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1. Introduction 

One-dimensional cocycles arise in ergodic theory in connection with group 
extensions and velocity changes. Unitary operators are thereby defined in func- 
tion space that depend on the given dynamical system and the cocycle. In the 
particular case of an irrational flow on a torus, cocycles presented themselves in 
the study of the function theory associated with the flow. Thus the cocycles defined 
on a flow, and their associated unitary operators, are interesting from several 
points of view. The first question is to decide what kind of spectrum the operators 
can have. Results so far known seem to show that cocycles leading to singular 
spectrum are easier to construct than cocycles leading to absolutely continuous 
spectrum. The main result of this paper is that for aperiodic transformations pre- 
serving a probability measure there always exist cocycles whose associated unitary 
operators have Lebesgue spectrum. 

Cocycles in ergodic theory are discussed in [3, 5], and in harmonic analysis 
in [2]. 

In order to describe our results more exactly we introduce the concepts and 
notation that will be used in the paper. T denotes an aperiodic transformation of 
the standard measure space (X, B, a) that preserves the probability measure a. 
Aperiodic means that if BEB and T"x=x for all x in B (n a positive integer), then 
~(8)=0. 

A cocycle for T with values in an abelian topological group G is a measurable 
function ~o: X)<ZoG satisfying ~o(x, m+n)=9(Tnx, m)+~o(x, n) almost every- 
where on X, for each pair of integers m, n. Evidently ~o is determined by the func- 
tional equation and the function ~o(x)=9(x , l) from X to G, and each measur- 
able function from X to G generates a cocycle. Usually G will be R, the real line, 
or T, the circle group, and then we speak of additive or multiplicative cocycles, 
respectively. 

A unitary operator U=UT is defined in L~(X) by setting Uf(x)=f(Tx). 
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For  any measurable function tr on X with values in T define V*f(x)=q~(x)f(Tx)" 
We are interested in the spectrum of  the unitary operator V * in L~(X). 

V * seems to be a more general kind of  operator than U, but actually V '~ is 
similar to the operator U defined on another measure space with another trans- 
formation, or at least to U restricted to an invariant subspace. Indeed let 
X ' = X X T ,  and define the transformation T ' ( x , y ) = T ( x ,  9(x)y).  The product 
of  o- with Lebesgue measure in T is invariant under T' ,  so we can define the asso- 
ciated unitary operator  U" in L~(X'). It is easy to verify that L2(X ") is the orthogonal 
sum of  the invariant subspaces 

(1) H n = {f(x)y": fE  L2(X)}, (n = 0, _+ 1 . . . .  ). 

In HI we have U ' ( f ( x ) y ) = f ( T x ) p ( x ) y ,  so that U' restricted to HI is similar 
to V * in L2(X). 

I f  9 takes values in Z2 = {1, -1} ,  then T can be extended in the same way 
to a transformation T" in X X Z  2, and V ~ is similar to U' acting in a subspace of 
L2(XXZ2). A cocycle with values in Z2 is a real cocycle. 

Theorem. (a) For every aperiodic measure-preserving transformation there are 
real cocycles q~ such that V ~' has Lebesgue spectrum. (b) I f  X is a compact abelian 
group, T an ergodic translation, and ~ Haar measure, there is a continuous function 
q~ from X to T such that V ~' has Lebesgue spectrum. 

The functions ~0 of  (a) are exceptional in some sense, for Katok and Stepin 
have shown [4] that for certain transformations a dense G~ of  (p lead to V* with 
simple singular spectrum. 

Multiplicative cocycles giving absolutely continuous or even Lebesgue spectrum 
have been constructed implicitly or explicitly in the following cases at least: 

(i) T an ergodic translation of  a compact connected abelian group (Abramov 
[1], in connection with the theory of  quasi-discrete spectrum) 

(ii) T an argodic translation of a compact abelian group that is not totally 
disconnected (S. Parrott,  unpublished thesis) 

(iii) T a K-automorphism, or even (using Sinai's theorem [7]) ergodic with 
positive entropy (Jones and Parry [3]). 

