Mean oscillation and commutators of singular
integral operators

Svante Janson

0. Introduction

Let T be a Caldéron—Zygmund transform
Tg(x) =PV. [ Kx=y)g(y)dy

where the kernel K is homogeneous of degree —d, i.e. K(x)= [x|™K(x/[x[), [sa-1K=0
and K satisfies some smoothness condition. K€C=(S4™") will always be sufficient.
For the theory of these transforms, see e.g. Stein [7]. We need the result that T
is bounded on L?, 1<p=<oo, K and T will be fixed throughout the paper and not
identically zero.

Let f be a function on RY and let it also denote the operation of pointwise
multiplication with f. We will study the commutator [ f; 7] denoted by C;.
Formally

Cre(x) = fTg(x)—Tf2 (%)
= f(x) [ Kx—p)g() dy— [ K(x—y)f(») g ) dy
= [(f®—~FO)K(x—y) (k) dy.

For these formulas to make sense, f has to be locally integrable. C,g is then
defined a.e. as a principal value for g bounded and with compact support. C, may
be extended to all of L? when we have proved it to be continuous. C,g is clearly
bilinear.

Let Q be any cube in R%. We define Jo» the mean value of fon Q, as
-1
o [, f(x) dx
and Q(f, Q), the mean oscillation of f on Q, as

017 [ If=foldx.
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|0| is the Lebesgue measure. BMO is the space of all functions of bounded mean
oscillation, i.e. f¢ BMO if and only if Q(f, Q)=C for every Q ([4]). More generally,
let @ be a non-decreasing positive function and define BMO,, as the space of all
functions f, with Q(f, Q)=Ce(r) whenever Q is a cube with edge-length r
(6], [3])- The norms are defined as the least possible constants C in the inequalities
and the spaces are Banach spaces.

Coifman, Rochberg and Weiss [1] have proved that if f€ BMO, C, is a bounded
operator from L? to itself, 1<p<oo. They also proved a partial converse, viz. if
[f, R;] is bounded on L? for every Riesz transform R;, then f belongs to BMO.
The purpose of this paper is to show that it suffices to assume the boundedness
of one of these commutators, or of any commutator C;. More generally f€ BMO,,
if and only if C; is a bounded operator from L? to a suitable Orlicz space.

1. Notation and basic lemmas

C denotes different positive constants. Q(x,, r) denotes the cube with center
x, and edge-length r. nQ denotes the cube with the same center as Q, but enlarged
n times, i.e. nQ(x,, r)=Q(x,, nr).

We state some lemmas without proofs. Cf. [3], [4], [6].

Lemma 1. Q(f, @)=2|0|™* [, |f(x)—aldx for every a.
Lemma 2. If fe BMO, then |fy—f,5|=Clflpuo logn.
Lemma 3. If f€BMO and p<oo, then |Q|™* [, |f(x)—folP dx=C|f|3m0-

Let A,, O0<a=1, be the space of Lipschitz continuous functions, possibly
unbounded, A,={f; [f(x)—f(MI=Clx—yl"}.

Lemma 4. BMO,.=A,.
Let n be an infinitely differentiable function with compact support such that
fn=1. Define f,(x) as [f(x~ry)n(y)dy.

Lemma 5, If ”f”zmo,,él’ then || f—fllpmo=Ceo(r).

Lemma 6. If |flppo, =1, then m(x)—j',(y)léci’ir(i)[x—ﬂ and

h@-fol=cf 20y

This gives the following estimate of the Lipschitz norm.
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Lemma 7. If O<a<1 and t™*¢(t) is decreasing, or if a=1, then |fl, =
Cr2o() 1/ Ismo, -

Let ¢ be a non-decreasing convex function on R* with ¥ (0)=0. ¥~ denotes
the inverse function. The Orlicz space L, is defined as the set of functions f such
that [y (A|f)<e for some A=0. ([5], [8]). The norm is given by | f] L=
inf 3 (1+ f Y A1£D)-

Lemma 8. If f€L, and E is a set of finite measure, then | f s S(X) dxlé
171z, L1 (B[,

We also need a result for maximal functions.
For g=1 define

M,g() =sup (i [, gl dx)!.

M,g=M,g if g=r. M, is bounded on L?, 1<p<eo, see Stein [7]. Since M,=
(My|g|DY4, this gives

Lemma 9. M, is bounded on L?, g<p<co.

m, denotes the distribution function. m,(¢)=|{x; [f(X)|=>1}|.
We have the following Marcinkiewicz-type interpolation theorem.

Lemma 10. Suppose 1=p,<p<p, <<, @ Is a non-increasing function, A is
a linear operator such that m ., (t7« o () =%, if | g, =1, and m, (/7. e())=S,
if lgl,,=1. Then [3my(2t"%0(®))=C, if lgl,=(p/p)"".

