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O. Introduction 

In this paper, we extend in two directions the theorem of Knapp and Stein [12] 
concerning the L2-boundedness of principal-value singular convolution operators 
on nilpotent Lie groups: we consider an arbitrary nilpotent Lie group (which may 
not have any dilating automorphisms), and we replace the regular representation 
by an arbitrary unitary representation. For both of these aspects it is the singular 
behavior of the kernel at infinity which requires special attention. 

We use our results [10] on comparison of nilpotent group structures (cf. [11], 
Ch. I). Some technical refinements in our treatment are the weak smoothness condi- 
tion required of the kernel (a condition of "Dini type" on the modulus of con- 
tinuity) and the explicit estimate for the norm of the operator defined by a singular 
kernel. 

In Section l, we briefly recall the basic facts about dilations, homogeneous 
functions, and nilpotent Lie group structures on R n, and show the equivalence of 
various "mean-value zero" conditions. In Section 2 we introduce a class of smooth 
singular kernels and state the main theorem. In Section 3 we prove the theorem, 
and in Section 4 we extend the theorem to certain non-unitary representations, 
obtaining a generalization of the "ergodic Hilbert transform" of Cotlar [5] and 
Calder6n [2]. 

Other extensions and applications of the original Knapp--Stein boundedness 
theorem can be found, e.g. in [1], [4], [8], [9], [11], [13], [15]. 

* Research partially supported by NSF Grant MCS 76-07097. 
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1. Dilations and nilpotent group structures on R n 

Consider a one-parameter group {5,},> 0 of dilations on R', acting by 

5.(xl . . . .  , x.) = (ral xl . . . . .  ra.x.), 

where 2i->1. A function f on R"~  {0} will be called homogeneous of degree # 
(relative to the dilations) if fo6=r" j :  Of particular interest is the case p = -  ~ ~.i, 
since the measure f ( x )dx  is then dilation-invariant (where dx denotes Lebesgue 
measure on R" and f is also assumed to be locally integrable on R" ~ {0}). We shall 
call Q=2; 2~ the homogeneous dimension of R", relative to the given group of 
dilations. 

A homogeneous norm on R" (relative to the dilations) is a continuous function 
x-~lxl, homogeneous of degree one, with [xl~0 and x = 0  only when x=0 .  
It is symmetric if Ixl = I -x l ,  and smooth if it is C ~ on R " ~  {0}. For example, 

p 1 

(1.1) lxt = { Z  lxi[~} "7 

is a symmetric, homogeneous norm for any p > 0 ,  and is smooth if p > m a x  {2i}. 
Relative to any choice of homogeneous norm, one has the following integra- 

tion formula [12]: 

(1.2) f ~ . f (x )  g(rx!) dx = M ( f )  f o g(r) r -1 dr. 

Here we assume, e.g., that f is homogeneous of degree - Q  and continuous on 
R"~-,{0}, while gELI(R +, r- ldr) .  (The existence of a constant M ( f )  such that 
(1.2) holds is immediate from the uniqueness of the Haar measure r - l d r  on the 
multiplicative group R +, since the left side of (1.2) is translation-invariant as a 
functional of g.) 

Let ~_Q denote the space of continuous functions on R",-~ {0} which are 
homogeneous of degree - Q .  The linear functional f - , M ( f )  on ~r176 is called 
the mean-value. It is independent of the choice of homogeneous norm appearing 
in (1.2). Indeed, if Ix[0 and tXlx a r e  two homogeneous norms, then so is !x[,= [x[~ -t  IxlX 
for 0=<t <- 1. Denote by M , ( f )  the constant appearing in (1.2) for [x[ = [x[,. Take 
gEC~(R +) with f ~ g ( r ) r - l d r = l .  Then from (1.2) one sees that M , ( f )  is a 
smooth function of t, and 

0 Mr(f)  = fR" f (x )  g'([xl,)Ixl, log ~,lXlo) at 
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But h(x)=f(x) log (Ixli/lX]o) is again homogeneous of degree - Q ,  so that 

~ M,(f) = M,(h) f o g" (r) dr = O. 

Thus Mo(f)=Mi(f) ,  as claimed. 
A more explicit formula for M(f)  can be obtained using the (n-1)-form 

,~ : 2~in___l (-- l ) i - l ~ i x  i dix, 

where d ix=dx1 . . . dX i_ ldX i+l . . . dx  n. Take Ixl as given by (1.1) for some large p, 
and write r(x)=lxl. Then the function rE CI(Rn~ {o}), and r-XdrAz=dx. I f f  
is C i and homogeneous of degree - Q ,  then the form fz on R"~{0} is closed, 
and hence fdx=d[(log r)fz]. It follows from Stokes' theorem that 

M(f) = f s fz, 

where S is any smooth oriented hypersurface cobordant to {]xI= 1} in R '~{0}  
(cf. [6], [7], [14]). We shall be primarily interested in functions f with the cancel- 
lation property M(f)=O, i.e. 

