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Introduction 

1. Positive definite forms. Suppose S is an involution semigroup and E is a 
complex linear space. Let o9: S • 2 1 5  be a map such that for every sES 
~o(s , . ,  - )  is a (hermitian) bilinear form. We call ~o simply a form (over (S, E)) 
although it is in fact a family of  forms on E, indexed by S. We will see a little while 
later that  we are not far f rom being precise at this point. 

We say that  a form 09 is positive definite (in short: PD) if for all finite sequences 

sl . . . . .  s,E S and f l  . . . . .  f ,  EE 

Zi j  co(sT sj, f j , f3  >= o. 

Such forms appear  in many circumstances. Let us describe some of them: 
1 ~ Suppose {/t,}~= 0 is a sequence of  real numbers like in the classical moment  

problem. Then 

is a form over (N, C). Here N is understood as an additive semigroup of nonnega- 
tive integers with involution being just the identity mapping. 

2 0 Let q~: S ~  B(H) (B(H) stands for the algebra of  all bounded linear operators 
in a Hilbert space H )  be a PD map arising f rom the Sz.-Nagy dilation theory [14]. 
I t  leads to a PD form 

co(s,f, g) = (cp(s)f, g), f ,  gE H, sE S. 

3 o The next sort of  examples comes f rom unbounded operators in a Hilbert 
space. It  is commonly known that in this case forms (in their usual meaning) rather 
than operators themselves are more appropriate to deal with. So as to have a con- 
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crete example (of a form in our sense) in mind take an unbounded symmetric opera- 
tor A, denote by C = (A) the set of a l l f ' s  such that all the powers A"fare  well defined 
and define 

o~(n,f, g) = (A"f, g), f ,  gEC~(A). 

We get a PD form over (N, C ~ (A)). 
4 o Another kind of forms comes from operator valued stochastic processes. 

The covariance kernel, generally depending on two separated variables s and t, 
may depend, and in many cases does, on the product s* t. If  this happens we get 
our form. 

2. The Schwarz inequality. Let ~ ( S ,  E) denote the complex linear space of  
all functions from S to E which are zero but a finite number ofs .  For  h, kE~ ' (S ,  E) 
define 

a(h, k) = Z,,,~o(t* s, h(s), k(t)). 

We get in this way a hermitian bilinear form on o~(S, H)  corresponding to co. 
This correspondence goes back. Indeed, take sE S and f E E  and define 6~sEo~(S, E) 
as 6 , i ( s ) =  f and = 0  otherwise. Then 

~o (t* s, f ,  g) = ~(a~  s ,  4 . ) .  

This is why we have called ~o just a form. It is easily seen that t2 is PD (i.e. 
t2(h, h )~0)  if and only if so is ~o. 

Positive definiteness of o~ implies immediately (for example via t2) the following 
Schwarz inequality 

(1) lZ,,k o~(t; s,,f,, gOl~ <= Z,,jo~(s~ s j , f  ~,f,) Zk,~(t~t,,  g,, gO 

for sl . . . . .  sin, tl . . . . .  t, ES and f~, "", fm,  gl . . . . .  g, EE. Moreover we have the 
following symmetry relation 

o( t*  s,f ,  g) = (.O(s* t, g , f ) .  

3. Factorization. We can apply to ~2 the wetl known procedure (following 
Aronszajn--Kolmogorov) giving us the factorization (in terms of ~o) 

(2) ~o (s* t, f ,  g) = (F(t) f ,  F(s) g) 

where, for every sE S, F(s)  is a linear operator from E to some Hilbert space H~. 
Moreover the linear 'span of F ( S ) E ,  call it H ~ is dense in Ho.  This minimality 
condition determines F and /go  up to unitary equivalence. As the most appropriate 
reference in  this matter we recommend [8]. 
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The shift operator 

4. Definition of the shift operator. Take uC S. Since an arbitrary element of  H ~ 

is ~ F ( s i ) f i  with some sl, . . . ,s ,  CS and f l  . . . .  , f ,  EE, we can t r y t o  define ~p(u), 
called the shift operator, in the following way 

(3) ~ (u) Z ,  F(s,) f~ = Z ,  F,(us,) f~. 