This paper presents three methods of  constructing cocycles giving absolutely 
continuous spectrum. Since the methods are different it seems of interest to sketch 
them all, but some details have been omitted. 
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2. First construetion 

T is an aperiodic measure-preserving transformation on the probability measure 
space (X, B, a), and U the associated unitary operator in L~(X). We seek a func- 
tion r ira, where m takes the values 0, rc so that V = V  q' has Lebesgue 
spectrum in Lz(X). We shall find q~ so that or(n)=(V" f ,  f )  is a square-summable 
sequence fo r  each f in a dense subset of L ~(X), proving that the spectrum is ab- 
solutely continuous, and Qs(n) decreases very rapidly for some f ,  making the 
spectrum Lebesgue. 

Let Ej ( j =  1, 2 . . . .  ) be disjoint sets in X with characteristic functions hi. 
Form the random set E whose characteristic function is h = ~ q . i h j ,  where the 
~Tj are independent random variables taking the values 0, 1, each with probability 
1/2. Define m=rch. We shall choose the sets Ej so that V has Lebesgue spectrum 
with positive probability. 

For any f in L2(X) and disjoint sets Ej we have ( n = l ,  2 . . . .  ) 
(2) 

l O (n)I s = f f f ( T "  x ) f (T"  y)f--~)f(y) exp ni ~ .=~ .~-~o rlj U k (hi (x) - h i (y)) da (x, y). 

Integrating over the probability space gives 

(3) f I (n) l 

1 (1 +exp z~i z ~ ; ~  = fff(r'x)f(Tny)f(x)f(y) 1-[s=1 "2 U k(h~(x)-h3(y))} do'(x, y). 

The product on the right side takes the values 0, 1, and equals 1 on the set in X •  
consisting of all (x, y) such that 

(4) parity of "-~ Z k = o U k h j ( x )  -~ parity of ~k-~Ukhj (y ) ,  all j = 1, 2, . . . .  

Define 9--(x, n), the orbit o f  length n at x, to be the set {x, Tx . . . . .  T"- lx} .  
Set a~.(x)=0 if E i intersects 3-(x,n) in an even number of points, =1 if the 
intersection contains an odd number of points. Let d'(x)=(a~(x), a~(x) . . . .  ), a 
sequence of O's and l's. Each sequence an(x) terminates in O's, because the finite 
set ~--(x, n) can intersect only finitely many Ej. The condition (4) means simply 
that a"(x)=an(y). 

For each a= (a l ,  as, ...), a sequence of O's and l 's terminating in O's, let G~" 
be the set of x in X such that a"(x)=a.  For fixed n, {G~"} is a disjoint covering 
of X. Evidently a"(x)=a=an(y)  if and only if  x and y both belong to G~". The 
measure of this set of (x, y) is o-(G"~) ~. Thus by (3) we have 

(5) f [o(n)] ~ dw <- [If[l~ Za tr(G~) z 

for any bounded function f ,  with equality if f = l .  
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Lemma 1. Given positive numbers e k we can find disjoint sets F k in X so that 

(6) a U TJFk > l--ek ( k =  l, 2 . . . .  ). 
[jl<2 k 

Proof. For each positive integer k construct a Rohlin tower of  height 2 k and 
residue e,:H~ (l~j_~2*) are disjoint sets in X such that TH~=H~+ a (l<=j<2k), 
and a U j H ~ > l - - e k .  If  the sets H i are disjoint we take Fk=Hka, and then (6) 
holds with the union merely over 0<_-j<2 *. 

In general we have to modify H i to obtain F k. Let F1 =//11 in any case. Take 
for Fz the set o f x  in H i that are not in F1, together with T - i x  for all x in /71 c~ H i .  
Then F2 is disjoint from F~ because x, T - a x  cannot both lie in F~. 

