Solvability and alternative theorems
for a class of non-linear functional
equations in Banach spaces

Jens Frehse

0. Introduction

In a preceding paper [4], we proved the existence of a minimum for mappings
F: B>R from a reflexive Banach space B into the reals under the following
assumptions (we present only a special case):

(0.1) F is lower semi-continuous in the weak topology.
(0.2) F is bounded from below.

(0.3) F is convex (resp. satisfies a surrogate convexity).
(0.4) F is semi-coercive, i.e.

F(u) = c|lul|?— K| Qu|P—K
with constants ¢, K, p=0 and a linear projection Q onto a finite dimensional subspace.
(0.5) F(u+1tv) is a polynomial in tcR.

Furthermore, we obtained a Fredholm alternative theorem for the existence of
minima of F(u)+{(g, u), g€ B*.

Note that condition (0.4) frequently occurs in the theory of partial differential
equations. It is well-known that condition (0.5) can be deleted if “full”’ coercivity
F()=c|lul|?—K holds.

In this paper, we present a non-variational analogue of the above theorem
for continuous mappings 7 from a Banach space B into its dual B*. In particular
we shall show that equ. Tu=0 is solvable if the following conditions hold:

(0.6) {Tu—Tv,u—v) =0, u,v€B
0.7) lim inf (Tu, u}/llull =0 (Ju)] »<)
0.8) (Tu,u) = clu?—K|Qu||P—K
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with ¢, K, p, Q as in (0.4)
(0.9) (T(u+tv), wy is a polynomial in t€R.

The difference between this result and the classical one is that we do not assume
the “full” coerciveness (Tu, uy=c|ju]’—K. Again, condition (0.8) is natural for
applications involving partial differential equations, however condition (0.9) may
not be deleted in this case.

Our method of proof yields the following alternative theorem: Under the
above conditions — without the asymptotic non-negativity (0.7) — the linear hull
of the range R(T) of T has finite codimension and equ. Tu=f is solvable if and
only if

f=T@©) L(R(T)-T(O0))*

ie. R(T—T(0)) is a linear closed subspace of B.

Alternative theorems with linear principal part have been obtained by
Kacurovskii [7], [8], Hess [6] and Petryshyn. Our conditions allow polynomial
growth of the mapping 7. The alternative theorems of Pohodjayev [12], Necas [10]
and Petryshyn [11], Theorem 2, are of a different type since they treat only the
surjectivity of 7.

1. The finite dimensional case

We study continuous mappings 7: R*—~R" with the following properties

(1.1) “Polynomial behaviour”. If for some pair v, w€R" limsup |(T(w+ 1), v)}<eco
(t—~) then (T(w+tv), v) is constant in t€R. Here, (., .) denotes the Euclidean
scalar product,

(1.2) “Even polynomial behaviour”. If for some pair v, wER" we have

(i) lminf @ =0 (|t ><)
(i) limsup [t| 2o () =0 (|| »),
where

@ (1) = (T (w+tv), w+1v),
then
t7ro() ~0 (Jjt| )

(1.3) ““Asymptotic monotonicity”. For any fixed v€R"
liminfju—o| Y (Tu—To,u—v) =0 (ju| >)
(1.4) «“Asymptotic non-negativity.”

liminf ju]"*(Tu,u) =2 0 (ju] > o).
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Property (1.2) holds if the components of T are polynomials in » variables. Then
@(t) is a polynomial in ¢ and condition (i) implies that ¢ is an even polynomial.
Condition (i) implies that ¢ is at most linear (for this special pair v, w) and, being
even, must be constant. But then, 1@ (#)—>0 (|t|—<).

Theorem 1.1. Let T: R*>R" be a continuous mapping which satisfies the con-
ditions (1.1)—(1.4). Then the equation Tu=0 is solvable.

