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1. Introduction 

In a recent paper [2] we have developed the Weyl calculus of pseudo-differential 
operators in R" for quite general symbols. As an application we shall now extend 
and improve the estimates given by Tulovskii and ~ubin [5] for the error term in 
the asymptotic formula for the number NO.) of eigenvalues~2 of certain pseudo- 
differential operators P =pW (x, D) in R n, 

(1.1) N(2) ~ (2n)-" f fp(x,  ~)<~ dx d~ 

The first results of this type were obtained by H. Weyl for second order operators, 
and R. Courant later isolated the maximum-minimum principle for eigenvalues 
from the proof. A new approach which also gives asymptotic formulas for the 
eigenfunctions by means of Tauberian arguments was introduced by Carleman, 
and these methods were developed by Gftrding [1] to a general proof of (1.1) for 
higher order elliptic operators in bounded sets in R n. The methods used in [5] are 
more closely related to the earlier methods of Weyl, however. They start from the 
observation that N(2) is the trace of the orthogonal projection E on the space 
spanned by the eigenvectors corresponding to eigenvalues <=)~. Thus E is self ad- 
joint and 

(1.2) E Z - E  = O, E(P--)OE <= O, ( I - E ) ( P - ) O ( I - E )  ~= O. 

Now the calculus of pseudo-differential operators allows one to satisfy these con- 
ditions approximately; one just takes E with symbol Zz(P) where Z~ is a smooth 
approximation to the Heaviside function H ( 2 - .  ). Arguments from [5] which 
we recall in Section 2 lead from approximate solutions of (1.2) to estimates of N(2). 
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The main new point here is a careful discussion in Section 3 of the symbol 
classes containing Zz(P)- The error estimates in (1.1) which follow in Section 4 
are better than those of [5] since we have more general pseudo-differential operators 
available so that we can use a better smooth approximation Zz to the Heaviside 
function. The generality is needed even if p is a "classical" symbol. It would not 
suffice to use the Beals--Fefferman calculus. (Robert [3] has recently given error 
estimates for (1.1) similar to those of [5] for such operators.) However, as indicated 
by an example discussed in Section 4, it is not likely that the improved results 
given here are optimal. 

I would like to thank Victor Guillemin who called my attention to [5] when 
I lectured at MIT on the Weyl calculus. 

2. Approximate spectral projections 

Let P be a self adjoint operator in a Hilbert space H which has a discrete 
spectrum and is bounded from below. Denote by N(2) the number of eigenvalues 
~2 .  The following lemma is implicit in [5, Section 6] (see also [4, Section 28]). 

Lemma 2.1. Let E be a self  adjoint operator o f  trace class such that PE  is bound- 
ed. I f  

(2.1) ((P--2)Eu,  Eu) <= A(u, u), uEH, 

where 2ER and A~O,  then 

(2.2) N(2+4A)  => TrE-2[[E-E2[[Tr.  

I f  instead of  (2.1) we have in the domain of  P 

(2.3) ( ( P -  2) (u - Eu), u - Eu) >- - B (u, u), 

where 2~R and B>=O, then 

(2.4) N(2 -- 4 B -  0) ~ Tr E +  2 II E--  E2IITr . 

Proof. Let W0 and W1 be the orthogonal complementary spaces spanned by 
eigenvectors of  E corresponding to eigenvalues < 1/2 and ~ 1/2 respectively. Since 

IIE--EZIITr = ~ 12j'~z! 

where 2j are the eigenvalues of E, we have 

(2.5) !dim W 1 - T r  E! ~ 2 IIE--E211Tr. 
In fact, 

! l - 2 j ]  ~ 212j-2~1 if 2j @ 1/2, 12;[ <= 2 {2;-2~1 if 2j < I/2 
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so (2.5) follows by summation. When uC W1 we have (u, u)<=4(Eu, Eu) so 

( ( P - 2 - 4 A ) E u ,  Eu) <= O, uEW1. 

But EWe= W~ so the maximum minimum principle shows that P has at least 
dim W~ eigenvalues <=4A+2. Since (u, u)~_4(u-Eu, u--Eu), uEWo, we obtain in 
the same way 

((P--2+4B)v, v) >= O, v~Wo, 

provided that v is in the domain of P. Hence P - 2 + 4 B  has at most dim W1 negative 
eigenvalues, which proves the lemma. 

3. Hypoelliptic symbols 

Let g be a a temperate metric in R 2" (see [2, Def. 4.1]) and set as in [2, (4,6)], 

We shall always assume that h<= 1 ("the uncertainly principle") and later on we 
shall also have to require that for some 5 > 0  and C 

(3.1) h(x, 4) <= C(1 -t-[xlq-I~l) -a. 