Suppose F1 . . . .  , F, have been defined. Let Fr+ ~ be the set of all TPx where 
x is in H~ +1, and p is the smallest non-negative integer such that TPx is not in any 
Fk (k<=r). The existence of such a p, 0 ~ p < 2  r+x, has to be verified. For  each 
k, Fk contains at most one point TPx as p ranges over 2 k consecutive integers. If 
we exclude 2 "+~-k values of  p, 0<-p<2  '+~, then T p is not in F,. The p thus ex- 
cluded for k = l  . . . .  , r  number 2 + 4 + . . . + 2 " < 2  r+l, so some values of  p are 
left and Fr+l has been defined. 

A point x in the tower {Hi} lands in Fk by traveling up or down in the tower, 
in at most 2* -1  steps. Hence the union in (6) contains all x except some points 
outside the tower, of  measure at most ~,. This proves the lemma. 

We shall apply the lemma in this form: /f  n~2k+~-- l ,  then f ( x ,  n) intersects 
F k except for x in a set of  measure less than ~,. 

Lemma 2. Let H be a subset of  X, e a positive number, and r a positive integer. 
There are disjoint sets Hk ( k=  1, 2 . . . .  ) with union H such that a(Hk)<e, and Hk 
intersects J ( x ,  r) in at most one point, for each k and each x in X. 

Proof. For  each n = 1, 2 . . . .  build a Rohlin tower {R~} of height N and residue 
less than 1/n. Choose N greater than e -1 and r; then a(R~)<e for all n, j and no 
set R~. contains more than one member of  Y-(x, r) for any x. We take for the sets 
Hk all the intersections H c~R3 in some particular order, leaving out of  H,  the points 
already in H a . . . . .  Hk_ a. The H, cover H aside from a null set, which can be 
distributed among the H k without difficulty. The lemma is proved. 

Choose sets Fk by Lemma 1, with residues e, to be specified later. By Lemma 2 
we express each Fk as the disjoint union of sets Fkl, each of  measure less than 
6k 2-k-2 (the positive numbers 6 k will be chosen later), and intersecting each orbit 
~ 2 *+2) in at most one point. The sets Ej needed to prove our theorem are all 
the sets Fu. 

The Ej are disjoint by construction. Each Ej is contained in a unique F,. If 
2k+X<=n<2 k+2 then first each orbit J ' (x ,  n) intersects Fk, except for x in a set of 
measure at most ek; and then such an orbit intersects a set Fkt in at most one point. 
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We fix n and choose k so 2k+l<--n<2 k+2. The measure of ~ is to be estimated 
for each sequence a = ( a l ,  a2 . . . .  ). First suppose a j = 0  for each j such that Ej 
is contained in Fk. Then a" (x)=a  only if ~ ( x ,  n) has empty intersection with 
each such Ej, and thus with their union Fk. This set has measure at most ek- 

Otherwise aj = 1 for at least one j such that Ej is in Fk. Then G~ is contained 
in the set of all x such that 9"(x, n) intersects Ej, which is exactly 

(7) ej  u T-1Ej u . . .  u T-"+IEj 

of measure at most na(Ej)<n6k2--k--2<6k. 
Since {G."} is a disjoint covering of X, these estimates give 

(8) Z , o ' ( G I ) 2 <  ek+6 k (2 T M  _<-- n < 2k+2). 

Now ek, 6k were arbitrary positive numbers. Hence, using (5), 

(9) f Jey(n)[ =do~ < 7, (n _~4) 

for every function f bounded by 1, where {y,} is any sequence of positive numbers. 
If  {y,} is summable, (9) implies that {Ql(n)} is almost surely square- 

summable. The exceptional set depends on f ,  but we can add up the null sets corre- 
sponding to a countable set of bounded functions dense in L 2 (X) to conclude that 
the spectrum of V is almost surely absolutely continuous. 

From (9), with f =  1, we have with positive probability 

(I0) [a(n) l  2 < 2"y. (n ~ 4). 