For the proof of Theorem 1.1 and, later, Theorem 1.2, we need the following
technical

Lemma 1.1. Let T:R*—>R" be a continuous mapping which satisfies (1.1)—
(1.4). If for some vER" we have

sup {(Tw, v) | WER"} <o,
then v R(T).

Here R(T) denotes the range of T.
Proof. Let tcR. We insert w-+tv for w in (1.5) and obtain
(1.6) g(t)y=(T(w+t),v) =K, t€R.
We show that g(¢) is bounded from below for fixed weR". By (1.3)
liminf |t] "2 (T(w+t) —Tw, tv) = 0 (t ~<°)
and hence there exist constants C(w) and t, such that
(Tw+t),0) =—C(w), t=1,.

Thus, for fixed weR”, g(¢) is bounded from above and below and hence, by con-
dition (1.1)

(1.7 (T(w+1tv),v) = const := (Tw,v), tER.
Now, let

(1.8) o) = (T(w+mw),w+), teR.
By (1.3)

liminf t|"Y(T(w+w)—TQ2w), —w+1) =0 (Jt| >).
This yields in view of (1.7)
limsup [t|~}(T(w+ 1), w) = C(w), lt] ~, 1€R
with some constant C(w). Using (1.7) again we obtain
limsup [{|72e(f) <o ({t] >)
From this, condition (1.4), and (1.2) we conclude

(1.9) t7 e ~ 0 (lt] ~<).
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Finally, for fixed s€R, we have in view of (1.3)
1.10) lim inf ||~ Y(T(w +10)—T(sw), 1 —)w+1) = 0 (|t} = ).
Using (1.7), (1.8), and (1.10)
lim inf |¢] 72 [(1 —5) () +s(Tw, tv) —(T(sw), A —=s)w+ )] =0 (Jt] > o)
Passing to the limit #—+o and using (1.9) we find the inequality

+s(Tw, ) F(T(sw),v) =0
from which
s(Tw,v) = (T (sw), v)
and, in view of (1.5)
s(Tw,v) = K, s€R.

Passing to the limit s—ZF - we obtain

(Tw,v) =0, weR®

g.e.d.
Proof of Theorem 1.1: Set T,u=Tu+eu, ¢=0. In view of (1.4) the mapping
T, is coercive, i.e. (T,u, 4)/ju]>c as |u|-co. Thus there exists a solution u, of
the equation T,u=0 (cf. e.g. [3]). If the sequence (u,) is bounded as £—0 it has
a clusterpoint »* which solves 7u*=0. Hence we may assume that for a sequence
A, of numbers ¢+0 we have |u,|—><o, |u|720. Selecting a subsequence A 4,
we may assume that |u| lu,~v (e€4, ¢>0) for some v€R" with [p|=1. We

show (Tw,v)=0 for all weR". By condition (1.3)

(1.11) liminf (T,u,—T,w, u,—w)/|lu,—w!l =0 (¢ -0, s€A).
Using T,u,=0 and then passing to the limit ¢—~0 we obtain from (1.11)

—~(Tw,v) =0, w¢R”
and by Lemma 1.1
(1.12) (Tw,v) =0, weR”.

In the case n=1 this gives us the solvability of Tu=0. For n=2, we proceed
by induction: Let (v) be the one dimensional subspace spanned by v and V={v)*
its orthogonal complement. Then the restriction Ty, of T to ¥V maps V into itself
and satisfies the conditions (1.1)—(1.4). By induction hypothesis, there is a #*€V
such that (7u*,z)=0 for all z€¥. Using (1.12) it follows that Tu*=0 which
proves the theorem.

With the method of the proof of Theorem I one can obtain the following
“alternative theorem™.
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Theorem 1.2. Let T: R"—>R" be a continuous mapping which satisfies the con-
ditions (1.1)—(1.3) and let T(0)=0. Then the equation Tu=f is solvable if and
only if f L R(T)*, i.e. R(T) is a linear subspace of R".