Let p be a positive g continuous function such that p is a symbol of  weight p, 

(3.2) p~S(p, g). 

(See [2, section 2]) For  special choices of  the metric this is essentially a well known 
sufficient condition for hypoellipticity, and it always implies that p has a parametrix: 

Lemma 3.1. For any positive integer N one can find qE S(l/p, g) so that 

(3.3) qWpW 1 = r~, rNES(h ~, g). 

Proof. For  qo=l/p we have qo~S(1/p,g) by [1, Lemma 2.4], so the calculus 
[1, Theorem 4.2] gives 

1-q~'pW _~ r w, r~S(h, g). 
It follows that 

qWpW = l_(rW)N if q~ = ( l+rW+. . .+( r~)N-1)q~ ', 

which proves (3.3). 
A standard argument can be used to construct q so that (3.3) is valid for any 

N, but we have no need for this in what follows. In the preceding argument the 
important point was that l/pC S(1/p, g). The proof  of [1, Lemma 2.4] easily gives 
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also that paE S(p ~, g) for any real number a and not only for a = -  1. (See also 
the more general Proposition 3.5 below.) Using this fact with a = -  1/2 we shah 
now prove 

Lemma 3.2. For any N we can find qE S(]/p, g) so that 

(3.4) qW(qW),_pW= r~, r~ES(hNp, g). 

Proof Put qo=p-~12ES(p -1/2, g). Then the calculus gives 

1-qypWqy = r TM 

where rE S(h, g) is real. If  we denote the sum of  the first N terms in the power 
series expansion of  ( l - x )  1/2 at 0 by TN(x), then 1--x--TN(x) 2 is a polynomial 
divisible by x ~v. Hence 1--rW--TN(r~)~S(hN, g), SO 

TN(r') ~ -- qYpW qY E S(h N, g). 

The product of  Tu(r w) to the left by a parametrix for  qo, constructed according 
to Lemma 3.1, will now satisfy (3.4) since TN(r TM) is self adjoint. 

The following simple technical lemma should have been included in [2]. Just 
as Lemmas 3.1 and 3.2 it does not require (3.1) but only that h ~ l .  

Lemma 3.3. I f  zi is a bounded sequence in S(1, g) with limit Z, then ZTu~ zW u 
in L ~ for every u~L 2. 

Proof We may assume t h a t  Z = 0  and in view of the uniform L 2 bound [2, 
Theorem 5.3], we may take  uE5O. Then we have Z~. u-~0 in 5O', and since Z~u is 
bounded in 5O by [2, Theorem 5.2] we obtain Z~.u~O in 5O. 

Theorem 3.4. I f  (3.1) is fulfilled and pES(p,g) then pW(x, D) defines a self 
adjoint operator P in L ~. It is bounded from below, and i f  p ~  at ~o then the 
spectrum is discrete. 

Proof The domain of  P consists of  all uEL 2 with Pu=pW(x, D)uEL z. That 
P is closed follows from the continuity o f p  TM in 5 ~ To prove that P is self adjoint 
it is sufficient to show that P is the closure of  its restriction to 5 ~ Choose a sequence 
zjECo(R ~") which is bounded in S(1, g) and converges to 1. We may for example 
take the partial sums of a partition of unity corresponding to the metric g. If  uEL ~ 
we have z~uESO and )~fu~u in L ~ by Lemma 3.3. According to Lemma 3.1 we 
can choose qES(l/p,g) so that 1--qWp~=r TM, rE S(1/p, g), for lip is bounded by 
a power of  1/h since p is a temperate and O.I) is assumed. I f  uEL~,p~'(x, D)uEL ~ 
we write 

pWz'fu = p~'z~'q~'p~u +pWz'fr~'u. 
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The symbols ofp'~z~.r TM and p~z)~q ~' belong to a bounded set in S ( l , g )  and con- 
verge to the symbols of  pWrW and pWqW respectively, so with L ~ convergence we 
obtain f rom Lemma 3.3 

pWzyu -~ pWq~(pWu)+p~r~u : p~u. 

To prove that  p is bounded f rom below we choose q according to Lemma 3.2 
so that qW (q~),_pW=r,~ ' rES(1, g). Then r TM is bounded in L z and 

( p ~ u , u )  > = - ( r ~ u , u ) ,  u ~ e ,  

which proves the assertion. Now assume that  p - ~ o  at co and choose q according 
to Lemma 3.1 with N = I ,  say q=l/p.  Then qW and r ~ are both compact.  Hence 

u = qWpWu-rWu 

belongs to a compact  set in L 2 when HuH and [[Pu][ are bounded, which proves 
that  the spectrum is discrete and completes the proof  of  Theorem 3.4. 