If  2 "y ,=0  (exp-~n) for some positive ~ the spectral density function is analytic 
on an annulus containing the unit circle, and so can vanish only at isolated points. 
Hence the spectrum of V fills the circle as we wanted to prove. 

3. Some perspective 

To see clearly what the theorem means we shall show what can be obtained 
easily from the ergodic theorem. As before, E is a subset of X, cp (x)--- - 1 on E, 
1 on CE. Define ~p,,(x)=9(x)9(Tx)...~o(T"-lx). Then 9 , ( x ) = - I  on E,,  1 
on CE,,  where En is the repeated symmetric difference 

(11) EAT-lEA ... AT-"+IE. 

We define the unitary operator V= V ~' and want to study 

(12) (V"I, 1) = f~o.d~ = 1-2a(E, ) .  
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Define X'=X• and the transformation T '  in X'.  The ergodic theorem, 
applied to f(x,  y)=y on X',  gives 

(13) lim 1 z ~  ~o,(x) = ~(x) 

where ~k (Tx) = q~ (x) ~k (x) almost everywhere on X. If  T is ergodic, ~k is either iden- 
tically 0 or almost everywhere different from 0. In the second case q~ = U~/~k, and 
V is unitarily equivalent to U. This case is not  interesting. 

Otherwise the limit in (13) is 0, so that r tends to 0 on the average. This 
is in the direction of saying that the quantity (12) tends to 0, but it is not  enough 
i V may still have discrete spectrum, the sequence (12) can still be almost-periodic. 

Integrating (13), for the case ~k=0, gives 

(14) lira N 1-- ~,~ tr(E,) = 1/2, 

and this is all we can show for E without hypothesis. In the last section we proved 
that given any positive numbers V, (n=>4) we can find E so that 

(15) ltr(E,)-- 1/21 < ?, (n ~> 4). 

(The proof  actually gives the result for n=>3). The gap between (14) and (15) is 
satisfyingly wide. 

4. Second construction 

X is a compact abelian group, a is Haar  measure on X, and T is translation 
by an element e of  X. In order for the translation to be ergodic it is necessary and 
sufficient that e as a function on F, the discrete group dual to X, be an isomorphism 
of  F into T. Thus we may think of F as a subgroup of the discrete circle group, 
and e (exp i~)=exp i). for exp i2 in F. We sometimes write 2 for exp i2, - r e <  
2~rc, with addition modulo 2n. Elements of  X are x, y; elements of F are 2, z 
or exp/2, exp iz. When 2 is a character of X it is written Zz. 

We want to find a continuous unimodular function ~p on X such that V ~' has 
Lebesgue spectrum. It is known and easy to prove that the spectrum is Lebesgue 
if it has any absolutely continuous part. Furthermore the absolutely continuous 
part is non-trivial if Q(n)=(V"I ,  1) is square-summable over the positive odd 
integers, but not always 0 for such n. We shall find ~o with this property. 

Set ~0=exp im, where m is to be real and continuous with Fourier series 

(16) re(x) ~ ~ c~za(x). 

The ca will be chosen to be real, c_z=c~, c 0 = 0 = c ,  (if rc is in F), and so that (16) 
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converges absolutely. For  a sequence of  elements 21 of  F, positive and decreasing 
to 0, we shall choose independent Gaussian random variables cas=cj=c_~s so 
that (p almost surely has the required properties. For each j ,  

(17) f exp iucj dco=  exp ( -  rs2 u ~) where f c ] do0 = 2r~. 

(dco is the probability measure on the space of  the random variables.) If  {r j} is 
a summable sequence, then (16) almost surely converges absolutely. 

We perform calculations that will show how to choose the 2j and rj. For con- 
venience we write Zj instead of Xas; cos 2x is the real part of  Zj(x). 

Since Zj(x+e)=•i(x ) expi2  s we have 

cj Xj ~k=o exp ikAj. (18) ~o(Ttp) ... (T"-a(p) = exp i ~ j  n-1 

This gives, after some trigonometry, for positive odd n 

(19) 0(n) = f exp i z~ ~ cjzj (x + 1 (n-- 1) e) sin n2jI2 
sin 2/2 d~(x). 

