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0. Introduction and statement of  results. A closed subset E of R is a Helson set 
if  for every f~Co(E) there exists a Fourier transform gEA(R) such that g[e=f. 
A Sidon set is a countable Helson set. Every function h: R ~ R  that induces (by 
composition) an automorphism of  A(R) clearly maps Helson sets to Helson sets; 
such h are exactly the affine functions [BH]. Since the union of two Helson sets 
is again a Helson set (that is due to Drury and Varopoulos; see [GM, chapter 2] 
for a proof),  every continuous function f :  R-~R whose graph consists of  a finite 
number of  straight line segments (possibly of  infinite length) maps Helson sets to 
Helson sets. 

It  is therefore reasonable to ask whether functions f that map Helson sets to 
Helson sets have graphs consiting of  a finite number of  straight line segments. Theo- 
rem 1 shows that if the homeomorphism f :  R-~R maps Sidon sets to Sidon sets, 
then the graph o f f  consists of a countable number of  straight line segments having 
a finite number of  distinct slopes. Theorem 1 and its proof  appear in Section 1. 
In Section 2 we give an example that shows that the condition of  Theorem 1 can- 
not be improved globally. Whether Sidon set-preserving homeomorphisms are 
locally piecewise a/fine is unknown. Section 3 contains our concluding remarks, 

1. Proof of  the main result, We will use the following definitions. A continuous 
function f :  R ~ R  is c.p.a. (countabIy pieeewise affine) if  the set of x such t b a t f  
is affine in a neighborhood of  x is dense in R. The c.p.a, function f has afinite num- 
ber of slopes if the slopes of  the segments of  the grar, h o f f  belong to a finite set. 

Theorem 1. Let f:  R ~ R  be a homeomorphism such that f (E)  is a Sidon set 
whenever E is a Sidon set. Then f is e.p.a, with a fni te  number of slopes. 

We will prove Theorem 1 by proving a slightly stronger result (Theorem 2). 
For  that we need the following. 

It is well-known that a Sidon or Helson set cannot contain a sequence of subsets 
of  the form A,+B,  where Card A , = C a r d  B,=n for n=>l. A set E is dissociate 
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if for all n _  -> 1, distinct elements Xl . . . .  , x,,EE and choices e~, ..., e~6 {0, _+ 1, _2},  
ejxj  = 0  only if all the zi are zero. A countable closed dissociate set is necessarily 

Sidon. I f  E~, Ez, ... is a sequence of  disjoint subsets of  R, we say that w Ej is 
an independent union if Gp EjwGPUkejEk={O}.  If  a countable union E of  dis- 
sociate sets is an independent union and has at most one cluster point, then E is 
a Sidon set. For  proofs see [LR] or [GM]. 

Theorem 2. (i) Let g: R-~R be a continuous function that is not c.p.a. Then 

there exist sequences {An}, {B,} of  subsets of  R such that for all n, Card A, = Card B, =n  
and g ( A , + B , )  is dissociate and such that ~ g ( A , + B , )  is an independent union 
with at most one cluster point. 

(ii) Let g: R + R  be c.p.a, with an infinite number of  distinct slopes. Then 
there exist sequences {A,} and {B,} with the same properties of (i). 

How Theorem 2 implies Theorem 1. In both cases (i) and (ii) of  Theorem 2 
we set g = f - L  Let E = g ( A , + B , ) - ,  where the A, and B, are given by Theorem 2 
(i) or (ii), assuming that f is not c.p.a, with a finite number of  slopes. Then E is a 
Sidon set. But f ( E ) = U ~  ( A , + B , ) -  contains arbitrarily large squares, so f can- 
not  preserve Sidon sets. Theorem 1 thus follows from Theorem 2. 

We shall need the following Lemma for the proof  of  Theorem 2 (i). 

