...,x,. Let
I;, 1=j=] be disjoint intervals (need only sets of positive measure) contained in
(f)7Sf'(t)+Bss), respectively, and choose ¢=0 such that U\C( S(OR, o)
({// )Y +B;)nU for all t€l; and each 1=j=/, where C(f’(t)R,¢) is the
cone defined in 4.2. Note that 2. ;(rz)~0 as |r|]-~o foreach ze UN({f"()}* + B;)
for 1=j=! by 4.1. Our choice of the ¢;’s forces each z€U to lie in all but at most
n—1 of these sets. Hence the measure v= 3 {I;| 7 p, r, has norm I and lim sup |§|=
n—1. Hence a.(y)=I/(n—1) by a variant of Proposition 1.1. Since / was arbitrary,
the theorem is proved.

The next two results are concerned with lower bounds for the Helson constants
of certain classes of k-manifolds in R” that satisfy a property related to 4.2 (iii).
These classes include all the continuous Helson manifolds known to us.

4.4 Theorem. Suppose the curve yCR", n=2, can be parametrized by con-
tinuous coordinate functions f=(f1, ..., f,) which are of bounded variation on [a, bl.

Then a(y)= z

n—1"

Proof. Since n/n—1 decreases, we may assume as before that the smallest
linear manifold 9 that contains y is R". (If n=1, then a(y)=c.)

Using Theorem 4.2, choose from the pairs (F;, H;) a minimal collection
(E;, K, 1=j=k, so that K=K +..+K,=2 H;. Then k=dim (K)=n If
k=n, then K=R and part (ii) of that theorem implies this result. If k<m, then
choose any orthonormal basis f={u, ..., 4,} so that u, is orthogonal to K. The
component functions f-u,...,f-u, are of bounded variation and nonconstant
since M=R", Lemma 2.8 applied to f- u, therefore yields a monotone function g(»)
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defined on an interval in the range of f-u, so that

h(y) = (5, /(M) - tg, ..., (8(1)) - ),

relative to the basis f, parametrizes a piece of y. Since g is monotone and the f}’s
are of bounded variation, the components f(g)-u; are also of bounded variation.
Again let (L,, Sy), ..., (L, S) be a minimal collection from the pairs (F, H)
associated with & so that K+S,4+...+S,=K+ Y H;. Set S=S,+...4+S, and
observe that /=1 since /' ¢ K a.e. Part (ii) of Theorem 4.2 yields probability meas-
ures u, v€ M(y) so that limsup |g|=1-1/k and limsup|$|=1-1// on C(K, 0)
and C(S, @), respectively, for ¢=>0. In particular w=pk/(k+1)+vl/(k+]) is a
probability measure on y with lim sup |d|=1—1//+k=1~1/r, where r=dim (K+5),
on C(K+S, g). Continue in this manner until R is exhausted. Call the resulting
probability measure . It follows that lim sup |®|=1—1/n on R". This is sufficient
to imply a(y)={—1/n)"L

A subset RS R® has projection property P(m, k) if there is an m=k-dimen-
sional subspace SER" which contains a translate MM’ of M such that for each
k-dimensional subspace K of S there is a set ECK of positive k-dimensional meas-
ure and a function F: E—~K* such that (1) (z, F(z))¢M’ for all z€E and (2) the
directional derivatives of F relative to E exist a.e. in E for a fixed set of k independent
directions in K. The curve of the previous theorem is a 1-manifold satisfying P(m, 1),
for some m. Also, the Helson k-manifolds in R" which we construct later will sat-
isfy P(n, k).

4.5 Theorem. Suppose M R* satisfies P(m, k). Then oa(M)yz=m/m—k=
nin—k.

Proof. It is sufficient to assume m=n since M SR™ and a(M)=x(M).
We can also assume k<n; otherwise a(M)=co. The partition P;={jk+1: 1 =/=k},
0=j<n, of the first nk positive integers will be used as an indexing aid in the finite
induction process to follow. The partitions P; which contain a multiple of n will
be called boundary partitions. Denote their subscripts by 0<j,<...<j,=n—1 and
set jo=—1. The process to follow would be considerably simplified if k divides n,
but as given includes, for example, the possibility that (k, n)=1.

