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1. Introduction

Meir and Keeler [9] established a fixed point theorem which is a remarkable
generalization of the Banach contraction principle.

A selfmap g of a metric space (X, d) is called a weakly uniformly strict con-
traction or simply an (e, §)-contraction if for each ¢=0, there exists a =0 such
that for all x, y€X,

(1) e=d(x,y) <e+0 implies d(gx,gy) <e.

Meir and Keeler proved that an (e, §)-contraction g of a complete metric space
X has a unique fixed point # in X and {g"x},>, converges to n for all x€X [9].
The class of (e, §)-contractions clearly contains the classes of (Banach) contrac-
tions and nonlinear contractions investigated by Browder [3] and by Boyd and
Wong [2].

A fixed point of a selfmap g of X can be considered as a common fixed point
of g and 1y, the identity map of X. In certain cases, we can replace 1, by a con-
tinuous selfmap f of X and consider common fixed point of f and g. Jungck [8]
adopted this idea and obtained a useful generalization of the Banach contraction
principle to commuting selfmaps. More recently, Park [10] extended these facts
and obtained a number of results on commuting selfmaps.

Let f be a continuous selfmap of a metric space (X, d) and C, denote the class
of selfmaps g of X such that fg=gf and gXcfX. A selfmap g of X is called an
(&, 8)-f-contraction if for any &>0, there exists §=0J(¢)=0 such that for all x, ycX,

2 e=d(fx, fy) <e+d implies d(gx,gy) <e,
and (2') gx=gy whenever fx=fy.

* This paper was written while the first author was visiting the University of California,
Berkeley in 1979—80.
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In this paper we show that an (g, §)-f~contraction g in C; has a unique common
fixed point with f whenever X is complete, and that this extends fixed point theorems
of Meir and Keeler [9], Edelstein [S], Browder [3], Boyd and Wong [2], Jungck [8],
Park [10], Jeong [7], and Chung [4]. Some related results are also obtained.

2. Fixed point theorems

Let fand g be selfmaps of a metric space (X, d). Given a point x, in X, we
consider a sequence {fx,}= , recursively given by the rule fx,=gx,_,, n=1,2, ....
Such a sequence is called an f-iteration of x, under g.

Note that for an (g, 6)-f-contraction g, we have

3 d(gx, gy) <d(fx, fy) for x,ycX, fx#fy.

Lemma 2.1. Let f be a selfmap of a metric space X and g be an (s, 0)-f-contrac-
tion. If there exists an xo6€X and an f-iteration {fx,}, of x, under g, then
{d(fx,, fx,+)In=1,2, ...} is monotone decreasing to 0.

Proof. Suppose inf {d(fx,,fx, 1)}=r for some r=0. Then by (3), we have
d(fxn9fxn+1) - d(gxn—la gxn) = d(fxn—-1>fxn)a

so {d(fx,, fX,11) ey is a decreasing sequence and, bence, lim, d(fx,, fx,.1)=r.
By (2), there exists a 6=>0 such that

r=d(fx, fy) <r+d implies d(gx, gy) <r.

Since lim, d( fx,, fx,..)=F, there exists a positive integer N such that for every
m=N, we have

©) r=d(fXpy, fXp+1) <1+0.
Then for every m=N, we have

A(fXms1> fXme2) = A(8Xms Xma1) < T,
which contradicts (4). Therefore, we have lim, d( fx,, fx,+1)=0.

Lemma 2.2. Let g be an (e, 6)-f-contraction commuting with f. If there exists
a EEX such that fE=gE, then fE is the unique common fixed point of f and g.

Proof. Let fé=gf=n, and suppose fi>~n. Then by (3)

d(n, fin) = d(g&, 20 = d(g¢, gf&) < d(f&, [ = d(n, fin),

which is a contradiction. Hence we have fij=n and gn=gf¢=fgé=fi=n. There-
fore, f¢ is a common fixed point of fand g. Let n” be a common fixed point of f
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and g such that 5#n". Then by (3)
d(n,n’) = d(gn, gn’) < d(fin,f') = d@m, n),

which is a contradiction. Therefore # is unique.
Now we have our main result.