It is easily seen, via (2), that 9 (u) is well defined if the following implication holds: 

(4) Z i j  (1) (S T S j ,  f j ,  fi) = 0 =:~ Z i j  (-D ($7 U* US j ,  f j ,  fi) = 0 

Proposition. cp (u) is the well defined linear operator with the domain D (~o (u))= 
H ~ The adjoint cp (u)* always exists and r 

(5) ~(u*) c ~(u)*, ~(u)%o = ~(u*) 

Thus q~ (u) is closable. Moreover the mapping u ~  ~o (u) is multiplicative. 

Proof. Use the Schwarz inequality (1) with h=u*usi, gi=fi. Then we get 

]Zi j  (1) (S~ U* USj , f j ,  f/)]2 ~ Z i j  O) (S~Sj, f j ,  fi) Z i j  (,0 (S: (U* U) 2 S j ,  f j ,  fi) 

and this shows the implication (4). Linearity of  ~o (u) follows also from (4). To see 
(5) write, using (2), 

((p (u) Z i  F ( s i ) f ,  X j  F(tj) gj)  = Z i j  co ( t f  usi, f l ,  gy) 

= CO ((u* t j) * Si, fi ,  g j) = ( Z i  F(s,) f i ,  q) (u*) • j  F(tj) fj). 

Since q~(u)=q~((u*)*), It follows from (5) that q~(u) is closable. Multiplicativity of 
q~ follows just from its definition. 

Now we can explicitly write (2) using q~ (u) 

co(t'us, f ,  g) = @(u) F(s)f, F(t) g) 

or, if the semigroup has a unit e, 

(6) o) (u, f ,  g) = (9 (u) Vf, Vg) 

with V=F(e).  Furthermore 

(7) IlV/[I ~ = r  

5. Main result. We deduce from (1) the following simple 

Lemma. Let yES be sueh that v*=v. Then 

(8) [Z,j  ~ (sT ~sj, f j ,  f~)[ =< [ Z , j  o~ (s,: s j ,  f j ,  f,)]~- ~-', 

X[ZijO)(s~ V2ksj,f j , f i ) ]  2.k 
for k = l ,  2 . . . . .  
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Proof. Use (1) with t i=vs  i and gi=f i .  We have 

IZ~j o~(sT ~j , f i , f~)]  ~ _<- Z,jo~(s~;sj,fj , f~)Z~o~(s~sj,fj , f3. 

Denote by p ( v ) = Z i j  ~ and a = ~ i  j o~(s~sj,fj,fi). Then 
can be rewritten as follows 

(9) 
This implies 

(I0) 
Indeed, suppose 

Then, by (9) 

Iv(v)l ~ _-< ap(v~). 

Ip(v)l z* ~ az~-lp(vz~). 

[p(v){ 2~-1 ~ ae*-a-lp(v2~-~). 

Ip(v)l 2~ = (Ip(v)[~-~)~ ~ (a~k-ap(v~-~)) ~ 

<= a2*-ep(v~-~) ~ - ~ a~"-lp(vZ~). 

the above 

This gives (10) and, after taking the 2Cth root, implies (8). 
We are interested in condition that would guarantee that the operator q~(u) 

is bounded on H~ ~ and consequently extends to a bounded operator on H,~. A look 
at definition of q~(u) as well as the faetorization formula enahles us to state that 
~o(u) is bounded  if  and only if the following condition is satisfied 

(~Cl)  Z ,  ~o(s; ~ u* us j , f  j, f~) -~ cl (u) Z ,  o~(s~ s~,f j, f3 

where c~.(u) is independent of s i and f / .  
Besides (BC1) consider two more conditions 

(BCz) eg(s*u* us, f , f )  ~_ c~(u)o3(s*s , f , f )  

(BC3) lira inf ( ~  ,j e~ (s7 (u 'u )  ~ s j ,  f j ,  fi)) 2-k <= cs (u). 