To begin, set B, jo=Bej,=H; = {0}, set j=j,+1, let K; be any k-dimensional
subspace of B;Ljo, and let E, F be the set and function corresponding to K; which is
guaranteed by (1) of P(n, k). With g(z)=(z, F(2)) for z€E, Theorem 4.2 together
with (2) of P(n, k) implies there is a subspace H SR, with dim (H)=k, such
that 9;=4,,,€Cy(C(H;, g)) for any ¢=0, where E’SE. Note that H ; projects
onto K;, so we can (by picking a subspace if necessary) assume that this projec-
tion is an isomorphism. Suppose K;, H;, v; have been defined for j,<j<I<j;.
Choose for K, any k-dimensional subspace of (Byj, + Hj 11+ ... +H,_))* and
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obtain H,, v, as above with / replacing j, again choosing H, so its projection onto K is
an isomorphism. Notice that dim (Byj,+Hj s1+...+ H)=(—jo)k+dim B,;,. For
the boundary index one of two poss1b1e constructlons is required. If P; i ends with
a multiple of # (i.e. n divides (j,+1)k), obtain H; as above with I=j;, then set
By; =By ={0} and proceed as above with jj, ],+1 replacing j,_,, j;. Otherwise
plck any K, 1:)(32,0 jor1t+H; _)t=S of dimension k and obtain the
corresponding H oV, as before Let B,;,CH; be the subspace which projects
isomorphically onto S, and let By; =By i nH . Now continue the construction by
replacing j,_,, j, with j;, ji+1 and repeatmg w1th Jj=j+1 and K; CBZJI, for I1=l=
k—1. One obtains n k-dimensional subspaces H; and corresponding positive meas-
ures v;EM(MM) for 0=j<n. Notice also that B, jo=B2 jk={0}. We claim that
any nonzero z€R" satisfies 7;(z)#0 for at least k of the projections =;: R"~H;,
Jo=<J=jx. To see this fix any string j<j=j,, for some fixed O0=I/=k-1. If
7;(2)=0 for each such j, then />0 and z€B,; which is orthogonal to By; ; j,> hence
zeE(BzJ tFH st t+H j,-07"; hence m; (z)#O and 7,(2)#0 for some j,_,;=
r<j. The claim follows by applying this to each string in order as 0=[=k—1.
In particular Theorem 4.2 (i) implies that for each nonzero z€R" the probability
measure v=n"! > [v;|7tv;, 0=j=n—1, satisfies limsup (P(r2)|=(n—k)/n as
lrl—»oo.

To complete the argument note that the collection
{zeR:|zl = 1, zeC(H,;, @)y ha=Ji=jy)

for fixed nonzero /=k and any ¢=0 is an open cover of the unit sphere. Hence
a compactness argument yields lim sup [¥(x)|=(r—k)/n as |x[|-e on R". Since
vEM (M) with norm 1, we can conclude «(M)=n/n—

5. A Helson surface in R®

Using Lemma 3.1, one may construct a Helson k-manifold in R" whenever
n=Ik where [ is an integer no less than k+1. We shall explain the procedure for
the case k=2, n=6, carefully, and outline the rest.

5.1 Theorem. There exists a surface M RS such that a(P)=9 '/ %z 11.02.

Proof. Let us describe R® as the product of three planes: the X=(x,, x,)-
plane, the Z=(z;, z;)-plane, and the W =(w,, wy)-plane, thus:

R% = {(xl’ Xoy 215 23, Wy, Wz)}-

Let =y, nz, and 7y be the canonical projections. We proceed by inductive steps;
at the i** step we obtain a surface S; made up of planar faces, on each of which at
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least one of the three projections is constant-valued. As i-e, S; approaches a
2-manifold M, which will be a graph over the X-plane, and a Helson set.
For the entire construction, fix an ¢=0, to be prescribed later.