Theorem 2.3. Let f be a selfimap of a metric space X and g be an (g, 8)-f-contrac-
tion commuting with f. If a point xo€X has an f-iteration { fx,}r.., under g with a
cluster point £€X at which f is continuous, then {fx,} converges to &, and fE is the
unique common fixed point of f and g.

Proof. By Lemma 2.2, it is sufficient to show that we can find a point £ in X
such that fé=g¢. If d(fx,,fx,,)=0 for some n, then fx,,,=gx,=fx,, and
we are done. Suppose d(fx,,fx,.1)=0 for every n. We now claim that {fx,}
is a Cauchy sequence. Suppose not. Then there exists an ¢>0 and a subsequence
{fx, } of {fx,} such that

) d(fxy,, [Xa,,,) > 2e.
By (2), there exists 0<d<<¢ such that
e=d(fx, fy) <e+dé implies d(gx, gy) <e.

Since lim, d(fx,,fX,.1)=0 by Lemma 2.1, there exists a positive integer N such
that for every m=N, we have

©) A(fXm> SXm+1) < O/6.

Then by (5) and (6), for every n;>N, we can find m such that n;<m<n,,; and

@) 8+—§-§d(fx,,,,fxm)<e+5.

Then
d(fxni’fxm) = d(fxm5fxng+1)+d(fxni+19fxm+l)+d(fxm+lsfxm)

] 0
= .6—+d(gxnp gxm)+"6‘

=< 8+§ >
which contradicts (7), and hence {fx,} is a Cauchy sequence. Since {fx,} clusters
at £cX, it converges to . Since fis continuous at &, {ffx,}={/fgx,-1}={g/*.-1}
converges to f&.
Suppose  ffx,=ffXps1=fXni2=... for some m. Then {ffx,} converges to
Jfx, and ffx,,=ff%,1=fgx,=gfx,. Hence fx, is a coincidence point of f and g,
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and ffx,,=f¢. Thus we are done. Suppose that we can not find an m satisfying
JfXm=ff%pms1=... . Then for any ¢=0, there exists an N such that for every m=N,
d(ffx,, ) <e/2, and we can find an #=N such that ffx,>f¢é. Then we have

d(f%, g8 = d(f, fgx,)+d(fex,, g&)
= d(f¢, ffx,+0) +d(gfx,, g&)
< &[2+d(ffx,, fE) < &2+¢2 =e.

Therefore f&=gé&, and this completes our proof.
Note that if gXcfX, then every x,£X has an f-iteration under g. Therefore,
from Theorem 2.3, we have

Theorem 2.4. Let f be a continuous selfmap of a complete metric space X and g
be an (g, 8)-f-contraction in C;. Then f and g have a unique common fixed point
n in X, and, for any x, in X, every f-iteration of x, under g converges to some EcX

satisfying f&=n.

Proof. An f-iteration {fx,} of x, under g is Cauchy as in the proof of Theorem
2.3. Since X is complete, { fx,} converges to some £€X. Now Theorem 2.4 follows
from Theorem 2.3.

Remark. In case f=1,, Theorem 2.4 is reduced to the result of Meir and
Keeler [9]. In case g=f2, Theorem 2.4 is reduced to the main result of Chung [4].

Corollary 2.5. Let f be a continuous selfmap of a complete metric space X and
g bein C;. If g¥ is an (g, 8)-f-contraction for some positive integer N, then f and g
have a unique common fixed point.

Proof. Clearly we have g"f=fg" and g"XcfX, and hence g"¢C,. Applying
Theorem 2.3, we have a unique common fixed point # of £ and g". Then we have
fen=gfn=gn and g"gn=gg"n=gn. Hence gy is also a common fixed point of
fand g". This implies gn=#n because of the uniqueness. Suppose # and 5’ are
common fixed points of f and g. Then g¥n=n=f and g"# =n"=fiy’. Since f
and g" have a unique common fixed point, we have 5=#¢’.