In the simplest case of a‘monotone mapping T with polynomials as components
the above theorem yields that the equation Tu=f is solvable if and only if f—T(0)
is orthogonal to R(T—T(0))*.

We first prove

Lemma 1.2. Let v€R", v#0, v L R(T), V=(v)* and z€R" such that z 1 T(V).
Then, under the assumptions of Theorem 1.2, z | R(T).
Here (v)' denotes the orthogonal complement of the space spanned by v.

Proof. Let z=z,+{v, z,€V, {€R, and weV, a€R. By (1.3) and the orthogonal-
ity v L R(T)

liminf [¢| YT (w+tz, +atv) —T(w£2tz;), £12,) =0 (¢ o).
We have z, | T(V) and wt2tz,€ V. Thus (T(wt2izy), z)=0 and
lim (T (w+ 1z, +atv), zy+av) = im (T(w+1tz,+atv), 2) = 0 (¢ <o)

By (1.1) thence (T(w+iz;+amw), z;+av)=0 for all ¢ or (T(w+1z,+atv), z,)=0
for all t€R, a€R, wel., Setting t=1, the lemma follows.

Proof of Theorem 1.2. The “only if” — part of the theorem is trivial: If f is
not orthogonal to R(T)*, then there is a w&R" such that (f, w)>#0 and (w, Tx)=0,
x€R". But then equ. Tu=f cannot be solvable.

Since T(0)=0, we conclude from (1.3) the asymptotic nonnegativity (1.4)
and- the coercitivity of the mapping T,=¢Id+ 7. If u, remains bounded as &0,
a clusterpoint «* of (u,) exists and is a solution of Tu=f Thus we may assume
that () is unbounded and that for a subsequence A we have the convergence
|uy| >~ and |u,|7u,~v (-0, ¢€4) with [p]=1. By (1.3)

liminf ju,—w|~Y(T,u,~Tw,u,—w) =0 (¢ ~ 0, ¢€A)
for every w€R" and hence
(1.11) (f—Tw,v) =0, weR"™
From Lemma 1.1 we then conclude
(1.12) (,Tw) =0, weR"
By hypothesis, f L R(T)*, and thus

(1.13) (f,v) = 0.
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If n=1, it follows from (1.13) that /=0 and from (1.12) that Tw=0, wcR", i.e.
Tu=f is solvable. If n=2 we conclude from (1.12) that
T: V-~V
where
V= (v)+.
Let z1 T(¥). By Lemma 1.2 we conclude z | R(T) and hence f | z by hypothesis.

Therefore, we have f 1 (T(V))* and, by (1.13), féV. Applying the induction
hypothesis for the dimension n—1 to the mapping T: ¥~V we obtain the theorem.

2. The infinite dimensional case

In this section we want to generalize the results of section 1 to the case of
regular mappings 7: B—~B* from a reflexive real Banach space B into its dual B*.

We call a mapping T: B—~B* regular if for every bounded closed convex
set K and any f¢B* the variational inequality

(Tu—f,u—vy =0, vER
has a solution ucK.
Monotone or pseudomonotone continuous mappings are regular (see [2], [3]).
We shall deal with the following conditions

(2.1) ““Polynomial behaviour”. If for some pair v, weB
lim sup (T (w+10), v)| <o (t =)
then {T(w+tv),v) is constant in tER.

(2.2) *“Even polynomial behaviour”. If for some pair v, wEB we have

@) liminf [t~ =0 (jt] »<)
(i) limsup |¢|p(f) <o (Jt] »)
where

@ () = (T(w+1w), w+1v),
then
17le()) ~ 0 (jt| ~)

(2.3) ““Asymptotic monotonicity”. For every véB
liminf{lu—o| ~*(Tu—To,u—v) =0 (uUEB, |ul| ~)
(2.4) “Asymptotic non-negativity”.
lim inf |ul| 7*{Tu, u) = 0 (UEB, |u| »)
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(2.5) “Semi-coercitivity”. There exists a finite dimensional subspace VCB with
bounded linear projection Q: B—V and a constant C such that

flull = C{Qul|+C for all u with (Tu,v) = 0.
For Theorem 2.2 we need a stronger condition