1
Let ¥V be a partition of [—2, 2] of mesh less than-2— . Let {R,;}, be the collec-

tion of closed rectangles, with nonoverlapping interiors R; ;, with the set of vertices
Vi=VXV. Let ¢, be the center of R,,, and let {C; ,} be the like collection of
closed rectangles with vertex set {c, ;}. The union of each collection certainly covers

3 3¢
73]

Given such a collection 2={L;} of rectangles, denote by J(2) the set of con-
tinuous one-to-one mappings F: u,L,—~R? that are affine on each L, and such
that the image of the set of vertices is independent. Thus each F¢EJ(2) preserves
vertices, edges, and line segments contained within one L,. Let s(E) denote the
minimum distance between distinct points in a finite set E.

Choose Fy,€J({R;}) such that

mesh Fy ; = max, diam Fy (R, ;) = mesh ({R, 1))
and such that
3 37
(U Fx,1 (R, D)* o [_7’ 5| -
1
Let 0<0'<3'- S(FX,]_(VI)). Let

Ox,1 = 5(Fx,1(V1)> &, 0),
2x,1 = Q(FX,I(Vl)s g, 0')
as provided by Lemma 3.1. Choose ¢=0 sufficiently small so that if 7 is the vector
2
(¢, t), then {R, +7,}; covers [— %, ;] and
I Fx, 1 (x—t)— Fy,1 (] < 0x,4/2
for all x€(V;(R;1+7))n(u; R,,1). Then for each pair k, I, the two or fewer points
of the set dFy 1(R; ;—1)ndFx (R, ,) are contained in Fy (V)4 U(dx,1/2)
Let Fz,; and Fy ; belong to J({C; .}
The surface S is defined as follows. For x¢€Fx 4(\J; R;,;), define Ej(x) to be
the set of all points (z, w) such that for some pair &, /,

z=Fz:(c;,1), W= Fy 1(c, 1),
and

X€Fy,1(R;,) 0 Fy, 1 (R, 1 —71)-
Let

S = {(x, z, W)ER®: x€Fx1(UiR;,1) and (z, W)ECOEl(x)}’
where coF denotes the convex hull of the set E.
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Now we shall describe S, another way. Let Q;, Q,, O, and Q, denote the
images under Fy ; of a rectangle R, ; and its neighbors to the east, southeast, and
south respectively. Denote the images of the translates by —1t; of those four
rectangles by 0,, 0,, O,, and J,, respectively. Let ¢;, ¢,, ¢;, and ¢, be the centers
of R, and those neighbors, respectively, and let C be the rectangle that they det-
ermine. Let

(21, 8 = Fza(c)), ({1, 8D = Fza(co),
(21> 22) = Fz1(cy), (4, 22) = Fz1(cs).

Make the corresponding definitions with w and W in the roles of z and Z. At this
point, the reader should draw a picture of the eight rectangles Q. The part of S,
whose X projection is the union of Qj with its northeast vertex and with the interior
of its north and east edges consists of the following 16 planar faces, where we describe
each according to the maximum number of intersections among the @’s and @’s.
Note that each of the two coordinate pairs Z and W is constant on 9 of the 16 faces;
X is constant on 4 of the 16 and on 5 more faces of S; which are above the
remainder of Q,.

1' {(x: Z, W): xEngQg’ z= (Zla 22)’ w= (Wls W2)}
{Cx, 2, w): x€Q30Q4ﬂQ2, z = (2y, 2), wEco[(wy, wa), (@, wi)l}
{(xa z, W): xEngQg’ zZ = (le Z2)s W= (601, W;)}
{(xs z, W): x€Q4mQ3an’ ZE CO[(ZI, ZZ)’ (Cl’ Zé)]’ w = (w17 W;)}
{(x:» 2, W): {x} = Q4nQ3nQSnQ2’ Z€CO[(Z1, 22)9 (é’ls Zé)]’