Lemma 3. Let g: R ~ R  be a continuous. Let m>=l. Suppose that there exist 
integers {ni, j}i'n,j=a such that the function h(ul, vl, ..., u m, v,,)=Z~,j=lni, jg(ui+v j) 
from R 2m to R is constant on an open set. Then either all the ni, j are zero, or g agrees 

with an affine function on an open set. 

Proof. Let e > 0  and I~={(xl . . . .  , x2m)CR~m: tXjl<e for all j}. Suppose that 
i p r p h is constant on (ut, vl, ..., Urn, Vm)+I,, and that not all n~,j=O. Let {fk} be any 

bounded approximate identity for L~(R) such that each fk is twice continuously 
differentiable and has support in 1~/2. Then the function defined by 

hk(U 1 . . . . .  Vm) = Z } , j F l l ,  j ( f k *  g ) ( U l - - ~ - I ) j )  

I I is constant in X=(u~ . . . . .  v,,)+I~/~ and is twice continuously differentiable. 
�9 0 2 hk C~ 

Suppose that ni, i r  Then b v ~ = V  in X. But 

02 hk ~,j * It U 
OViOU~- .~n~.~(A*g) ' (u~+v3 = n~i(A g) (~+vj) .  

Therefore fk * g is affine in the interval I =  (u; + v~.-- e/2, u; + vj. + e/2). Since fk * g ~ g 
uniformly in 1~/2, g is affine in I~/~. The Lemma follows. 
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Proof of Theorem 2 (i). Suppose that  g is not c.p.a. Then there exists an open 
interval (a, b ) r  such that  g is not affine on any open non-empty subset of  (a, b). 
Without loss of  generality, we may assume that  a < 0 < b  (translate) and that b > 1 
(change scale). Let  A1 = B I =  {1}. 

Suppose that  n => 1 and that  sets A1, B~ . . . .  , An, B n have been found such 
that, for all l~_m<=n, 

(1) 
(2) 
(3) 

Let 
For  

AmWBmC=[O, 2-m], Card Am=Card  B,,=m; 
g(Am+Bm) is dissociate; and 

U~'=I g(Ak+Bk) is an independent union. 

a . A B H = U L 1 G P ( T U ~ = , g (  k+ k)). 
n + l  all sets q = {n~j}~,j=, of  integers, let 

Z(q) = {(u 1, vl, . . . ,  un+l, v,+a)E[0,2-n-l]~'+=: Znl jg(ui+vl) -H}.  

Since H is countable, Lemma 3 implies that X(t/) is a union of  closed sets, each 
having no interior. Let X be the union of  the X(q) as r/ ranges over all subsets 
{hi. ~: i, j = 1 . . . .  , n + 1 } of  (n + 1) 2 integers. Then X is also of  first (Baire) category, 
so there exists (u~, v1 . . . .  , u ,+l ,  vn+0E[0, 2-"-1]~"+~\X. Then, for A,+I = 
{ul, ..., u,+l} and B ,+ l = {v l  . . . .  , Vn+l }, we see that (1)--(3) hold for m = n + l .  
Now Theorem 2 (i) follows. 

Proof of Theorem 2 (ii). Suppose that  g is c.p.a, having the form g(x)=akX+bk 
in the interval [l k, rk], k =  1, 2 . . . . .  Suppose also that  {ak} contains an infinite set 
of  distinct numbers. 

Let {ak(j)}7=l be such that  the ak(j) are distinct. Without loss of  generality we 
may assume that  lk(j+l)<lk(j) for j=>l (we may need to replace g(x) by g(-x)) .  
I f  lim Ik~j)=l exists, we may assume that  I=0 .  By passing to a subsequence {ak(j) } 
we may assume that  for all choices m=>l and n j={0 ,  _+1, __+2} for l<=j<=m. 

;.n 
(4) ~1  njak(J) : 0 only if nl . . . . .  ti m = 0. 