So far we have only considered the symbol Z(P) when g ( t ) =  t ~, but  now we 
shall consider more general choices. Let a(t)2dt ~ be a slowly varying metric on R +, 
that  is, 

1 a (t) 
(3.5) a ( t )  [s--tl < c =~ - -  <-- <-- C. 

C -  a ( s ) -  
A sufficient condition for this is that  

(3.6) 

for then we have 

[a'(t)I <~ C" a(t) ~ 

1 1 [<=C, lt_s] 
a(t) a(s) 

which implies (3.5) with C = 2  and c=1/2C'.  Let m be a~dt 2. continuous, say 

(3.7) [m'(t)l <= C"m(t)a( t )  
and let ZE S(m, a2dt~), thus 

(3.8) [Z(k~(t)[ ~ Ckm(t)a(t)  k. 

F o r  what metrics G can we then conclude that X(P)~ S(m(p), G)? For  first order 
derivatives this requires that 

IZ' (P)(dP, t)] ~- re(p) G( t )  v~ 

when (3.8) is fulfilled, so we need to know that 

a(p) 2 [dp] ~ <: G. 

The second differential of  Z(P) is 

Z" (p)(dp, tl)/xdp, t2) + Z' (p) p" (tl , t~). 
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There is no new problem in estimating the first term, but for the second one we 
just have the bound 

Crn (p) a (p) p g ( q)l/2 g (t2)1/~ 

so we also need to know that a(p)pg<=G. Thus we are led to define 

(3.9) G = a (p) ~ ]dp] 2 + ( 1 + pa (p)) g 

where a term g has been included to make G>=g. 

Proposition 3.5. I f  pES(p ,g)  and a(t)2dt 2 is a slowly varying metric on R +, 
then the metric G defined by (3.9) is slowly varying. I f  m is a~dt 2 continuous and 
xE S(m,a)  then re(p) is G continuous and ~(p)E S(m(p), G). 

Proof To simplify notation we shall write X instead of  (x, 4) and so on, for 
the symplectic structure plays no role yet. Let Y be in a small G ball with center 
at  X, that is, 

(3.10) a ( p ( X ) ) ~ ( Y - X ,  dp(X))2+(1 + p ( X ) a ( p ( X ) ) ) g x ( Y - X  ) < c 

where c is small. Since g<=G we obtain a bound for gr/gx and p(Y) /p(X)  if  c is 
small enough. For  0 < s < l  it follows f rom Taylor 's  formula that  

t( Y -  X, dp(X + s ( Y -  X))--dp(X))t  <= Cp(X)gx(  Y-- X ) 

so (3.10) gives 
a(p(x))t<Y-X, <= cl/ +Cc. 

Hence, by Taylor 's  formula, 

a(p(x)) Iv( Y ) -p (X) l  <= cl/  + cc. 

I f  we choose c small enough then (3.5) gives a bound for a(p(Y))/a(p(X)),  and if 
m is a2dt 2 continuous we also obtain a bound for m(p(Y)) /m(p(X)) .  By Taylor 's  
formula we obtain as above, using (3.10), 

a (p (X)) 2 I(t, dp ( X ) -  dp (Y))l ~ <= Ca (p (X)) 2 p (X) ~ gx ( Y -  X) gx (t) 

c(1 + a (p (x)) v (x)) gx (t), 

and this completes the p roof  that the metric varies slowly. 
To show that  Z(p)ES(m(p), G) we observe that the k-th differential o f  Z(P) 

is a linear combination of  terms of  the form 

Z (J) (p) p(kl) ... p%) 

with all k v ~ l .  We can estimate Z(J)(p) by m(p)a(p) j so it suffices to prove that 
for i ~ l  we have 

la(p)p(O(q . . . .  , ti)l ~= Ci ]-]i G(tv)l/2. 
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For  i=  l this is obvious because of the first terra in (3.9), and for i>1  we note 
that the condition pE S(p,  g) implies 

a(p)}p(i)(tl, ti) I < a (p )c ip  g i g(tv) 1/2 

= c i pa (p) (1 + pa (p)) - i/2 ]7 i 1 ((1 + pa (p)) g (tv)) ~/2. 

This completes the proof, for the factor in front of the product is bounded. 

Next we shall examine when the uncertainty principle is valid. 

Lemma 3.6. Let g be a positive definite quadratic form in a symplectic vector 
space W and let 

G(t)  = a ( t , f )2+g( t ) ,  tEW 

where f is a f ixed element in W. I f  g<=h2g ~ it follows then that 

G ~ 2 ( g ( f ) + h 2 ) G  ~. 