(2.5"). There exists a finite dimensional subspace VB with bounded linear projec-
tion Q: B—V such that for every KE€R
sup {lull/(1Qull +1) | u€B, [jul "*(Tu,u) = K} <o
Remark. Condition (2.1) and (2.2) have been explained in section 1. Condition
(2.5) is satisfied if the following “Garding”-type inequality holds:
(Tu, uy = cljul|?—A]|Qul? -2

with constants 4, ¢,p=0 resp.p=>1 in the case (2.5").

Theorem 2.1. Let T: B—~B* be a regular mapping from a real reflexive Banach
space B into its dual B*, which satisfies (2.1)—(2.5). Then the equation Tu=0 has
a solution.

We first prove

Lemma 2.1. Let V,C B be a linear subspace such that Vo 1 R(T). Then, under
the assumptions of Theorem 2.1,

dim¥, = dim V.

Proof. We argue that the assumption of the existence of a space ¥V, with
dim Vo=n+1, n:=dim ¥V, and V,1 R(T) leads to a contradiction. Let z€V,
be n+1 linearly independent vectors. The n+1 vectors Qz;€ ¥V must be linearly
dependent, thus there exist numbers 4A; such that 2 [4]|#0 and 3;2,0z,=0
(i=1,...,n+1). Let z=2),z;, (i=1,...,n+1). Then zx0 and Qz=0. By
hypothesis

(T(tz),tz) =0, tcR.

On account of the semi-coercitivity (2.5)
Itz = C||tQz||+C =C
which, as ¢—oo, results in a contradiction.

Proof of Theorem 2.1. We may assume dim B=< and suppose that equ.
Tu=0 is not solvable. By induction we then construct linearly independent elements
Z€B, i=1,2,3, ..., such that z; ) R(T) which contradicts Lemma 2.1. Assume
that z;, j=1,2,...,i—1, have been constructed. Let W be a closed linear
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complement to the space spanned by the elements z,...,z_;. For i=1 set
V;={0}. Since T is regular, the variational inequality

(2.6) (Tu,u—xy =0, x€BxnW, By={xcB|lx| =R},

has a solution ugz € Bpn W. If u, lies in the algebraic interior of By n W for some
R=0 then Tug 1. W and hence Tuy | W V,=B by the induction hypothesis. This
leads to the contradiction Tuz=0. Therefore, we may assume uz<dBy and
lugll=R. Setting x=0 in (2.6) we obtain

(Tug,ugy =0
and from (2.5)
2.7) lugll = ClQugl+C
and
(2.8) [Qugll ~oo (R -><°).

By (2.7), (2.8), and the boundedness of Q

9 1Qul = Klugl = 2CK||Qugl, R = Ry.
From (2.9) and the asymptotic monotonicity (2.3) we conclude for any w¢ B
(2.10) liminf [|Qugl " Tug—Tw, up—w) =0 (R —<o).

Let w=w;+w,, w €W, w,€V;. Since uy satisfies the variational inequality (2.6),
wEWnBg for R=R’, and w, | R(T), we obtain from (2.10)

lim inf [Qugl ~X(—Tw, ug) = 0 (R —=o).

By (2.7), the elements || Qug| ~*ux remain bounded uniformly as R—-<, and since
B is reflexive there exists a subsequence A and an element z€ W such that

2.1D) |Qugll tug — z weakly (R —oo, REA)
and
2.12) (=Tw,z) =0, weB.

Furthermore, since Q maps B onto a finite dimensional space we conclude from
(2.11) that |Qz||=1 and z#=0.