We show, in the same way as we did in [16] (see also [ll], [12], [13] and [9, 
Complement 4, pp. 509--510]) for forms discussed in the case 20 of the first sec- 
tion, that these conditions are equivalent. Our lemma provides us at once the fol- 
/owing 
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Proof. (i) implies (ii) trivially. To show that (BCz)-*(BC3) observe first that 
the repeated use of (BCz) gives 

o 4 s , ( u , u ) 2 k s ,  y , f )  < ,,~_1 , ~_1  , =c(u)2 c(u )2 o)(s s , f , f ) .  

Now we can write 

CO S* U*U 2k Z,J~ <- Z,Jl ( ,  ( ) sj,fj,f,)l 
<= Z, jD(~*(u*u)2%,f , , f , ) ] i t~D(s*(u*u)~%,f j , f j ) ]~ ,~ 

= [ 2 ,  (~o (s;, (u* u)~%,A, f,))~/~]' 

< e2(U)2k-lc2(/ '~*) 2k-I [Zi((1)(S'~Si f i  f/)211/2 

To obtain the second inequality we have used the Schwarz inequality with 
s*(u*u)2~sj=(s*(u*u)2k-1)((u*u)2~-lsj), applying it to each ingredient of the sum 
separately. Consequently 

lim inf (,~ co (s* (u* u) 2~ s i ,  f j ,  f/))2-~ _<_ c2 (u) it2 c2 (u*)l/2 

The implication (iii)~ (i) is a matter of Lemma. If  we choose all constants to be 
minimal, then we can check that they are related as has been indicated in theorem. 

Corollary 1. The shift operator q) (u) is bounded i f  and only i f  any o f  the equiv- 
alent statements o f  Theorem 1 holds true. The norm o f  q)(u) is llqg(u)ll <-cl(u) and, 
when cl(u) is minimal in (BC0, []q)(u)][ =q (u ) .  

Remark 2. In the case when S is commutative we can simplify (BC3) in the 
following way: Lemma and the Schwarz inequality give us 

o~(s* u* us, f ,  f )  <= (09(S* S,f, f ) )  ~-2-k (m(S* SU* u)2k, f ,  f ) )  e-k 

< = (a) (S* s,f, f))~-2-~ (e) ((u* u)~s * s,f ,  f))2-~ 

=< (e) (s* s, f ,  f ) ) l  _ 2-~ (co ((u* u) 2~ " ,  f ,  f ) )2 -~- ,  (co ((s* s) 2, f ,  f))1/2 . 

Thus the following condition 

(BC;) lim inf (co ((u'u), f ,  f))2-~ =< e~ (u) 

forces (BC2) with < ' c2(u)=cz(u ). If  S has a unit, (BC3) implies trivially (BC~) with 
c'a(u)<-_ca(u). Consequently cl(u)=c2(u)=c3(u)=c'3(u ). This will help us to find 
the constants ci(u) involved in Theorem and consequently to determine precisely 
the norm of (p (u). 
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Applications 

6. One-parameter moment problem. Let {#,},~o be a sequence of  real numbers. 
Call it a moment sequence (on R) if there exists a non-negative measure/~ such that 

=f+== It, 

This is the classical result of  Hamburger which says that {#,} is a moment sequence 
(on R) if and only if 

(12) x,p , { ~ > 0 , ~ A m , n = l t ~ m + n  m n ~--- 

for all finite sequences {1, "" ,  ~p" In other words the form #(m, ~, ~/)=#={g/ is 
PD. Our Theorem characterizes those moment sequences for which the measure 
It is concentrated on the interval [ - a ,  a]. Call such a sequence {it,} a moment 
sequence on [ - a , a ] .  

Theorem 2. {it,} is a moment  sequence on [--a, a] i f  and only i f  it satisfies 
(12) and 

(13) /z~=+~ a~it2,, m = 0, 1 . . . . .  
Then 

(14) a s = lim inf i t~  k 
k ~  

and the measure It is uniquely determined. 