Corollary 2.6. If f is a bijective continuous selfmap of a complete metric space
X, and for any &¢=0, there exists 6=0 such that for all x, y€X,

e=d(fx,fy) <e+d6 implies d(x,y) <g,
then f has a unique fixed point.

Proof. In Theorem 2.4, we set g=1,.
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Corollary 2.7. Let f be a continuous selfimap of a complete metric space X and
{8:}ica a commuting family of selfmaps in C;. If each g, is an (g, §)-f-contraction,
then there exists a unique point n€X such that fn=g,n=n for every A€A.

Proof. For each 4, g, and f have a unique common fixed point, say 5. For
any u€ 4, g,(g,m=g,(821m) =8&un = g,(fn) =f(g,n) implies g,n=n by the uniqueness.

In certain case the continuity of f in Theorem 2.4 can be relaxed to that of
some iterate of f.

Corollary 2.8. Let f be a selfmap of a complete metric space X such that f* is
continuous for some positive k. Let g: f**X—~X be a map such that gf* *Xcf*Xx
and gf=fg whenever both sides are defined. If gf* ' is an (e, 8)-f*-contraction,
then f and g have a unique common fixed point.

Proof. By Theorem 2.4, gf*~! and f* have a unique common fixed point #.
From gf*~*(fi)=g(f*n)=gn and gf* *(fi)=f(gf*~'n)=fn, we have fiy=gn. From
O =f(f*n)=fy, we know that fy is also a common fixed point of gf*~* and f*.
Therefore, we have 5=fi=gn. The uniqueness is clear.

Remark. The class of (e, §)-f~contractions contains the classes of selfmaps
satisfying (2’) and one of the following conditions:
(8) There exists a map ¢: [0, «)—[0, =) which is upper-semicontinuous from the
right such that ¢(¢)<t for all =0 and

d(gx, gy) < ¢(d(fx, /), fx = 1.

(9) There exists a nondecreasing map ¢: [0, «)—[0, o) which is continuous from
the right such that ¢(¢)<¢ for all =0 and

d(gx, gy) < ¢(d(fx, /), fx=[y.
(10) There exists an «€[0, 1) such that

d(gx, gy) = ad(fx, fy).

Note that (10)=(9)=(8)=(2)=(3) and that (8) and (10) are investigated by
Jeong [7] and Jungck [8], and particular types of (9) by Park [10].  Therefore, certain
results in [7], [8], [10] are consequences of ours. Note also that for f=1,, (8) and
(9) reduce to non-linear contractive type conditions of Boyd—Wong [2] and Brow-
der [3], respectively. Avramescu [1] obtained some results for (10) with g=1, and
S surjective. We can easily obtain an extended form of a result in [6] with respect to
(&, )-f-contractions.

Finally, we consider compact metric spaces.



228 Sehie Park and Jong Sook Bae: Extensions of a fixed point theorem of Meir and Keeler

Theorem 2.9. Let f and g be continuous selfmaps of a compact metric space X
such that g€C, and (3) and (2) hold. Then f and g have a unique common fixed
point n in X, and, for each x, in X, any f-iteration of x, under g converges to some
E€X satisfying fE=n.

Proof. Given &=0, consider

inf {d(fx, fy)—d(gx, gy)le = d(fx, )} = 6 (o).

Since X is compact, this infimum is achieved for some (a, b)€ XX X with d( fa, fb)=e.
Since (3) holds, we have d8(¢)=0. This shows that g is an (e, 6)-f~contraction.
Therefore, Theorem 2.9 follows from Theorem 2.4.

Remark. Theorem 2.9 was proved in [10]. For f=1,, Theorem 2.9 is reduced
to a result of Edelstein [5].
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