Proof. We must show that G~(w)NI implies G(w)<=2(g(f)+h2). Now 
G~(w)-<_ 1 means by definition that 

a(t,  w) 2 <= a ( t , f ) 2 +  g(t). 

The form (t~(t, f ) ,  t ) ~ a ( t ,  w) can then be extended to R@ W with norm 1, so 

a( t ,w)  = a ~ ( t , f ) + a ( t , b )  where bEW, aER, a2+g~(b) <= 1. 

Thus we have w = af+ b, hence 

G(w) "<_~ a (b , f)2 + g(af  -t-b) <= g ~(b)g( f )+ 2( a 2 g ( f ) +  g(b)) 

-< g~(b) (g ( f )+  2hz)+ Za~g(f) < 2 ( g ( f ) + h  2) ~ . 

Let us now return to the metric (3.9). It is of  the form discussed in Lemma 
3.6 with f = a ( p ) H p ,  where Hp is the Hamilton field of p, and g replaced by 
(1 +pa(p))g.  Assuming that for the given metric 

g <= h~g ~ 
we obtain 

G ~ 2 ((1 + pa (p)) a (p)2 g (Hp) + h 2 (1 + pa (p))2) G ~. 

We may assume that (dp, t)2<=p2g(t). Then 

gO(Hp)=sapa(Hp,  t ) 2 _  sup(d~(t~ 2 <_p2 
g(t)  

so g(Hp)<=h2p ~ and 

('3.11) G <_- 2(1 +pa(p))3h~G ". 
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Let y be any positive number such that 

(3.12) h ~ C p - '  
and let 0<6<27/3 .  I f  

(3.13) 1 + ta (t) <= C(I + t) ~ 

it follows from (3.11) that G/G" is bounded by a negative power o fp .  From now 
on we also assume that for some C and N 

(3.14) 1 + Ixl + !41 <= Cp(x, r 

Note that (3.1) follows from (3.14) and (3.12). Then it follows that G has all the 
properties of the metric g required at the beginning of the section: 

Proposition3.7. Assume that (3.5) and (3.12)--(3.I4) are fulfilled and that 
6<2~/3. Then the metric G is a temperate and 

ax,r _-< C(1 +lxl + I 1) -c 
G~,~ 

for  some C, c>0.  I f  m is a(t)~dt ~ continuous and 

m(s) 
(3.15) re(t) <= C(1 + s + t )  n 

then re(p) is a, G temperate, 

Proof. There is a fixed bound for G~,n/G~,, if Gx,r  r / - ~ ) < c ,  and if 
G~,r rl--~)~c then G~,,e(y-x, ~ l -~)>cH(x ,  ~)-2 which bounds a positive 
power of 1 + Ix[+ [~[. Since 

g~,, =< G~,r ~ C(1 +p(x ,  ~)a(p(x, ~)))2g~,r ~ C'(1 +p(x,  ~))~g~,r 
we have 

( l + p (  g~,~ ~ G ~ > x, x , ~  = , ~  

o" o" 

~'6 o- g;'" -< C(1 + p(x, ~)) (l + g x , r  ~'~I)) n C,_ x G~,, -< (1 +p(x,  r g~,,r 
G~,,r = _=7-- = 

C~(1 + p(C 1, ~))zn(n+l)(l +G~.r ~--rl))n <= C2(1 +G~,r  ~-t l))  n'. 

Hence G is a temperate and the last assertion follows in the same way. 
As explained in the introduction we are interested in functions zx~S(1, a~dt 2) 

which approximate the Heaviside function H ( 2 - . )  well when 2 is a large positive 
number. Choose zEC ~ so that Z ( t ) ~ l  for t < 0  and Z( t )=0  for t > l ,  and set 

The derivative of order j has the bound Cje - j  when 2 < t < 2 + e  and vanishes 
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elsewhere. Thus we want to choose a(t) roughly equal to 1/e in (2, 2+e)  and so 
that (3.6) is fulfilled, that is, 1/a(t) is Lipschitz continuous. To make a as small 
as possible we therefore define 

(3.16) a~,~(t) = (e2+(t-2)~) -'/2. 

The condition (3.13) then becomes 

- '  <- C (l+t) t _-> 0.  

This condition is of course fulfilled if t < 2 [ t - 2  I, and if l t -2]-<t /2  then t/2<= 
2<=3t/2 so the condition is fulfilled if 

(3.17) e = 21-6. 