_f o<xl<b f (x) dx = 0 

for all 0 < a < b .  
For the sequel, we fix some choice of smooth, symmetric homogeneous norm, 

and note the following particular cases of (1.2): 

f a<lxt<b [XIA-Q d x  = 

where Co=M(f), with f(x)=[xl -Q. 

C~ if ). ~ 0 
2 

Co log (b ] ,  if ~ = 0 ,  

We now introduce a class of Lie group structures on R" which can be viewed 
as "small perturbations" of the additive group structure, as measured by a homogene- 
ous norm [7]. Define HI={xER":  6,x=rix}, and set 

Definition. A Lie algebra structure [x, y] on R" is 
(i) graded relative to the dilations if [H~, H~]C=H~+~ for all 2, p > 0 ;  

(ii) filtered relative to the dilations if [Vi, V~]~ V~+~ for all 2, p ~ 0 .  
Every graded structure is filtered, of course, but not conversely. If  g denotes 

R" with a filtered Lie algebra structure, then g is obviously a nilpotent Lie algebra, 
and every finite-dimensional nilpotent Lie algebra over R is of this form for some 
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choice of {2,} (cf. [11], Ch. I). The associated connected and simply-connected Lie 
group G will be identified with R" again, with multiplication given by the Camp- 
bell--Hausdorff  formula 

x y :  x+y+Ttx,1 yj+  Ix, ix, yl]+  cy, xl]+.. 
(The right-hand side is a finite sum, due to the nilpotence.) One has x - ~ = - x  
and 0 for the identity element of  G. Haar measure on G is given by Lebesgue measure 
on R'.  We shall refer to such a Lie group structure on R" as "graded" or "filtered" 
relative to the dilations when the Lie algebra g has these respective properties. 
(Graded structures are characterized by the property that 6,EAut G for all r>0 . )  

2. Singular kernels and unitary representations 

Let G be R", equipped with a filtered Lie group structure. Suppose K is a con- 
tinuous function on R"~ {0}, homogeneous of  degree - Q ,  with mean value 
M(K) = O. Assume that K satisfies the smoothness condition 

(2.1) [K(x)--K(y)] <= Bco(lx-y[)  

if [ x [ = Iy I = l .  Here o2 is assumed to be a continuous, concave, non-decreasing 
function on [0, ~)  with ~o(0)=0 and ~o(t)=>Ct for some C>0.  Define 

]g(x)--g(y)] jKi = sup 
Ixl=ryl=l J 

x ~ y  

[[K][~ = sup [K(x)[, 
Ixl = 1  

and set 
]lKII,o = [KF,o+lIK[l=. 

If  0<e_-<l<:R, we define truncated kernels K~:ZEE,~IK and KR:z[1,R]K, where 
Zta, Bl(y)= 1 if A<=Iyl<=B and is zero otherwise. 

Theorem 2.1. Suppose 0112 satisfies the Dini condition: 

1 1 

(2.2) o( t )T  t -1 dt < co 

Then for any continuous unitary representation ~z of G, l imR.= rc(K R) exists in the 
strong operator topology, and defines a bounded operator zc(K ~) with 

II~(K')II ~ CIIKHo 

(C depending only on o~ and G). 
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l f  G & graded relative to the dilations, then lim~_, 0 zc(K~) also ex&ts in the strong 
operator topology, and defines a bounded operator n(Ko) of norm =<CIlK[Io, (C 
depending only on co and G). 

Remark 1. When K is C ~ on R"~  {0}, n is the regular representation of G 
on L2(G), and G is graded, this theorem was first proved by Knapp--Stein ([12]; 
they comment that the smoothness assumptions on K can be considerably weakened) 

Remark 2. When G is the additive group of R", then (2.2) can be weakened to 

(2.3) co(t) t - l d t  < (3C~. 

([16], Ch. II w Of course, for c0(t)--t ~, 0 < ~ 1 ,  corresponding to (non-iso- 
tropic) H61der continuity, this makes no difference. 