The translation in x can be suppressed, and we combine terms with opposite in- 
dices: 

sin n2j/2 
(20) 0(n) = f exp 2i .~j>0 cj cos 2jx sin 2j/2 dtr(x). 

This leads to 

(21) f [e(n)l~do = f f / / ; > 0  exp--4r~(cos 2 jx - -cos  2jy)  2 sin2 nZj/2 
sin ~ 2fl2 da (x, y). 

I f  {rj} is merely square-summable this quantity is positive, so 0 (n) is almost surely 
not 0 for each (positive, odd) n. 

Let ~ be a positive number such that (sin n2/2)/(sin2/2)>n/2 for nZ<ct. 
Then (21) gives 

(22) f Io(n)12dco <- f f  exp-n2 2o<z,<~1. r~(cos2jx-cos2jy)2da(x, y). 

The factor n ~ makes the integrand small except on the set where the parenthesis 
with cosines is small. To estimate the size of this set we use the following lemma. 

Lemma. Let q be a small positive number and k a positive integer. There are 
elements 21, 22 . . . . .  2 k of  F, positive and as small as we please, such that the set of  
(x,y) where [cos2jx--cos2sy]<-_~ 1 (each j = l  . . . .  ,k)  has measure less than 
qkl2 in KXK.  

The condition on the 2j is a kind of  independence. The proof  of  the lemma is 
omitted. 
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For  each n = l ,  2 . . . .  let r = n  -a, r l=n -b with positive numbers a, b to be 
specified. Choose 2x . . . .  , ~-k in F satisfying 0<,~j<~/n by the lemma, all distinct, 
with k independent of n to be given. Finally choose Gaussian random variables 
c~1 . . . .  , oak with variance 2r, 2 such that all the variables so chosen for all n form 
an independent set. Combine all the c~ into a series (16). 

For  absolute convergence of (16) we need a >  1. 
The sum in (22) is at least equal to 

y/1--2(a  + b )  

(23) 2 (a + b ) -  1 

except on a set of measure at most n -kbl2. Hence the right side of (22) is less than 

(24) exp - -  ~ n  3 -  2(a + b) § n--kb/g 

for some positive u. Thus (16) is absolutely convergent and the sum over positive 
odd n of the left side of (22) is finite if we have 

(25) a >  1, a + b < 3 / 2 ,  k b > 2 .  

These relations are compatible (k can be as small as 5), and when they are satisfied 
we have a continuous function r such that V ~ has Lebesgue spectrum. 

The idea of  the proof  seems to generalize to measure preserving homeomorph- 
isms of  compact metric spaces, but we shall not pursue this subject here. 

5. Third construction 

The construction in a special case of  a real cocycle ~p giving absolutely con- 
tinuous spectrum will illustrate the technique and lead to the general result. 

For  positive integers p, Zp is the cyclic group of  order p: the set {0, 1 . . . .  , p -  1 } 
with addition modulo p. Form the compact abelian group X = Z p ~ • 2 1 5  

where Pl ,P2 . . . .  are the primes. Normalized Haar  measure on Borel subsets of  
X is a. Define a transformation T in X by setting 

(26) T ( x l ,  x2 . . . .  ) = (x~+ 1, x2+ 1 . . . .  ). 

It is easy to check that T is ergodic with respect to a (this is the case of  interest, 
but the technique could be applied to non-ergodic T as well). Let A, be the set of 
x in X with x, = 0, and let h n be the characteristic function of  A,. Define 

(27) re(x) = 7z Z ~  h,(x) .  

Then m is a non-negative function on X, and summable because each A, has measure 
lipS,. Our first objective is to prove 
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I f  cp =exp ira, then V ~ has absolutely continuous spectrum in the cyclic space 
generated by 1. 