wéco[(oy, wy), (w1, W]}
{(xa Z, W): x€Q3nQ2nQ2, z= (le Zz)s WGCO[(wls Wé), ((I)i, CD;)]}
{2, w): {x} = 0:n0sn0:n01nQY, z = (21, 2o), wé Fy 1 (C)}
{(x, Z, W): xEQ4nQ10Q2’ z= (Zla 22)9 WE CO[(WI, Wz), (W{, wz)]}
{(x, 2, w): x€QNDY, z = (21, 22), w = (W], @)}
10 {(x, Z, W).' xEanQ2nQ21 z= (Zl’ Zz), WECO[(WL wz): ((0{, Cl)é)]}
11' {(x’ 2, W): erz“QtL Z= (le 22)9 w = ((Di, (Dé)}
12' {(x’ z, W)Z x€Q4nQ30Q2, ZEcO[(Zla Zz)’ (Cla Zé)]a w= (wi9 CO;)}
13. {(x,zw): {x}= Q1anﬂQ3nQ4ﬂQg’ 2€ F71(C), w = (w1, w3)}
14 {(x’ 25 W): xEanQ4nQ~ga ZE CO[(ZI, Z2)9 (Z;.’ C2)]’ w = (CO;_, wé)}
15, {Gx, z, w): {x} = Q4nQ1ﬁQ~1“Q2, z€co[(zy, z2), (21, L)
WECO[(W;, (D2), (Cl)]", Cl)é)]}

16' {(x’ Z, W): xEanQ4nQ~(])., ZECO[(Z]_, Z2)’ (Zi’ Cz)], w = (Wia wZ)}

“os LoD

A S Y
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Note that the only points x above which both z and w are moving lie within
0x,1/2 of the northeast vertex.

By describing how S, is defined after S, we shall make clear how the sequence
of surfaces {S;} is defined.

Let {s;} and {#;} be increasing finite sequences such that {(s;, z;)} is the set of
vertices of a collection € of rectangles. Let 5,=(s;+5;+1/2, ;=(f;+¢;40/2. Let B
be a similarly described collection of rectangles, with vertex set {(p,., 4.,)}, such
that {p,}n{s;}=0={q.}n{r;}, such that each rectangle in £ contains several in B,
and such that the union of B contains the union of £. When those properties hold,
we call B an overlay of .

1
Fix i. Let 0<p <5. Identify m such that 5,€(p,sPm+1)- For each / such
that p,€(s;, 8;41), escept the smallest and the largest such /, define
pi = 5+ 80— Pu)-
For the value of / such that s,€(p,_;, p;), define
pi = s+ B(pi—s)-
For the value of / such that s;,,€(p;, p;+1), define
pi = Sis1—B(Six1— P
Note that for all / except those two,
Pie1—Pi = B(prer— D).

Obtain {g;} similarly. The collection of rectangles ‘B =P (B) with vertex set {(p;, 4:)}
is the B-distortion of B relative to 8. The rectangles of B are in one-to-one corre-
spondence with those in B (B), by means of the mapping

o [pr, Pl XU9hs Gesdd = (P15 Pl X105 Grsa)-

Let € be the collection of rectangles whose vertices are the centers of rectangles
in B. The mapping F defined on the centers of B by:

F(center B) = center ¢ (B) for BeB,

extends to a continuous map F from the union of B onto the union of P which is
affine on each rectangle in €. If BB, L€, and BCS L then

F(center B)¢€ f(L—center L)+ center L.

If on the other hand BngL=0, then F(center B) lies on the same side of L as
center B.
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We obtain S, as follows. Let
oy = min{s(Fy, (D)), s(Fr,.({e,.p): T =Z or W}
8, = min{dyx,,/4, 8(Fr,1({c,1)). 8 01): T =Z or W},
o, =min{ox1, o(Fr,i({c; 1)), & 01): T =Z or W}.
Choose B,>0 and 0<dj<]|t,)l/10 so that on (J; Ry ::
[x =yl < 61= | Fx,1(¥)— Fx,. (V] < 6,/12,

lx—yll < B, mesh ({Rk,l}) = “FT,I(x)_FT,I(y)” < §,/12
for T=Z and W.