3. Proof of Theorem 

The proof of Theorem 2.1 involves two parts: 
(1) Establishing a uniform bound for the operators n(K~) and n(K~), depending 

only on [[K[]o~ and the structure of G; 
(2) Proving the existence of lim~_~ 0 n(K~)v and limR. ~ n(KR)w for v and 

w in suitable dense subspaces of the Hilbert space 9(Y(rc) on which n acts. 
For both parts the following lemma is the basic tool: 

Lemma 3.1. Let a = m i n  {1/21}, where {2~} are the exponents of  the dilations, 
and set b=a 2. There are constants Co, C, M > 0  depending only on the group G, 
such that 

(3.1) f  <jxj<  ]K(xy)- K(x)[ dx ColIKL f tco(t) a---t t , 

where I=[Cly]bB -b, C]y[bA-b]. Here one assumes that A>=Mly] if  G is graded 
or that A>=M(]y]+ I) when G is only assumed to be filtered. 

Proof We must convert the smoothness condition (2.1) into an estimate involv- 
ing translations on G. First consider the special case where G is the additive group 
of R". Since the norm is C 1 and homogeneous of degree 1, 

(3.2) IIx+h[-1]-<_ C[h] 

when ]xl=l  and Ihj<_-e, for some constants C, e. Introduce the notation y=61rly', 
and set x + h = y .  Then when I x [ : l  and [hl<=e, 

!K(x+ h ) -  K(x)[ ~ [y[-Q [K(y')-K(x)[  + i l  --ly[-Q[ [K(x)[ 

CllKIl~[co(ly'- x]) + [hi]. 
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But ly ' -xl=lyl-Xly-61rlxL<-C[iy-xl+lx-alylx] ,  and one has Ix-6,xl<= 
C] l - r l  a for r near 1 and [x[=l .  Using (3.2), we thus have an estimate 

]K(x +h)-K(x)[ <= Collgl[o~o(C[hl" ) 

for all Ixl=l and ]h]~e, where Co, C, e are independent of K. (Recall that we 
are assuming that co (t)>=Ct.) By the homogenity of  K, this estimate is equivalent to 

(3.3) ]K(x + y ) -  / (x)l ~= Co IIKll,o Ixl -~ co( C lyl a Ix[-") 

for all x r  and ly[_-<e[x[. 
Now we want to replace x + y  by xy in (3.3). For this we recall the following 

comparison between the additive and nilpotent group structures: 

(3.4) t xy -x l  <= CIx[1-"]yl ", 

which holds for lyl<=lxl when G is graded, and for ly[+l<-_lx} when G is filtered 
(cf. [10] and [11], Ch. I). Using (3.4) in (3.3) thus gives the estimate 

(3.5) IK(xy)-  K(x)J <-_ C0tlgl[~ IxT-eo)(c iyr ~ ]xl -b) 

(b=a2). Integrating (3.5) using formula (1.2), we obtain (3.1), proving the lemma. 
Returning to the proof  of the theorem, for part (1) we use the Cot la r - -Knapp- -  

Stein method of  "almost orthogonal" decomposition of  the operators rc(K,) and 
rc(K R) ([41, Ch. VI). Namely, let {q~Jb~z be the partition of  unity on R"-,~{0} 
defined by 

1, if 2 s--- Ix 1 < 2  j+l 

q~j(x)= 0, otherwise. 

Set f j=q~jK. Then one has the following L1 estimates (For f ,  g ~ L l , f * g  denotes 

the convolution relative to the group G, and f * ( x )= f ( - x ) . ) :  

Lemma 3.2. There are constants C > 0  and r<l  (independent of K), such that 
the following holds: For all jC Z, 

(3.6) ]If jIIL1 <- Cl[/]l~,. 
I f  i,j~=O, then 
(3.7) Ilf~*fj*llL1 <= CllKl[~og(r Ii-jl). 

l f  G is graded, then (3.7) also holds when i,j~_O. 

Proof. Since Ig(x)l<=llKIl~lx] -o, estimate (3.6) follows from (1.3). For the 
rest of the lemma, note that Ilf~*ffllL1----I/fj*f?llL1, so one may assume i<_-j. 

Suppose first that i,j>=O. Using the mean-value zero condition, write 

f~ *jr* (x) = f f (y) ~oj (x-ly) [K* (y-1 x) - K* (x)l dy 

+ ffi(y)K*(x)[gj(x-~y) - q~j(x-1)] dy. 



Singular integral operators on nilpotent Lie groups 

Thus, IIf~*fTllL~Ii+h, where 

= f f  (y) (x) I K(y) l [g(x) - g ( x y -  1) 1 dx dy 11 
and 

I~ = f f ~p,(y) l~pj(xy)-q,j(x)! IK(x)l IK(y)l dx dy. 