Now, let ¥,, be the space spanned by w and z which we equip with some scalar
product (.,.). Let T,: ¥V, -V, be the mapping defined by

(Twx,y) =(Tx,y), x,y€V,.
T,, satisfies the assumptions of the mapping 7 in Lemma 1.1. Hence, by (2.12)

(2.13) (Tw,z) =0, weEB.
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Since z€ W, 270, we have that z¢ V; and the element z; :=z is linearly independent
of zy,...,2z,_,, but orthogonal to R(T). This completes the construction of the
z; and we obtain a space V, | R(T) with dim Vy=< which contradicts Lemma 2.1.
The theorem is proved.

Theorem 2.2. Let T: B—~B* be a regular mapping from a real reflexive Banach
space into its dual B*, which satisfies (2.1)—(2.3), (2.5) and the condition T(0)=0.
Then the equation Tu=f€B* is solvable if and only if f | R(T)*, i.e. R(T) is a linear
and closed subspace of B. Furthermore,

dim R(T)* = dim ¥ (=< o).

Proof. We note first that also condition (2.4) holds on account of (2.3) and
T(0)=0. The “onlyif-part” of the theorem is trivial, cf. Theorem 1.2. For the “if-part”
we may assume dim B=-< and suppose that the equation Tu=f has no solution
where f | R(T)*. Similarly to the proof of Theorem 2.1 we construct linearly indepen-
dent elements z;€B, i=1,2, 3, ... such that z; | R(T) and z; | f, which contradicts
Lemma 2.1. Assume that z;, j=1,2,...,i—1 have been constructed. Let W be a
closed linear complement to the space V; spanned by the elements z,...,z;_,.
Set V;={0}. Since T is regular, there exists an uz€Bzn W such that

(2.14) (Pug—f,ug—x) =0, x€BxnW.

If uy lies in the algebraic interior of By n W for some R=>0, then Tup—f 1 W and
hence Tugr—f 1 W@ V;=B since f, Tug | V; by induction hypothesis. This yields
the contradiction Tugp—f=0. Therefore, we may assume uz€dB; and [ug| =R
From (2.14)

limsup [lugl| ~(Tug, ug) <o (R )
and from (2.5)

(2.15) lugll = ClQugll+C, (R <),
with some constant C.

Hence

(2.16) [Qugll -~ (R —<).

Similarly as in the proof of Theorem 2.1 we conclude from the asymptotic mono-
tonicity condition (2.3) for any wc B

(2.17) liminf |Qug| ~(Tug — Tw, ug—w) =0 (R - o).

From the variational inequality (2.14) and the orthogonality ¥; | R(T) and V; 1 f,
we know for w=w,+w,€B, w € Wn By, woeV,,

(Tug—f, ug—w) = 0.
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From (2.17), we obtain

lim inf |Qugll "X {f~Tw, uzg—w) =0 (R —)
for all weB.
With the same argument as in the proof of Theorem 2.1 we obtain a sub-
sequence A and an element z€ W, z#0, such that

|Qugl—lug ~ z weakly (R —~oo, RcA)
and
{(f~Tw,z) =0, weB.

Using the mapping T, of the proof of Theorem 2.1 we obtain with aid of Lemma .1

(ITw,z) =0, wEB
and by hypothesis,
(f,z) =0.

Setting z;=z this completes the construction of the z; (Cf. the last lines of the
proof of Theorem 2.1).

The inequality dim R(T)'=dim V' follows from Lemma 2.1. The theorem
is proved.

The following simple lemma gives some insight into the ‘“linear” structure
of the mapping T occurring in Theorem 2.2. For this we need the stronger condition

(2.18) If for some triple v, w,z€B, v#0,
lim [t =T (w+t),z) =0 (¢t -t )
then (T(w+w), z) is constant in t€R.
Condition (2.18) is satisfied if (T'(w+v), z) is a polynomial in ¢.