We shall show that Q(n)=(V"I,  1) is square-summable over positive n. By 
definition, 

(28) Q (n) = f / /~o= 1 exp rc i (h k (x) + . . .  + h k ( r ' - I  x)) da (x). 

Each term of  the product is measurable with respect to the k th factor algebra of  B, 
and so these terms form an independent sequence. Therefore the product in (28) 
can be carried outside the integral. 

If  p~>-n, the sets Ak .. . .  , T-"+IAk are disjoint. Denote the union of  these 
sets by B~. Then the integral of the k th factor in (28) is 1-2a(B~,)=l--2np~ 2. 
Thus we have 

(29) ]0(n)l <-- HP~_, (1 --2np~ -2) <_- e x p -  2n(Zp~_n p~-2). 

From the crude estimate 

(30) ZP~_n p;2 ~= zn-3/~ (some x > 0) 

we conclude that 

(31) I0 (n)] --> e x p -  2,~n 1/4, 

which shows that {0(n)} is square-summable over positive n. 
Now we shall use a strong form of  Rohlin's lemma due to Weiss [6J to make 

any aperiodic measure preserving transformation resemble this example closely 
enough to allow us to apply the same method. 

Rohlin's lemma, strong form. I f  T is an aperiodic measure preserving trans- 
formation of  (X, B, g), then for each e>0,  positive integer n, and finite partition 

there is a set A in B such that A, T-1A,  T-"+ ~ A are disjoint, crgl l ~ -1T- I  A)>  
�9 � 9  , \ M . J  i = 0 

1--~, and (r(A nB)=a(A)a (B)  for all B in ~. (We say that A is independent of 
and write A 21_ r 

The conclusion can immediately be strengthened to say that T-~A is independent 
of ~ for i = 0  . . . .  , n - l ;  we simply apply the lemma to the partition ~ v T ~ v  ... 
v T"- I~  (the common refinement of ~ . . . . .  T " - I ~ ) .  

Now let T be a measure preserving transformation of (X, B, a), and let {q,} 
be an increasing sequence of positive integers. We choose sets A1, A~, ... inductively 
as follows. Find A~ so that Az, T-1A1 . . . .  , T-q~+IAI are disjoint with 
O - ( !  / q a - 1  T-ia "~ > 1 ,~i=o . -v  ,--tr(A~), so that (q~+l)tr(Ax)>l>q~tr(AO. Let cq be the 
partition consisting of  the T-iA1 ( /=0  . . . . .  q l - - i )  together with the complement 
of their union, Having chosen A~ . . . . .  A, we find A,+a so that the sets T-tA,+I 
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( i=0,  ..., q . + l - 1 )  are disjoint, (q.+a+l)a(A.+O>l>q,+la(A,+O, and so that 
these q~+l sets are independent of ~1 v ... v ~,. We define ~,+a to be the partition 
consisting of T-~An+~ ( i=0  . . . . .  q~+l--1) together with the complement of 
their union. 

Let rh, r h . . . .  be an independent sequence of random variables with values 
0, 1, each with probability 1/2. Define the random function 

(32)  re(X) = 7~ Z f f f i l  r]jhj(x),  

where hj is the characteristic function of Aj. I f  q~=n ~, as we shall assume hence- 
forth, then m is non-negative and summable. We set ~0 =exp ira, a random real 
multiplicative cocycle. Our main result is that V= V ~' almost surely has absolutely 
continuous spectrum. 

We shall prove that the random sequence 

(33) O ( . )  = f (x) ... (T"-X x)f(Tnx)f(x) da (x) 
satisfies 
(34) X ,  f le(n)[ zao~ < co, 

so that {O (n)} is almost surely square-summable, provided f is a bounded function. 
The definition of V is similar to the definition in the first construction (the sets 

Aj are however not necessarily disjoint), and we can follow the same calculations 
as far as (3). I f  f is bounded by 1 we have 