Summing up, (3.17) implies (3.6) and (3.13). With this choice of e we shall write 
X~ and a~ instead of Z~,~ and a~,~. The corresponding metric defined by (3.9) will 
be denoted by Gz, and we have ezES(1, GD if ez---gz(p). The calculus of  pseudo- 
differential operators shows that the symbol of  e [ (1 -e~ ' )  is in S(I ,  Ga) and that 
it can be estimated by any negative power of (1 + Ix]+ ]~t) except when 2 < p <  
2+e .  This estimate is uniform with respect to 4, for in Propositions 3.5 and 3.7 
the constants implied by the conclusions can be estimated in terms of  those occurring 
in the hypotheses. We shall now estimate the trace norm (see [5, Section 4] and [2, 
Section 7]). 

Lemma 3.8. I f  qECo(R 2n) and N>=n+ l then with B denoting the unit ball 

(3.18) IlqWllTr <= CN(llqll~+ff ( sup ID~q(x+y, r dxdr 
(y, rl) E B, I~I=N 

Proof. It is clear that q~ is of trace class if qE6e (see e.g. [2, Lemma 7.2]). If  
L is a real linear form in R 2~ and qL=qeiL then the trace norm of  q~' is equal to 
that of  q~. In fact, by the unitary equivalence theorem [2, Theorem 4.3], we may 
assume that L(x, 4) depends on x only, and then q~=e ill2 q~e ill2 which proves 

the assertion. Hence we obtain 

f IlqWllTr, fEC~, 

if we express f in terms of  f by Fourier 's inversion formula. Choosing q =  1 
in B we obtain by Bernstein's theorem 

(3.19) I[f~lIr~ <- CZl=i_~,+asup IDLY], fEC~+~(B). 

Fix rP~Co(B) with f f  ~o dx a~=l and set, now with any qECo(R2n), 

= e ( y - x ,  
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I f  we show that 

(3.20) I[qx~,e[lTr ~ C([[qx,,IiLI+ sup [D~q(x+y, r 
(y, ~) E B, I~l = N  

then an integration with respect to (x, 4) gives (3.18). It is of course sufficient to 
prove (3.20) when x = ~ = 0 .  Write 

q(Y, n) = T(y, n)+ R(y, O) 

where T(y, ~l) is the Taylor polynomial of degree N--  1. Then 

sup ID~R(y, t/) I _<-- C sup ID~q(Y, 0)1. 
(y,r/) E B, [alaN (y, t/)EB, [~I=N 

Hence the L 1 norm of qgT=qo.o--~oR can be estimated in terms of  the right hand 
side of (3.20), so this is also possible for the coefficients of T since all norms in 
the finite dimensional vector space of polynomials of  degree < N  are equivalent. 
Thus we have 

sup sup [D'qo, o(y, 0)1 <- C([Iqo.ol]L~ + sup ]D~q(y, r/)j) 
y,t/ [~I~_N (y, r/) EB, I~I=N 

so (3.20) follows from (3.19). 

Theorem 3.9. Let g be slowly varying and let m be g continuous, g<=h~g" where 
h<= 1. Then we have for every integer k>=O 

[IqwllTr ~ Ck(l[ql[Ll+l[h*ml[L~l[q[I), q~S(m, g), 

where llqll is a seminorm of q in the symbol class S(m, g) which only depends on k 
and the constants in the Slow variation and g continuity assumed. 

Proof Let ~o i be the partition of  unity constructed in [2, Section 2], let g~ be 
the metric at the center of  the support of  q~i and let m=m~, h=h~ there. It suffices 
to show that with q~=~iq we have when N>n 

(3.21) [lqWllT~ <= Cu(llqi[IL~+ h~ '2 [det g,[-1/~ sup tq,[~). 

In doing so we may assume that qh is centered at 0 and that 

n " 2 2 g~ = ~ , ~ ' ~ j ( x ~ + L ) ,  ,~j_<- h~. 

The measure of the set of points at distance ~ 1 from the support of  q, is bounded 
by a constant times [det gi[-x/2 and 

ZI~I=Nsup [D~qil <= Ch~/~ sup lqil~ 

so (3.21) follows from (3.18). 
We can apply Theorem 3.9 to e~ (1-- e]'), with m =  1 and g replaced by Gz, 

When k is chosen so large that H~ is integrable, if H~ = sup Gz/G~, and we recall 
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that the symbol is <=CH~ except when 2 < p ~ 2 + e ,  we obtain 

(3.22) I]e~'(1 - e~')llr, <-- clffa~:p<~+, dxd~ +C2. 

To complete the preparations for the application of Lemma 2.1 in Section 4 
we shall finally prove 

Lemma 3.10, There exists a constant C such that 

(3.23) eT(p'~--2)e~ <= Co, (1--e~')(p~-2)(1--e~) ~ --Co. 

Proof Let f ( t )=[ t  I when ItI=-l, fEC ~ and f > O  everywhere, and set 

fz(t)  = e f ( ~ - l  ) ,  e = 2 I-~. 