Lemma 2.2. Let T: B—~B* be a mapping which satisfies the asymptotic mono-
tonicity (2.3) and condition (2.18). Let v€R(T)*, v#0. Then for every wcB

T(w+1tv) is constant in t€R.
Proof. By (2.3) and the orthogonality v 1 R(T) we have for any w, z€ B

Hminf |t~ H{T(w+tw)—T(w—2),z2) Z0 (f > L o).
and hence
liminf [{|"X(T(w+),z) =0 (f > L oo).

Replacing z by —z we conclude
lim [£]" T (w+1t),z) =0 (t >t )
and by (2.18) that (T'(w+1v), z) is constant in t€R. The lemma follows.
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3. Applications

Let Q be a bounded domain of R* whose boundary satisfies the cone property
cf. [1], pp: 11, Def. 2.1. Let [H™?]" be the space of r-vector-functions with com-
ponents in the Sobolev space H™?(Q), p=1, cf. [9], and let W be a closed sub-
space of [H™?(Q)]. As usual we define

lull, = ([ el dx)",  Nuln,, = 3,1V ul,+lul,, G=1,..., m).
We consider formal differential operators
(=D 4, (x,u, Vu, ..., V*u) (la| = m)
and mappings T: W—W* defined by
{Tu, vy := ZafﬂAa(x, u, Vu, ..., V*u) ¢*vdx.

Here, we have used the usual notation with multi-indices o, and the A, are func-
tions with values in R" which satisfy the following conditions.

(3.1} A,(x,n) is measurable in x€Q and continuous in 7.
(B2 A, =KA+IPPH
(3.3) (Tu,u) = clul}, ,—Kllul2—K
G4 Z (A=A, (6 0) 0, ~L) >0, n={, ol =m.
(3.5 2, (Aulx, )= A, D). ~C) =K, o] =m.
(3.6) A,(x,n) is a polynomial in 5, |«| = m.
Condition (3.5) may be replaced by the asymptotic monotonicity condition
liminflu—w| "X Tu—Tw,u—w) =0 (Juil -<),
condition (3.6) by the more general condition (2.1)—(2.2).
Theorem 3.1. Under the assumptions (3.1)—(3.6), the equation

Tu =fecW*
has a solution if and only if

f=T@©) L(R(D)-T(©0))*.

Furthermore, R(T) has finite codimension in W*.
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Concerning the solvability of Tu=0 we need an asymptotic non-negativity
condition of type (2.4), say

BN 2, A.x,mn,=-K

Theorem 3.2. Under the assumptions (3.1)—(3.7), the equation Tu=0 has
a solution.

Proof of Theorem 3.1 and 3.2. The continuity and pseudo-monotonicity follow
from (3.1), (3.2) and (3.4). (A trick from [5] is used in order to obtain pseudo-
monotonicity). Condition (2.1) and (2.2) of Theorem 2.1 and 2.2 follow from (3.6),
condition (2.3) from (3.5). (2.5) resp. (2.5") follow from (3.3) since p=>1. Rellich’s
Lemma in L” is used, cf. [4], § 3, to obtain the finite dimensional projection Q in
condition (2.5) resp. (2.5"). Finally, (2.4) is a consequence of (2.7). The results of
section 2 then complete the proof.

Example. Let P;: R*+R, j=1,...,s be polynomials such that

) IP,(0)] = K+K|g]p=
(iD) S, PO = et —K
(iid) S(PO-PEO)G—-E)=0 (j=1,...,9

with constants K, c=0 and p=>1.

@iv) P;(0)=0, j=1,..,s.

Let L; be second order uniformly elliptic operators defined by
Liu=2,a8;0u, (,k=0,..,n)

where d,=identity. Assume dQeC**+*, aPcC Let W=Hy?~nH*? and T: W-~W*
be defined by

Tu,vy=2 .| P;(Lyu,..,Lu)Livdx (j=1,..,5s).
JJ o J J

Then the equation Tu=fEW* has a solution if and only if f 1 R(T)*. (Note that
one may replace (3.4) by (iii).)
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