Let B be a collection of rectangles with mesh B<48; such that both 8 and B41,
are overlays of {R, ,}. Let P and P’ be respectively the f,-distortions of B and
B+, relative to {R, 1}, and let F, ¢; F’, ¢’ be the corresponding maps. Let
{Ry,2}=3, ¢, 2 =center Ry ,; and let €={C, ,} be the collection of rectangles with
vertex set {¢; ;}. Denote the vertices of {R, o} by V,. Choose Fj ,, Fyy 2€ J({Cy )
so that on (J, Ry »:

and

HFZ,2(x)_FZ,1(F(x))H = %S(Fz,l(F(Vz)))
and

HFW,Z(x)_FW,l(F/(x +Tl))” = %S(Fw,l(F’(Vz‘i‘ﬁ)))-

Were it not for the requirement that {F, ,(C, ,)} be an independent set, Fj 0F
would serve as Fy ,; as it is, we must choose a slight perturbation. Then we choose
Fyx 2€3({R;2}) such that on V,

I Fr s ()= Fra (Ol < -5(Fi (7).

Finally, we carry out the selection of 7,, 0, 2, 0,2, E2, and the definition of the
surface S, following the procedures described above for when the subscript has
value 1.
We claim that
Sz & S1+ U(6,/2)
and

mesh S, = max {diam P: P is a planar face of S,} < %mesh Si.

To verify the latter note that if R,nC,, %0, then F(c,)eCy. Moreover, if ¢,

1 1
c;o are adjacent centers, then || F(c;,) — F(c;o)l <5 mesh (7, (c;1})) or=- mesh (ny({ci1}))
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depending on whether c;,, c;, lie on a horizontal or vertical segment (r; denotes

, 1
projection onto j'" coordinate). It follows that diam F (Ckz)<5 mesh {C,}; hence
1
mesh F({Ckz})<5 mesh {C};}. But each F(C,;)cC;, for some jand Fy , is affine

on C;. Hence mesh Fz’l(F({Ck2}))<—;~ mesh Fy ;({Cu})- Since Fy, is only a
slight perturbation of F, {(F) (they differ by less than §,/16), mesh F, ,({Cio})<
%mesh F;;({Cu}). A similar argument applied to F’ and Ry, +7; yields the
same result for Fy, ,. That, together with mesh Fy ,({R,.})<<mesh Fy ,({R,}) and
the manner in which S, is constructed yields mesh (S2)<—i— mesh {S)).

To show that S,< S;+U(d,/2), we must be more careful. Let x&cny S, and
Xy=Fy 3 (x). Recall that for any R, ,, the image Fy ;(R; o) is contained in a disc of
radius o, =9,/12 (by our choice of mesh ({R, ,})), Fx, and Fy , differ by at most
/4 on the vertices of Ry », and Fy , is affine on R, ,. Hence || Fy o(u) — Fy 1(v)| <
3u,/2 for any u, v€ R, ;. Let @; be the maps given by ¢, (R, ;)=center R, ;for j=1, 2.
We will say that u, » are linked if there are three or less distinct rectangles R;, R,, Rs€
{R; .} satisfying v€R,, RiNR,# @ #R,NR;, and u€R,. To establish our claim we
consider whether or not x, is “close” to the boundary of some Ry ;, R, ;—1;, or not,
where close is defined as linked. In particular, each » that is linked to x, satisfies
either (1) v€V;—71,0 V1, or (2) v€U[{OR, 1}U{OR, 1 —71}], or (3) all other cases.
Pick a v whose case number is minimum. Suppose it is (1) and »€ V;. Then x, is not
linked to any v’€{0R; ,—7;}; otherwise [|o"—v| =6 mesh ({R, ,})<6]ir,[/10, but
lu—v—r,f =7, /Y2 for any u€|J, R, since ||t,]|<s(V}) and 7,=(¢, 1), some't.
Let x,+7,€R;; and X, +7,€ R,E{Ry o). It follows that F'(¢,(R)+71)€p1(R,, 1)+
U(xy), where oy<f; mesh ({Rk, 1}); hence FW,1[F /((P2(R4)+T1)]EFW,1((P1(R1,1))+
U(y); hence FW,2(¢2(R4))€FW,1(§01(R1,1))+ U(3,/2). Since WzEnW[ngl(x)ﬁSg] =
co {FW,2(<P2(R4))3 R€ {Rk, 2)> Xa+To€ R4} and W1E?5W{?f§l(”)f\ Sl]={FW,1(€01(Rz,1))},
we conclude that W, W, + U(3«,/2). For the z-projections observe that v=cen-
ter Cy 1, some k; hence R, C, ; (mesh ({R, ,})<<s(¥1)); hence F(Ry)<Cy 15 hence
Fp 1 [F(02(R))J€Fz1(C1); hence Fy o(@2(Ry))€ Fz,1(Cr )+ UQBwy/2). Thus, as
before for Z,=mn,[nz'(x)nS,] and Z,=nz[nz (NS we have Z,cZ,+
U(32;/2). Since