Then f~(t)=--(t--2)  when t < 2 - e  and f ( t ) = t - 2  w h e n  t > 2 + e ,  and it is 
clear that a~f~ has fixed upper and lower bounds. To prove that fa satisfies (3.15) 
we observe that 

a~(t) 1+ ) - s l  <=C(l+t+s) ~+N 
a~(s) e 

unless 
(t+s) s < e - I  = i~-1. 

If  N is large this implies that t+s<)t/2 and then I t -1 l  and Is-- i  I lie between 
2/2 and 2 so a,(t)/ax(s) is bounded. Thus a~ satisfies (3.15) so f~ does, and F~ =fa (p) 
is G~ temperate. It  is clear that 

F~S(F~, a~) 

with a uniform bound for each seminorm. 
We shall now prove that 

(3.24) I[eg(pW-2+F~)egll <= Ce, [ l ( 1 - e ~ ) ( p W - 2 - r ~ ) ( 1 - e D l l  ~ Co. 

To prove the first estimate we observe that p -A + F ~  is uniformly bounded in 
S(Fz(p/2) v, G~) for any v > 0  since it is 0 for p < 2 - e .  (That p is Gz continuous 
is obvious since g~Gz,  a n d p  is a, G~ temperate since (3.15) is valid for m(t)=t.)  
All terms in the composition series for 

(3.24) e# (pW - 2 + F~) e# 

vanish except when [p--2[<e.  Thus the symbol of (3.24) is bounded in S(Fz, Gz), 
and when Ip--~l=>~ it is bounded in S(Fz(p/2)VH~, Ga) for any v, N. Now recall 
that Ha<=Cp -r  for some F > 0  depending only on the choice of ~. If  N F > v+ I  
we conclude that the symbol of (3.24) is bounded in S(e, Gz) which proves the 
first estimate (3.24). The second one follows in the same way if we observe that 
p - 2 - - F a = 0  when p > 2 + e  and that 1 - e a  is bounded in S((p/2) ~, Ga) for any v. 
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What  remains now is to establish a lower bound for Fz TM. As in the proof  of  
Theorem 3.4 it follows f rom Lemma 3.2 that one can find Rx boundedin S(FzH~N., Gz) 
for any desired N so that  

(3.25) F~ => R~'. 

However, F,~Hff need not be small near 0 so we have to use some supplementary 
arguments to show that the lower bound of F] '  is ~ - - C e .  

Choose a decreasing function ~o on R so that  qg( t )=l  for t < l ,  ~0(t)=0 
for t > 2  and (p(t)~+~k(t)~= 1 for another C ~ function t~. Then 

is uniformly bounded in S(#,g)  so for some C > l  

Ilpf, ll <- c#, tt > 1. 
When C # = 2  we obtain 

2 - p ~ '  ~ 0 .  

Write 4~a=~p(3p/iz ) which has support where p < i t ,  thus p ,=p .  Then 

w (4  w) + ~  > 0 ~ - - p .  ~ = 

and we shall estimate the difference between the operator on the left hand side and 
the operator with symbol ~ . ( 2 - p )  which is the leading term in the composition 
series while the first order terms cancel. The symbol of  the difference is bounded 
in S((2+p)h 2, g) and when p > i t  it is bounded in S((2+p)hN, g) for any N since 
all terms in the composition series vanish. In that case 

h <~ Cp -~ ~ C'2 -~ 

so if 1- - (N--1)7-~0 we obtain that the symbol is bounded in S(21-r,g) when 
p ~ i t .  When # / 3 < p < #  the symbol is bounded in S()J -~e,g) since 2h2<C). ~-2r 
then. Finally, when p-~#/3 it is convenient to note that ~ a =  1 - ~ E  S((p/2) ~, g) 
for any v. The error is therefore bounded in the symbol space with weight 

2h 2 -< 2p-2~ .< 21-~  

if  we choose v=27. Summing up, the symbol of  

~,V ",v W 2 ~,P - p . )  - (4  - p ) )  

is bounded in S(2a- r ,g)  so the lower bound of  (4~(2-p) )  ~' is ~ - C e .  
With ~ z = ~ ( 3 p / # )  we obtain from (3.25) 
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Here ~ is bounded in S((p/2)", Gx) and R is bounded in S(F)H~, G;~) for some 
large N which we can choose as we like, so the symbol of  the right hand side of  
(3.26) is bounded in S(m, Gz) with 

m = Fall ~ <- C(p+2)p -Nr < C'2 ~-~ 

if  N is chosen so large that NF>v+ 1. Hence the norm of the operator on the 
right hand side of  (3.26) is O (e). The symbol of  

W w w 2 w 

is bounded in S(m, G;~) if m=F)H~., and outside suppdTJz it is bounded in the 
symbol space with m=(p/2f 'FxH~ for any N, so the arguments above are applic- 
able there. In supp dTt~ we have #/3<=p<=2p/3 so HA is equivalent to h and Fx 
to 2 there. Hence F a H ~ < 2  ~-2~ there so the symbol in question is actually bounded 
in S(21-2~, Gz). Hence the lower bound of (TS]Fz) TM is =>-Ce.  The same is true 
of  (4~]Fa) TM and adding we conclude that the lower bound of  F~ TM is =~--C~, which 
completes the proof. 