Proof. Fix t for the moment. Set u=7"?. Set g, (x)=min (|g(x)], u)-sgn g(x)
and g,=g—g;. Let m(s) denote m,(s). Then

m(s), s<u
mg, (s) = {O, s=u and my,(s) = m(s+u).
Thus
laalizs = 2o [ 577 m(s) ds
and
lgalz = po f 7" m(s+u)ds = p, [ s m(s)ds.
We have
“ p—Pigpi-1 * -1 =D
plfo ur—rign m(s)ds§.p1f0 P im(s)ds = > Igle = 1.
Thus

u? = uP||gfl;? and ou?) = o gill; 7).
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81
”g1“p1

My, (uoWP)) = my, (uo(WPrligill; ™)

We apply the assumptions to and obtain

= -1 p1 ~pr) < —P1 P1 — -1 [ -1 d
=m 5 (ulalzle@al;) = Cum gty = Cu= [ s~ m(s)ds.
gt
Similarly

My, (uo (u?)) = Cu‘”fw sP2=1m(s) ds.
Thus we have
f: m 4, (20770 () dt = Pf: uP~tm 4, (2ug (u?)) du

= Cf:f:u"‘l‘“s“‘lm(s) ds du+Cf:f: uP~1-rasr2"Im(s) ds du
= Cf: fsw u? 1P dy sP1—Im(s) ds + Cf: f: uP~1-p2 dy sP2"1m(s) ds

= Cf: s Im(s)ds = C.

2. The main result

Theorem. Let 1<p-<<oo, and let ¢ and  be two non-decreasing positive func-
tions on R connected by the relation @ (r)=r""y~2(r™%, or equivalently y~(t)=
2o (t1%)., We assume that  is convex, Y (0)=0 and Yy (2t)=Cy(t). Then f
belongs to BMO,, if and only if C; maps L? boundedly into L.

Remark. By duality, f belongs to BMO,, if and only if C; maps Ly« into L7,
Also, the proof may be generalized to show that f belongs to BMO, if and only
if C; maps L, into L, with

B 7 o)
PO =y

under suitable conditions on ¥, and y,.

Proof. We first prove that the condition is sufficient. Assume that C,; maps L?
into L,.
7(% is many times infinitely differentiable in an open set. Consequently, we may
1
choose z,0 and >0 such that X&)

Yds as an absolutely convergent Fourier series,

can be expressed in the neighborhood |z —z,| <

ﬁ = X a,e®*. (The exact

form of the vectors v, is irrelevant.)
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Set z,=067'z,. If |z—z|<}d, we have the expansion

1 s
K@) ~ K(52)

Choose now any cube Q=0Q(xy,r). Set y,=x,—rz; and Q'=Q(y,,r) Thus,
if x€Q and yegQ’,

— 5—4 2’ a”eiv"~&z .

X—X,
¥

‘ XY = V4.

r

= |23y |

Y—Jo
r
Denote sgn (f(x) —fQ,) by s(x). This gives us

S f@=foldx = [ (F®)~fo)sydx = @17 [ [, (FC)—f))s(x) dy dx

ZEED 0201 () dy
K(232)

r

=1~ [ [ T@—1)

= C [[(FD~FONKGE—3) 3 are™ "7 510t () dy dx
- i3y
=C3a, [[(fI~FO)KG—»e ™ " s goe * " 1o () dy dx.

If we introduce

3,
g.(y)=e nyr(y)
and

i3 U, x
h(x)=e™ " s(x)xe(x)
we have obtained

S @ —Toldx = CZa, [[(F&)—f))K (1) g0 hn(x) dy dx
=C3a, [ Crgh, ) dx = C 3 la,) [ 1Crg,l [ dx
=CZ || [, 1Crel dx.

However, g, belongs to L?, and its norm is |Q|Y?=r¥?. Consequently,
ICrgall Le=Cr¥? and, by Lemma 8,

S, \Crail = 701y (1017,
Thus we have obtained
[, ) ~fgldx = C 3 la, |70y ~1(QIY) = CIQIFPy~* () = CIQle (),
and Q(f, 0)=Co(r) by Lemma 1.
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We prove the converse in several steps and begin with two special cases.
Lemma 1L If | fllgyo=1 and |gll,=1, l<p<oo, then C,gl,=C.

This is proved in [1]. The following simpler proof was suggested to the author
by Jan-Olov Strémberg.