I Fx,1(0) = Fx,a (X2l = [| Fx,1 (0) = Fx,1 (@)l + | Fx,1 () — x| < 5y

for u€R;, we conclude H;l(x)nSzc[H;lFXJl(v)nSl']+ U(6a,). If v€Vyi—1, a
similar argument gives the same conclusion.
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Next suppose (2) is the minimum case number. Observe that if x, is linked
to v€dR,, and to v'€4R,,—t;, then x, is linked (possibly thru corners) to a
v€AR, 1 —1,00R, 4; when that happens, pick such a common ». Using the nota-
tion and estimates of the preceding paragraph, we conclude that at least one of Z; or
W, is a segment with the other possibly a singleton, that Fy ;[ F(@.(Ry))]€Z,+
U(x), and that Fy ) [F(¢2(R)+7,)]€ Wi+ U(oy); hence

Fy 1 (02(R9))EZy+V (3 /2), F. %,2(92(R))EW, + U(304/2),

and ||Fy1(0)~x|<5a;. Thus nx'(x)nSyClryx' Fy,1 @S]+ U(6xy).

Finally, if (3) is the minimum case number, then xZER?,l—v:lmR,‘:,l for some
k, I, F(@2(Re))Epy (R )+ U(n), and F(9a(R)+1,)€0(R, )1+ U(ey); hence
Fz,2(§02 (Rs))E Fa ((Pl (Rk,'l)) +UQw/2), Fy, 2((P2(R4))€ FW,l((Pl (R, 1))+ U(3wy/2),
and [|Fy,1(xp) —x[|<30/2. Thus zx'(x)n Sy [mx'(Fy,1(x))N S, ]+ UB3y).

At the i'* step we obtain {Ruh, {Ci)i Vi {cuides Ox,50 0x,00 T B Siv 85, 0
with §;,,CS;+U(d,/2). Since 6,,,<08;/2, it follows that {S;} must approach some
set IM’, contained in S;+U(5;) for each i. Set M=IM'nzrx'([0, 1]. We claim
that 9 is the graph of some continuous H: [0, 1]2>R* and that M is Helson.
At least M is the graph of some H, since mesh (S;)~0. If H is not continuous,
then there is an x€[0, 112, i,, and a >0 so that for all ¢=0 and all i=i, we
have (nx'(0)NS)+U@)Rrx'(x+U(e)). But fix i=i, so that mesh (S)<5/2,
set ¢=1,/2, and let ycx+U(). Then E(y)VE(x)CF, ;(Cy)X Fy,(Cy) for some
I, a set whose diameter =12 mesh (S)<4. It follows that H must be continouus.