Proof. The operator q~(1) is a bounded selfadjoint operator with the norm 
equal to a. This follows from Theorem 1, both Remarks and Proposition (cf. (5)). 
Let E be the spectral measure of  ~0 (1). Then we have 

It. = Vl> = Vl> 

where V is given as in (7). We see what the measure # is. 
This theorem, especially (15), gives a necessary and sufficient condition for 

the Jacobi matrix corresponding to the moment sequence {it,} to be bounded (cf. 
[2, p. 7] and also [4]). Condition (13) essentially simplifies what is given there. 

Using (14) we get a simple corollary of  Theorem 1 

Corollary 2. {it,} is a moment  sequence on [-- 1, 1] i f  and only i f  it is PD and 
bounded. 

7. Two-parameter moment problem. Going in the same way as in the preceding 
section we can get the following 
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T h e o r e m  3. A necessary and sufficient condition in order that 
{P.,,}~,.=0 is a moment sequence on the rectangle I - a ,  a ]X[ -b ,  b], i.e. 

is that {/,.,.} is PD which means 

and 
~//2m + 2, n ~ a2ld2m, 2n 

The measure # is uniquely determined and 

a 2 l iminf  2-~ b 2 = lira inf p~.~. 

a sequence 

The proof needs the same arguments as that before. The semigroup in this 
case is just N •  with (m,n)(p,  q ) = ( m + p , n + q )  and (m, n)*=(m, n). It is 
generated by two elements (1,0) and (0, 1). The operators ~o(1,0) and ~0(0, 1) 
are selfadjoint, bounded and commuting (because (1, 0) and (0, 1) commute). 

We can state an analogue of Corollary 2 in this case too. 
Theorem 3 improves result of [3]. 

8. Complex moment problem. Here we consider the same semigroup as before 
with the involution defined in another way. Let S = N •  and (m,n)(p,  q ) =  
( m + p , n + q )  and (m,n)*=(n, m). This semigroup is generated by one element 
(1, 0). The operator q~(1, 0), if it is bounded, becomes normal. This follows easily 
from Proposition. Thus we have the following 

Theorem 4. A necessary and xufficient condition for the sequence of complex 
numbers {#m,n}~,.=0 to be a moment problem on the circle ]2[~a that is to be of 
the form 

= vjf,~!~. 2m2.n/~(d2) 

that {Pmn} is PD: 

and 

In this case 

~ t4.j+.,,,.,+.~ r >= O, 

P k + l , k + l  = a 2 

a * = lira inf p ~ k  

and the nonnegative measure is uniquely determined. 
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This contributes to what is in [4] and [1]. Also an analogue of Corollary 2 is 
easy to formulate. 

9. Operator moment problem. Suppose A0, AI . . . .  is a sequence of (possible 
unbounded) operators with the same dense domain D in some Hilbert space H. 
Moreover  suppose 

(15) Z,j<.a,+ j f >-- o 

for all finite sequences f~ . . . . .  fn in D. Such moment  sequences have been considered 
in [14] and later in [6] and [7]. First of  all notice that, by the Schwarz inequality, 
irA0 is a bounded operator so are all A1, A2, ... but the converse is not true. Then 
A 0 is bounded if and only if so is V involved in (7). I f  ~p(1) is a bounded operator  
(here again S = N ) ,  then we have its spectral measure E and we get 

(16) 
where 

(17) 

(A,T, g) = g> 

(F( . ) f ,  g> = (E ( . )  vU, rg>, f ,  g O. 

and this does not  depend on whether V is bounded or not. Anyhow, the values 
of  the measure F ( . )  are (possible unbounded) positive operators. We get the 
following 

Theorem 5. The sequence {.4,} is o f  the form (16) with F factoring as in (17) 
i f  and only i f  it satisfies (16) and 

for all n = 0 ,  1, . . . .  Then 
(A2,+~f, f)  <= a~(Az, f , f )  

a 2 = lira inf (A~f ,  f)2-~. 
k ~ o o  
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