Proof. We will estimate (C,g)* (x)=sup,co 2(C;g, 0). Choose ¢q and r
greater than 1 such that p>gr. Let x and Q=0(x,,s) be fixed with x¢ Q. Set
81=g%sp and gy,=g—g;. This gives

Cfg = Cf—fgg = (f"fQ)Tg“T(f—fQ)gr_T(f"fQ)gz-

We estimate the mean oscillation on Q of each of these functions separately.
Holder’s inequality and Lemma 3 give

0172 [y F~FolITgl = (10172 [l =Fol")" (1217 [, ITet)* = CM, T ).

We also have

017 [\ =Tl leal = 1Q17* f, \f—fol laF

HA

(o= [, f—fal*) " (1217 [, ler)}"* = C(M, ()
Thus
I(f—fPeil, = CIOM" M, (g)(x)

and consequently

01 [, ITU~f el = 1017 ITG—fozil, = CIOI™ I =Fo) gl = CM,2().

For the last term we have for any y€Q
IT(f=f2e—T(f~fPga(xd] = | f (K —2)— K(xo— 2)(f () —fo) 22(2) d2|
= [ 1o KO = 2= Ko=) ()—Fol | 8(2)] d2

f[:zg IXo b ;IC:L If(2)—follg(2) dz
sC3, [,
= 3270 [, 1@ ~frgle@ldz+C I 2n2017 [, la(2)ldz

=C22 (laniﬂfan 1f(2)—frgl? dZ)l/q’(lT'Ql’le"Q lg(2))2 dz)”q—l— CMg(x)

= CM,g(x)+ CMg(x).

272017 (I f (D) —fmol + [ fro—ToD 18 (D) dz

oa\ezr-1Q
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These estimates give

Q¢80 =21017 [ IC,2()~T(f~fo) ga(x0l dz
= CM,Tg(x)+CM,,g(x)+ CM, g (x)+ CM, g (x)=C(M, Tg(x)+M,, g(x)).
This holds for every Q containing x, and thus

(Crg)* = C(M,Tg+ M, )< L
This, however, implies

ICrgl, = CI(Cr2)*Il, = CIM, Tgll,+CllM,,gl, = Cligl,,
see [2].

Lemma 12. If fc A, and g€L?, l<p<%Z, then 1Crall,=Clflla ligl,> where
1 a«

g p d°

Proof.

1

ICre@= [ 11—/ OIIKGx—2) g dy
= Clflly, [ Ix=yPlx=yI" g dy = Clfll4, L(gD -

The theorem of fractional integration {7, p. 119] shows that this Riesz potentiat
exists a.e. and belongs to L? with the right norm.

To complete the proof of the theorem, let us assume that || f] BMo¢—§—1~ We
note that there exists a g=oo such that (21)~% (2t)<t~ %y (¢t). Thus, replacing
Y by an equivalent Orlicz function if necessary, ¢t~y (¢) is decreasing. Consequently
t~Y44=1(z) is increasing and r*W4-YP o (r) is decreasing.

1

Let o be the minimum of d(—f;—;) and 1. Assume that 1=p,<%, and thal

ligl,=1. Lemma 7 shows that |/, =Cr “¢(r), and Lemma 12 gives

1
C =Cr%¢(r), where — .
” f,-g”q, (P( ) g i d
Lemmas 5 and 11 give
”Cf—f,.g”p‘ = Co(r).

We set in these formulas r=¢"9 and obtain a weak estimate.

_ 2Co(r) )p‘ [2Cr“"q)(r) )q‘ C C C
m tl/Pg t 1/d\\ ( = —-+__—a._. = —
C,g( of )) = tl/pi(p(r) t1/p1¢(r) 1 / _;:_E)qi t

Choose 1<p2<p<p1<%. Let o(t) be (¢t ™% and let 4 be C,. We have
just proved that the conditions in Lemma 10 are fulfilled. Thus, if [ g| pé(p/pl)” P,

[y [-;- 1cfg|] = /: me,,(20~2(9) dt = C.
That is, [ICfgIIL¢§C.
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3. Examples

1. ¢=1. We may take any 1<p<o and Y (f)=¢*. Thus C; maps L? into
L? if and only if f€ BMO, as asserted in the introduction.

2. y()=t%, l1<p<g<wo. @(r)=r"?r~%. Thus, by Lemma 4, C, maps L?
into L7 if and only if fe4, -2y This holds even if d(3—=)>1, then f has to
be a constant. L

Y@ =rP(1+logt 6%, l<p<o, a=0. Y 1O)~V?(14+logt )~ ie.
@(r)~(1+log* 3)7*. Thus fEBMO o5+ yn-» if and only if C, maps L”
into “LP(1+log* L)*”.

Added im proof. There is an overlap between the results of this paper and
those of A. UcHivama, Compactness of operators of Hankel Type. Téhoku Math.
J. 30 (1978), 163—171.
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