Finally, we verify that 9 is Helson and give an upper bound for its Helson
constant. Let p be a regular Borel measure supported on I with |ju||=1. Let
¢>0 and choose feC(M) so that |f|=1 and |1— [ fdu|<e. Extend f to a uni-
formly continuous function on R® of norm 1. Denote that extension by falso. Choose
0<é<g so that | f—f,ll~<g/4 whenever |yl<d. Fix i so that mesh (S;)<é.
Then 6;<0;=gx,;mesh (S}) and M S;+U(S). Set Hy(@)=nxz(Fx,(V)+U®)
for a=0y,; and oy ; and Hy(@)=n;"(Fr ;({cu)+U@) for a=5; and ¢; and
T=Z and W. Let (x, z, ®)€nz (Fy (c))nS; where (of course) z,=F; ;(c,)
and let (x, z, @)€ Ty (W=n7"(Fy, () + U@)N(S;+ U(S)) where a=4; and ;.
For now, consider only a=g;. Then z€z,+ U(g;) and there mustbean (x’ 2, )€ S;
such that z'¢z,4+U(g;+9;) and such that (x,z, )c(x’,z’, @)+ U(S,). Since
[Fz,i(e)+ Uei+0)INFz i({c;})={Fz,:(ck)}, it follows that x,, x'€ Fy ;(R;;) where
center R, ;=c,; hence w,, 0 € Fy (C,) where Cj; has ¢ for a vertex. That is,
n(xk, Zks a)k)—(x, z, 60)” §-“(xk’ Zks wk)_(x’: Z’, (O')” +5i§”(xk’ wk)_(x,s wl)“ +
+ |2, — 2’|+ 8;= 2 mesh (S)) + 0;+ 26,<45.

It follows that |f(»)—f(x, 2, @)|<e for y€Ty (), that the {T, ()} are
disjoint, and that H, () n[S;+ U(8)]=UTz «(¢)- Since §,<g;, the same is true
when J; replaces g;; since Z, W are symmetric cases, the same is true for Ty, (o)
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where a=49; or g, The argument for X is slightly different. Let x;€V; let
(e, zp, wl)enJ.rl(Fx,i(xli))mSi where x,=Fy ;(x;), and let (x,z, @)€Ty (W)=
nx(Fx, i)+ U@)N(S;+U(S)) where a=38y,; and gy ;. Again set a=gy ;.
Then there must be some (x’, z/, @)€S; such that x’€x,+U(ex,;+9;) and such
that (x, z, w)e(x’, 2/, @)+ U(S,). Thus z,, z’€ F ;(C}) and oy, o’ € Fy ;(C,;) where
x;6€Cy. As before, it follows that {(x;, z;, w)—(x, z, w)|| <46 and hence that
| f () —f(x;, 2, o)l <@ for y€Ty ,(x), where a=0dy ; and gy ;- Now recall that
the only planar sections in S; on which both z and @ vary lie in Hy(dx,;/2). Thus
if (x,z, w)€S;+U(S;) and if neither |z—F; ;(¢c,)|<8; nor |w— Fy (c)|<9; for
some k, then |x—x|<&y ;/2+68,<35y /4. Thus S;+ U(6)< Hx(0x,)WHz(5)u
Hy (6,). Indeed each of those three sets contains at least 9/16 of S;+U(d;) in
the sense that each contains a J-band about 9 of the 16 planar sections of
nx ' (Fx,i(R, 9)nS;, where R; ; is the union of Ry ; with its north vertex and the
interior of its north and east edges. If uy, 5, and uy denote the restrictions of 4 to the
sets Hy(dy ;), Hz(9;), and Hyy(8,), respectively, then at least one of them, say yr, must
satisfy [[ur]=1/3. Of course lffdﬂr—“ﬂrll |<Q. If T=X, let 6r=0x;, 0r=20x,:>
and let Fr be the finite set Fy ;(V)); otherwise, let 8;=6,, or=0;, Fr=PFr:({a,:)-
Let o=s(Fy (V). Then o;=0<3d<p. Applying Lemma 3.1 with 6;, or, Fr
in the roles of 6, g, F, we obtain a certain g€ 4(R?). (Note that the present f restricted
to the finite Fy is a convex combination of functions of modulus 1 on Fy.) Hence
there exists ACA(R® such that: |[f(3)—h(»)|<20 on Hp(6p)N[S;+UG];
larg f(y) —arg h(p)|<2¢ on Hr(er)n[S;+U@)]; |h(y)|=e* elsewhere; and
Il 4=&~1. By denoting the characteristic functions of Hy(67) and Hy(op)\Hr(07)
by 7, and x,, we can therefore write | [ hdu| = | [ hudp+ [ hyodp+ [ B(1—x1— Xz)d#l=
|f fradu+ [ || fradu|+ A= [ 1adlpl+ [ xodlu|— o+ 4=1/3—0+4, where |4]=20+
e22/3. It follows that |ille=e(1/3—30—¢22/3). Letting ¢—0 yields [|Ale=
g(1—2¢?)/3. That expression is maximized when &2=1/6. With that value of ¢
in use throughout the construction we obtain a(IM)<9Y3/2. The theorem is proved.