We can estimate/1 using Lemma 3.1, provided j = i+  m, where m is independent 
of  K. (For the remaining finite set of  values of j - i ,  we use the estimate 11 f i*fTl[z,~ 
I[f~[IL, llfjllL~ and apply (3.6).) Thus by the monotonicity of co and Lemma 3.1, 

11 ~ Co IIKIILf ~0,(y)lyl-Qco(Clylb2-b~)dy <= ClllKll~e)(rJ-~), 

where r <  1 is independent of  K. 
To estimate/2,  use the Lipschitz condition 

(3.8) Ilxyl-Ixll <--~c ]yl, 

which holds for Ix l~M(ly l+l)  ([10], Theorem 3) when M is sufficiently large. 
This shows that the integrand in I~ has support where 2~_-<[yI<_-2~+1 and either 
2J-C2~_-<[xl~2 j or else 2J+l<=lxl<-2J+~+c2~. Since it is bounded by 
IIK[I~ Ixl - e  lyl -e ,  one obtains from formula (1.3) the estimate 

[l+t) 
12 ~ CllKl[~,log t-i-Z-7) <= Ctl[KIl~, 

where t=C2 i-j, providing j>>i. This implies (3.7), since oJ(t)>=Ct. 
When G is graded, (3.8) is valid for Ixl>=Mlyl, and the argument just given 

also applies to the case i,j<=O, proving Lemma 3.2. 
To complete the proof  of part (1), write 

KR = z~]=of j+g, 

where 2S~=R<2 s+l. Since ][n(f)[I ~ I[ filL1, it follows from Lemma 3.2 and Lemma 11 
of  Cotlar--Knapp--Stein [12] that 

where 
11 5=0 (fJ)ll ~ BHK[Io~, 

1 

B = c Z L 0  ~ ( ~ ) ~  < ~ 
1 

(By the concavity and monotonicity of  o), this series is majorized by f l  o co ( t )~t  -1dr.) 
Clearly IIglILI<=IIfj+IlILI<=CIIKII~, so we obtain the desired bound for II~(KR)II. 
When G is graded, the same argument applies to ~(K~). 

For part (2) of  the proof, recall that if v~ocd'(n) is a Cl-vector for re, then 
Ilrc(x)v-v[!<=C[Ixll. Since Ilxll~=CIx! when lx l~ l ,  we can use the mean value 
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zero property of  K to estimate 

I}~z(K.)v- ~z(Ko)vll <= f . }K(x)I ]lrc(x)v-vl] dx 
<Ix['<6 

s lxle+lax ~ cllKll=(a-.), CIIKIl~ <lxl-~a 

if O<e<6<= 1. Thus lim~0 7t(K~)v exists for v in the dense subspace of  C 2 vectors. 
To remove the cutoff at infinity on K, we use a regularisation technique nat- 

urally suggested by part (1). Assume tpELI(G) has compact support, and that 

(3.9) f o o (x) ax = o. 

Lemma3.3.  Let O<A<B, andset (P=;(EA,~I. Then l ima,B~][ ( (pK) .O]]q=0.  

Proof. Using (3.9), we can write 

,o x)  �9 0 (x) = f ~K(xy- ~) - ~:(~)] ~o (xy- ~) 0 (,) ay + f [~o (xy-  1) - ~o (x~] X(x~ ~, (y) dy. 

Hence ][((pK). 0IlL <=/~+h, where 

6 = f IO(y)f {L<,x,<. IK(xy)-X(x)p ax} ay 
and 

I= = f f Iq~(xy-')-~o(x)l IK(x)l IO(Y)! dx dy. 

Since ~ is assumed to have compact support, we can use Lemma 3.l when A, B are 
sufficiently large, to obtain the estimate 

11 <-_ Col[gll,o[lOllL~ f co(t)t-ldt, 

where E=[CB -b, CA-b], with a constant C depending on Supp (~). Since o) is 
bounded on [0, 1], condition (2.2) implies that f~o)(t)t-~dt<~, so that 1~-~0 
as A, B-+~.  