4. The eigenvalue estimate 

Let p~S(p,g)  and assume as in Section 3 that 

gx (4.1) h(x, 4) 2 = s u p ~  ~ Cp(x, ~)-2~, 
gx,r 

(4.2) l + l x l + [ ~  T <= Cp(x, ~)N. 

Denote the number  of  eigenvalues --<_2 of  p~'(x, D) by N(2), and let 

w(2)  = ( 2 ~ ) - n f f v ( x , ~  ~ dx d~ 

be the expected approximation. We shall prove 

Theorem 4.1. I f  0 < 6 < 2 ? / 3  then one can find Ca so that .for large enough 2 

(4.3) IN(2) - W(2)[ <= Ca (W (2 + 21- ~) - W (2 - 21 - ~)). 

Before the proof  it is useful to make some preliminary observations on the 
measure of  the set where 1p /2 -11<2  -e which occurs in the right hand side of  
(4.3). With appropriate symplectic coordinates y, t /centered at a point where p = 2 ,  
the metric form is bounded by h(IyI2+Itl[ 2) and 1p/2- l i<2 -~ if for a suitable 
c > 0  

hl/2 lYlI+ h (lY [z + it/Ie) < c2-~. 
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The volume of this set (which is a symplectic invariant) is proportional  to 

(h26) ~ -"  2 - 36/2 h -  1 > C '  2 (~- 6) ( , -  1) + 7-- 36/2 

so it tends to ~ with 2. 

Proof of  Theorem 4.1. As explained in Section 3 we choose an approximation 
)~ to H ( 2 - . ) ,  where H is the Heaviside function, so that  Z~= 1 in ( - ~ o ,  2) 
and Z~=0 in (2+21-~, ~).  I f  e~=xa(p)  then 

Tr  e~' = (2~)-" f f  e a (x, 4) dx d~ 

lies between W(,~) and W(2+;tl-n).  By (3.22) we have 

]Leg(l -eDllw~ <- Ca(W ( i~ +,~t-a)-W ( 2 -  R~-6)) + C2, 

and we observed after the statement of  the theorem that  the second term on the 
right is much smaller than the first one for large 2 so it can be dropped. By Lemma 

3.10 we have 
e'~(pW-)Oe'~ <- C21-6, (1 -e~)(pW-) . ) (1  - e ~ )  > -C21-6, 

so Lemma 2.1 gives 

N0~ + 4C21-6) ~ W(2)--  C3(W(2 + 2 t-6) -W()c--)~-a)), 

N(2- -4C2 ~-~) <= WOo)+C3(W(2+)~1-6)-W(2--2~-6)). 

I f  we introduce #=2_+4C2 ~-6 as new variable, we conclude that  

IN(~)-W(~)t ~ G(W(~+C~ ~-~)-w(~- CJ-~)) 

for some new constants Ca, (72. I f  we replace 5 by a smaller number, the constant 
Cz may be omitted and the theorem is proved. 

We shall now compare Theorem 4.1 with the results proved in [5]. In our nota- 
tion the hypotheses made in [5] are first of  all that p6 S(p, g) where for some 0">0  

In addition (4.2) is assumed and a hypothesis is made which implies 

W(2-~]A)-W(l~) ~ CW(~,)#,~ a-l, 0 < # < ~1, l-a, 

where 0<=a<0 '. Then the conclusion in [5] is that for 5 < 0 '  

(4.4) IN(2)-W(),)I  ~ CoW(~)Z a-6. 

I f  we apply Theorem 4.1 in this situation we can take y = 2 0 '  and 5<40 ' /3 .  With 
# = 2  ~-6 we have ~<<21-~ if  6>a. I f  just a<40"/3 we can choose 6 with a<6< 
4~'/3 and obtain f rom (4.3) that (4.4) is valid. Thus we have replaced the hypo- 
thesis a < e '  by a<40"/3 and improved the error estimate (4.4) so that  it holds 

for any 6<40 ' / 3  instead of  any 5<0" .  
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Let us consider as an example the harmonic oscillator corresponding to 

n 2 p(x, ~) = Z 1  (x~+~)+ 1 

(we have added 1 to make Theorem 4.1 applicable). Then 0"=1/2 and a = 0  so 
our error estimate means that 

[U(2)-(2zc)-" f f  dxdr ~C~2 "-~ when 8 < 2 / 3 .  (4.5) p<). 