Evidently a similar construction using n+1 copies of R? instead of 3 and
n—1 distinct translation vectors 7;;=(¢;, ;) for 1=j=n—1 at the i** stage of
the construction yields the following situation. The surface S; above Fy ;(Ry,))
has n®+2n*+n? planar faces (not counting those on the south or west edges of
Fyx,i(Ry); they are counted for a different k). The first n? are X-planar faces;
the 2n® occur over edges but not the intersection of edges; the last n? occur over the
intersections of edges. Form the n+1 corresponding Hy (), Hz(®), Hy (2), .... Each
point in S; lies in at least n—1 of these sets since at most two variable pairs are non-
constant on each planar section of S;. In particular if u€M(S) and if py, ..., thysq
denotes the restrictions of u to Hy, Hz, ..., then > |ul=(m—1)lul; hence
Il =[(r—1)/(n+D]pl for some j. It follows that ||A]l~=e(n—1—2e2)/(n+1) for
all 0<e<1. Thus a(W)=2#+D[32(n—D]¥2 for n=7 and «(WM)=n+1)/(n—3)
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for n=7. In terms of the even dimension d of the space containing the 2-manifold
M, that becomes a(M)=d[3/(d—4)]*2 for d=16 and a(M)=d/d—8 for d=16.

The construction of a Helson k-manifold using n+1 copies of R* for n=k
can be carried out in a similar manner that we briefly describe using the obvious
extensions in notation. Denote the n+1 copies of Rf as X,, Xy, ..., X, (pre-
viously, X=X,, Z=X;, W=X,) and the n—1 translation vectors at the i'" stage
by 1;;=(tj, ..., t;) for 1=j=n—1. Define the k-dimensional faces of S; in a
manner analogous to k=2 and observe that each of those faces occurs either above the
interior of at least one of F. %,i(Re,)s Fx iRy i—Ti,0)s s Fx iRy ;—Tijp—1) OF
otherwise lies above the intersection of the boundaries of k-distinct choices of these
k-rectangles. This latter case can only occur close to the vertices of FX (R, 1), where

“close” is determined completely by the selection of the translation vectors. Thus
on each face of S; either at least one of the X; coordinates is a vertex of F. X, {C, P
for 1=j=n or the X, coordinate is essentlally in Fx (V). The remamder of
the construction offers no surprises. For n=k, this ylelds the optional &=1/3k
and the corresponding a(MM)<V3k 3(k+1)/2. For n>k, one obtains 2lull=
(n+1=K)|ul; hence |ujll=>(1—k/n+Dlpl; hence |alle=>em+1—k—e2k)/n+1;
hence the optimal ?=min ((n+1—k)/3k, 1); hence a(IM)<%(n+1) V27k/(n+1—k)®
if n+1=4dk and a(M)=(@n+1)/(n+1-2k) if n+1=4k.

In terms of the dimension d, our efforts yield a Helson k-manifold 9 in R?
where d=Ilk and I=4k with d/(d—k)=d/(d—2k?). For k+1=I[<4k, the upper
bound is somewhat worse. The spread between the lower and upper bounds obtained
may well reflect our lack of attention to the wealth of arithmetical relationships
which exist on these highly nonconvex manifolds. The right analysis there would
presumably raise the lower bound, but it eluded us. Those same relationships may
prevent the occurrence of Helson k-manifolds in R? for d too close to k. For example,
it seems quite likely that a Helson 2-manifold cannot exist in R3 but can in R'. The
best we can do is RS.
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