For  I~, the integrand is zero unless either B<}xJ<B+C or A--C<txI<A, 
where C depends on Supp (~), by (3.8). Thus, just as in the proof  of Lemma 3.2, 
we have 

/z ~ C0[{g[{~, [l ~b [l L~ lOg 

so that L.~0 as A, B - ~ ,  proving the lemma. 
To complete the proof  of  part (2), we note that if 0, (P are as in [.emma 

3.3, then 
]lrc(Ka)~(O ) v -  rc(KB)rc@ )v[{ <= [l(q~K)*Ol[z~l[vi[- 
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Hence limR~ = 7r(KR)rc(~,)v exists for all vEoeg. Let ~1  be the subspace spanned 
by all vectors of  the form n(O)v, for v E ~  and ~ a compactly supported L~ func- 
tion on G satisfying (3.9). Then ~'~0-~1 • consists of all w E ~  such that 

w)dx= 0 

for all such 0, and all vE~ .  But this implies that x-~(u(x)v, w) is constant on 
G, and hence ~f0--~f  c, the space of G-fixed vectors. But u ( K R ) w = 0  if w E ~  c, 
by the mean-value zero condition. Hence limR~ = 7:(KR)u exists for u in the dense 
subspace J g o + ~ .  Together with the uniform bounds from part  (1), this completes 
the proof  of  Theorem 2.1. 

4. Non-unitary representations 

Various parts of  Theorem 2.1 and the proof  just given extend to certain non- 
unitary representations of  G. We can summarize the situation as follows: 

A. I f  rc is any Banach-space representation of  G, then lim~_, 0 n(K~)v exists 
when v is a C 1 vector for n (cf. Section 3). 

B. If  n is a uniformly-bounded representation of G on a Banach space 
(supgHn(g)][<o~), then l imR~n(KR)v  exists for vE~f~a+.Cfl, where ~ con- 
sists of  the G-fixed vectors in ~ ,  and ~r  consists of  the G-fixed vectors 
in W*. (Cf. Section 3.) Thus if we assume that 

(4.1) ( ~ a ) •  n (W.)G = 0, 

then lima~ = zc(KR)v exists for v in a dense subspace of  W. For  example, if  G 
acts ergodically as measure-preserving transformations on a measure space ~t', and 
rc is the induced action on ~(=L~(Jd) ,  l < p < ~ ,  then (4.1) is satisfied. (If  de' has 
finite measure, (oC~*)c=Wa=constants,  and ( y a ) •  of  integral zero. 
I f  J/r has infinite measure, (~/g.)a =0.)  

C. I f  rc is the regular representation of G on L p (G), 1 < p  < o~, then the oper- 
ators zc(K R) are uniformly bounded as R-~o~. The same is true for lr(K~) as s ~ 0  
if G is assumed to be graded. (From Lemma 3.1 we have the inequality 

(4.2) f rxj c,,  jI,:(xy)-lc:(x)! ax Co Jil llo, at, 

valid for all y in the graded case, and lyl~M in the filtered case. Using the Co[f- 
man--Weiss  theory of  integral operators on spaces of  "homogeneous type", the 
L 2 boundedness together with (4.2) implies L p boundedness; cf. [4] Ch. I I I  and 
[13].) 

D. I f  ~z is a uniformly-bounded representation of G on an L p space, 1 < p <  co, 
then the uniform L p estimates in C can be "transferred" to give uniform bounds 
for 7z(KR), and also for rc(K~) when G is graded [3]. The property of  G which is 
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used is the Folner  condition: F o r  every compac t  set C c G  and  every e > 0 ,  there  

is a ne ighbo rhood  V o f  0 such tha t  

(4.3) meas  (V- C) ~ 1 +e .  
meas  (V) 

F o r  V we can take  the  bal l  B , =  {[xt<_--r} wi th  sufficiently large r. Indeed,  by (3.8) 

we have B, .  C ~ B , +  a, for  some a > 0  depend ing  on C bu t  independen t  o f  r, and  

by (1.3) 

[ (all~ meas (B,+,)  = 1 + . 
meas  (B,) 

Combin ing  the results A - - D ,  we finally ob ta in  the fol lowing genera l iza t ion 

o f  the  "e rgod ic  Hi lbe r t  t r an s fo rm"  s tudied by  Cot la r  [5] and  Ca lde rdn  [2]: 

Theorem 4.1. Let the filtered nilpotent group G act ergodically as measure- 
preserving transformations on a a-finite measure space Jg. Let  K be homogeneous 
o f  degree - Q ,  with mean-value zero, satisfying the smoothness condition (2.1), and 
assume o) 113 satisfies the Dini condition ( 2 . 2 ) . / f  1 < p <  co and fE LP(./r then 

T~  f ( m )  ---- l im f K ( x ) f ( x . m ) d x  
R ~  l~[x]~R 

exists in LP(dg),  and [[T~][L ~CI[K[[,o, where C depends only on p, co, and G. I f  G 
is also graded, then 

Tof(m)  = limf K ( x ) f ( x .  m)dx  

also exists in LP(Ji) ,  and IITolILp<-C[IKII~, where C depends only on p, ~o, and G. 
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