Now the eigenvalues of p'~ are 

~+Z~(2~j+  1) = ~ + 1 + 2  Z ~ s  

where ccj are non-negative integers. Thus N(2) jumps just at the integers congruent 
to n + l  rood2,  and when 2 = n + 1 + 2 # , #  an integer, then 

N(2) = :~{(al . . . . .  a,); a i_-> 0, ~ a j  ~ #} = [ 4- ~ 

( u + n ) . . . ( # + l )  _ #" 
= n! n! q- O(#"-1)" 

On the other hand 
, 

(2re)-" f f  p <a +a dx d{ = 2" (2zc)-" f f  l ~ J= + t~J=<a dx d{ - 2" n 

so (4.5) is actually valid when 6 = 1 but for no larger value of 6, because of  the 
jumps in N(2). 

If  p has an asymptotic expansion in homogeneous terms 

p ~ p,,(x, ~)+p,,-l(x, 4)+ ... 

and p , , # 0  except at 0, then we can take y=2/rn and obtain from (4.3) 

(4.6) [U(2)-(ZzO-"22"/"(ff t,,,(x,~)<1dxd~-2-a/"@m_l, 6(p,,-1)))1 ~ C~22"/"-~ 

for every 6<4/3m. Here 6(pm-1)=dS/lp',,,[ where dS is the Euclidean element 
of area on the surface pm= 1, so the second term in the parenthesis vanishes if 
p is a polynomial in (x, 3)- The example above raises the question if (4.6) is always 
valid for 6=2/m. This is made plausible by the analogy with pseudo-differential 
operators on a compact manifold where the methods used in this paper should 
give 

N(2)-(2=)-"2"/m f f p dxd{] ~ Ca2 "/m-~ 
re(x, r 

for every ~<2/3m whereas Fourier integral operator methods give this result 
for 6 = 1/m. However that may be, we have still thought it of  some interest to examine 
the scope of  the methods introduced in [5] when combined with the technical 
refinements of  the calculus given in [2]. 
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Theorem 4.1 may be given a more general form containing the "quasi-claassical 
asymptotics" of Subin [4, Appendix 2]. These concern the operator pW(ex, eD) or 
the unitarily equivalent operator p~'(x, e~D) where 0 < e <  1. Set p~(x, ~)-=p(ex, e~). 
Then 

p~ES(p~, ~g) 
uniformly for 0 < e < l  if 

~gx,~(Y, I/) = g .... g(eY, ~q)- 

This is uniformly a-temperate (see [2, Section 7]), and by [2, (7.7)'] 

~gx,r <= h(ex, e~)2e 4 if h(x, 4) 2 = sup gx,_____L 
gx,r gx,~ 

From (4.1) we therefore obtain 

<= 
~g~, 

so (4,1) is also satisfied by the new metric and the symbol p~(x, ~)e -2/~. For large 
N we have 

Cp~(x, ~)e -2:~ >= (1 +e  tx I +E I~])l/s~ -2/~ _--> (1 + }x} + ]~])I/N 

so (4.2) is also uniformly satisfied. It follows that the conclusion of Theorem 4.1 
is valid uniformly in ~. 

Let N~0.) be the number of eigenvalues <-_2 ofp~(~x, eD). Then p~'(~x, eD)e -~/~ 
has N~(e2l~A) eigenvalues ~2 ,  and 

(27r)-" f f  dx d~ : ~-2"W(~2/~2). 
d d p(~x,l:~)~:-~,/'e<2 

When 0<5<27 /3  we Obtain from Theorem 4.1 for large 2, 0 < ~ < 1 ,  

IN~(~2/~2)-~-~"W(e2/~)OI-<Cae-2"(W(~/~()~+2t-a)) W(eZ/~ 0. 2t-a))) 

Changing notations we obtain 

(4.3)' [N~(2)--e-2"W(2)t ~ C~e-2"(W(2(l +e~n/'~2-~))-W(2(1-~2a/r).-a))) 

provided that 2e -2/~' is large enough. 
For a fixed 2 which is not a critical value of p the parenthesis on the right 

hand side of (4.3)" is O(e 2n/r) so it follows that as e-~0 

(4.3)" !N~0~)--e-2"W(2)] ~ Coe ~ 

for every 0<4/3. When 0 <  1 this is Proposition 2.2 of ~ubin [3, p. 241]. 
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