(35) f IQ(n)12do~ <= f f  l[qj~_,7{1 +expn t  2k=oUk(hj(x)-hj(y)))&r(x, y), 

absolute value signs being unnecessary because the integrand takes only the values 
0, 1. For qj>-n the sets Ai, T - 1 A j  . . . . .  T-q"+IAj are disjoint. Their union B7 
thus has measure na (A j). Hence the factor with index j in (35) equals 1 on (B7 • B~) u 
(CB~.• a set in X• of measure n2a(Aj)2+(1--mr(Aj)) 2, and equals 0on  
the complementary set. Furthermore, the product in (35) commutes with the in- 
tegration, because the sets B~ (q.i>=n) are mutually independent. Thus the right 
side of (35) can be written down exactly: 

(36) f lo(n) l  2 dw <= 1Zqj~_n [ng"ff(Aj)2"q-( 1 - -  r /~  �9 

We increase the fight side by restricting the product to qj~2n. For such j,  
O<na(Ai)<l/2. The inequality x2+(1--x)2<l--x, valid for 0 < x < l / 2 ,  gives 

(37) f ]o(n)l ~d~ <= 1-Iqj~_2n (1--na(Aj)). 

But na(Aj)>-n/(qj+l), so we find 

1 
(38) f 10(n)12da~ <_- e x p - n  Zq~_~2n q j+  1" 
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If q1 =J*, this leads to 

(39) f I (n)l=dco <- e x p - ~ n  1/2 (~ > 0). 

We conclude that {0(n)} is almost surely square-summable. The exceptional set 
may depend on the bounded function f ,  but the sequence is almost surely square- 
summable simultaneously for all f in a dense subset of L ~ so the spectrum of V 
is absolutely continuous as we wanted to show. 

6. Multipficity 

An open problem, of long standing and attributed in [8] to Banach, is this: 
ls there a measure preserving transformation T of  a probability space (X, B, a) with 
simple Lebesgue spectrum in the orthocomplement of  the constant functions? It is 
not even known whether T can have absolutely continuous spectrum with finite 
multiplicity. So far as we know, this conjecture has not been proved or disproved: 
I f  Ur has a Lebesgue component in its spectrum, then it occurs with uniform infinite 
multiplicity. 

The constructive techniques of this paper could perhaps be used to disprove 
the conjecture. In the other direction, using our cocycles we can construct Z,- 
extensions of some discrete spectrum transformations in which an infinite Lebesgue 
component appears. Precisely, 

I f  Tz, T 2 are measure preserving transformations of  (Xz, B1, at) and (X2, B 2, az) 
respectively, with T~ aperiodic and L~(Xt) infinite-dimensional, then there is a Z~- 
extension of  T= I"1 )< T~ with an infinite Lebesgue component in its spectrum. 

Let rp be a real cocycle for T~ such that V * has Lebesgue spectrum. We have 
shown that such a cocycle always exists. Define S(xl,  x2, y)=(T~x~, T~x2, ~o(x~)y), 
y = + l .  If F(xl, x2 ,y )=f (x t )y  then 

(40) (U~F, F) = f f  f (T~xt) f-~q~(x2) ... (p(Z~-lx~) dffl(Xl) dff2(x2) 

= f ~  e "ix d/~ �9 v(2). 

By hypothesis v is equivalent to Lebesgue measure, and therefore g * v has the same 
property. That is, for each f in L~(Xt) the element f (x t )y  in the product space 
has Lebesgue spectrum with respect to S. Since L2(-rt'l) is infinite dimensional we 
can find infinitely many non-null functions f l , f~  . . . .  in the space such that the 
cyclic subspaces {U~fn} ( j=0 ,  • . . . .  ) are mutually orthogonal. Then f l(xt)y,  
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f~(x l )y ,  ... give mutua l ly  o r thogona l  Lebesgue cycles for  Us, and  o u r  assert ion 

is proved.  

Similar ly,  one can show:  I f  T is an ergodic translation o f  a compact abelian 

group X that contains a closed infinite subgroup Xo such that X / X  o is infinite, then 

T has a Zz-extension with infinite Lebesgue spectrum. 
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