(That  is merely the routine matter  of  extracting a dissociate subsequence from 

{"~cJ3.) 
We now consider sums of  the form S=Z:j=lni ,  j(ak.)(ui+vy ) +bi),  where the 

1 n~,j are chosen f rom {0, +1 ,  +_2}, the u, f rom [lk(o,-~(lk(i)+rkti))] , and the vj 
f rom [0, 1 ~(rk(i)--lk(o) ]. The set X of  (ul, Vl . . . .  , urn, Vm) such that  S = 0  has no 
interior, for if  X had interior then on varying the u~ and vj, we would conclude 

that Y~i nt, j ak (i)=0 for each j ,  thus contradicting (4). The argument now proceedes 
exactly as in the proof  of  Part  (i). The remaining details are left to the reader. 
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2. An example. The following example shows that we cannot conclude that a 
mapping preserving Helson sets is affine on neighborhoods of +oo and - ~ .  

We define f :  R--,-R as follows. 

I 
-~x+n 2n~=x<=2n+l 

(5) f(x)----- _~ _ n _ l  2 n + l - < _ x N 2 n + 2  for n = l , 2  . . . .  

otherwise. 

We claim thatfpreserves Helson sets in R. It will suffice to show that for each 
>0  there is a constant C such that the Helson constant o f f (E)  is at most C if the 

Helson constant of E is at most a; here E ranges over compact Helson sets. Any 
compact Helson set has the form E=U~=I U~=IE,,] where E 0 , j = ( - ~ , 2 ] c ~ E  
and E,,~En[2n+(j-1)/8, 2n+j/8] for 1~=j~16 and n = l , 2 , . . . .  Applica- 
tion of the Saucer principle [GM, 11.4] shows that, for all j ' s  and all m ~ 1, the 

A "* algebras (U,=l [2n+( j -1 ) ]8 ,  2n+j/8]) and A([ ( j -1) /8 , j /8] •  {2 . . . .  ,2m}) are 
is omorphic. For 1 ~j_-< 8, fmaps  [ ( j -  1) 8, j/8] + 2n linearly to [ ( j -  1 )/16, j/16] + 2n; 
for 8< j~16 ,  f maps [(j-1)/8,j/8]+2n linearly to [3(j-1)/16,3j/16]+2n-1. 
The Saucer Principle again applies: A(U'~[a(j-1)/16, aj/16]+2n-b) and 
A([a(j-1)/61, aj/16]• n--l ,  m, m}) are isomorphic, where a = l ,  b = 0  for 
l < j ~ 8  and a=3,  b---I for 8<j~16 .  Therefore for all l~-j_-<16, and m_->l, 
a ( f ( U ~  E,,j))~=Cla (U~ E,,~). Bythe union theorem for Helson sets, a(f(E))~-C. 

3. Remarks. (i) This paper was stimulated by a question asked by R. S. Pierce 
at a seminar in Honolulu. 

(ii) If t h e f o f  Theorem 1 is only assumed to preserve compact Sidon sets, t h e n f  
is c.p.a, and the restrictions o f f  to each compact interval have but a finite number 
of slopes (the number may increase with the size of the interval). 

(iii) A "compact" version of the example of Section 2 could be given if we could 
answer the following affirmatively. 

Do there exist sequences x,>=O, O~=a,~=b, with lim b ,= l imx~=0 such that 
for every Sidon set E~= 1 (Ec~ [a,, b,])+x~ is a Sidon set? 

(iv) Our Theorem 1, combined with the Lemma of Beufling and Helson [BH, 
P. 121] yields immediately their Corollary: 
if f: R-~ R preserves Fourier transforms, then f is affine. 

(v) Our definition of "c.p.a." is a weak one. One might replace it with the fol- 
lowing: f i s  c.p.a, if for all L>0 ,  the sum of the lengths of the maximal intervals 
(a, b) in [ - L ,  L] such that f is affine in (a, b) equals 2L. We do not know if 
Helson set preserving maps have that property. 
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