Regularity of spherical means
J. Peyriére and P. Sjolin

1. Introduction

Let R* denote n-dimensional Euclidean space and let |x| denote the norm
of an element x€R” For B€R and feLl (R") we set

Fp . =1f [, fx—1y)do(y), x€R", I€R, )

where o denotes the surface measure on S" '={x¢R";|x|=1}. It follows from
Fubini’s theorem that for every x€R”, F, (¢) is well-defined for almost all 1¢R.
We also set F,(t)=F, (¢),t=0, and F,(t)=0 for t<O.

E. M. Stein [2] has studied the maximal operator M defined by

Mf(x)=§gg |F. (@], x€R", feF R,

where #(R") denotes the Schwartz class, and has proved that [Mf] ,gm=
Coll fllLo@my if n=3 and p=>n/(n—1).

The purpose of this paper is to study the regularity of the function F, . in
terms of Besov (=Lipschitz) spaces. We let the Besov spaces Br1=Bp* (R) be
defined as in P. Brenner, V. Thomée and L. B. Wahlbin [1]. These spaces are known
to coincide with the Lipschitz spaces A¢ studied by M. H. Taibleson [3].

If £ is a complex-valued function on R" we write f(x) =f(_—;). In Sections
2—4 we obtain the following results.

Theorem 1. Assume n=2,0>0 and —1<f<(n—2)/2. Then there exists
a constant C such that

SV Foslbprdx = C [ 1fx /GOl P02 1(1+- |x ) dx
for every continuous function f with compact support in R".

Corollary 1. Assume n=2 and 1=p<q=2. If —l<f<inf((n—2)/2,
n(1/p~1/2)~1/2), O<a<f+1/2—n(ljg—1/2) and fCLP(R)ALIR"), then F, €
B%*(R) for almost every x€R".
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Corollary 2. Assume n=3,n/(n—1)<q=2 and feLi R"). If a<n(l1—1/q)—1,
then for almost every xcR” the function F, coincides almost everywhere on] 0, = [
with a function which belongs locally to A4,(]0, e ).

In Section 5 we use a different method to prove the following theorem.

Theorem 2. If n=3, njf(n—1)<p<ee,a<l/p and fEL?(R"), then F €B;'(R)
Sfor almost every x¢cR"

We remark that it is easy to see that Theorem 2 holds also if the function F,
is replaced by F, ,.

2. Some lemmas

To prove Theorem 1 we use the following characterization of the Besov space
B2*(R). If g is a function in L*(R) let u denote its Poisson integral. Then g lies
in B®*(R) if and only if for some (or every) integer k>« the quantity

"g”U(R)_l_[f:“’ y2(k—u)—1(fR l(a/ay)ku(X, y)lzdx] dy]1/2

is finite. This defines equivalent norms on BZ*(R).

Let us consider wu,(x, y)=n"1y/(x2+y?) the Poisson kernel of the upper half
plane. We set u, =(9/dy) uq.

Since wuy, is homogeneous of degree —(2k+1) with respect to (x, y) and is an
odd function of y, there exists a constant C, such that

s (x, M| = Gy/OE+yH+T (x€R, yeRY).
Lemma 1. We have wu(.,y)*u (., y)=uyn(.,2y).

Proof. This lemma is an easy consequence of the formula
F(u(, ) =e kb
Let us denote by o, the rotation invariant probability measure on S", by s,
the area of S” and by x the characteristic function of the set {(x, ¥, 2)€ER3;
||x[—|y|l<|z]<|x|+]y|}. When y(x,y, z) equals 1 we set

A(x, , 2) = 7 ([(x+y)2— 28 [22— (x— y)2])
(it is the area of the triangle with sides of length |x|, |¥|, |z].

Lemma 2. Let n be a positive integer, r and s two non-zero real numbers. Let us
denote by , the image measure of ¢, X, by the mapping (y, z2)—ry+sz from S"X S"
to R**1, We have
225, 4 [A(x], 1, I
dpp(x) = -

s (Irs[« lx]y =

x(x|, r, 8) dx.
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Proof. We may suppose O<r=s. Let ¢ be a non-negative number. Let us
compute o (t)=u,({x; [x|=t}). We have

(D(t) = fS" (fS"ﬂ{y; |ry+sz| =t} da"(y)) dO’n(Z).

The inner integral does not depend on z so we get
o@)= [ da,(»),

SN {y; [ry+sz[=t}
where z is any point in S”. Clearly w(z) is zero if ¢ islessthan s—r and is 1 if ¢ is
greater than s+r. If ¢ is between s—r and s+r we denote by ¢, the number such
that O<@o<mn and ¢2=r2+s2—2rscos p,. We then have

w(t) = % f:" (sing)"~'de and rssing,=24(@,s,1)
80

Sp—-1 Z[A (ra Sy t)]"_2

o' () =22 . h x(r, s, o).

The result follows because 4, is rotation invariant.

Lemma 3. Let v and w be two real numbers such that v<0,w=>—1,2(v+w)<
—1. Let us set

T (== 1)*dt when |s| <1,
M) =1 .
f0 (s*—2*(1—)*dt  when |s|> 1.
Then we have, when s tends to 1,
o) if v4+w=>—1,
A(s) =1 O(Log (/11 —s]) if v+w=—1,
O(l—sppt*+yy  if v+w<-—1.
Proof. First let us study the case when s tends to 1+. If s is less than 2 we have

As) = cf: (=t (1—t*dt = cf: (s—14+0) dt
= =1y [0 (Lnpervar

0
and we conclude easily.
Let us now study the case when s tends to 1~. We have
A(s) = f: - st (-1~ dt-*l-j.:—be E—-Dr+vde
- 2 v(t—1WW = 1 — v v
= C(1+ [ -1y di)= C(t+f, A—s+1yt d)

and we conclude as above.
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3. Proof of Theorem 1

Let us compute first [pn | Fp (|72 g d%.
We have

Fp @O =10 [ fc—ty)fCe—ty)do(y) do(yy),
thus
S 1Epc@Pdx = (e [ fxf(—ty+1y)do(y) do (3.

Using Lemma 2 we get

S Vst x = Cle [ 5o P i, 0,

therefore

Sl Bslbmdx=C [ fxf@[f

iz |x]

too t2(ﬁ——n+2)

(dr2—x)-92 dt] dx

— Sl —n n—3) d 28—n+1
=C| fll2 po-n D 1092 di] ffx f(x)lx] dx

(the first integral converges since we have B<(n—2)/2).
Now let us estimate

S U7 08273 f (., b)% Fy, ()] dr) dh] dx,

where k is the first integer greater than z. We have

Fpoxu, @ = [f 1P fe—t)u(s—1, Bydtdo(y)
SO

e, D@E= [[ff, bl fe—ay)f(x—tyd)
Xu(t—1ty, hyu, (t—ty, b) dt, dt, do(yy) do(yy)-
Using Lemma 1 we get
Sl FoaxuC W@Pde = [[ff a6l fa—ny)fG—ty)
Xy (t;— 1, 2h) dt, dty da (yy) do (y,).
If we set A(B, h)=ffR,‘xRlFﬁ,x*uk(.,h)(‘t)ded‘t and qo(x)=f*f(x) we get
ABW = [[[] o oor oos 10P Oy — b1y i (ts— 1o, 2) dty dty do (y)) do (o).

By Lemma 2 we obtain

AB, b

[4(x], 21, L)I"~2
= C/fR, IIIZZIﬂqu(tI_t% 2h) [fR" (P(X) (|t1t2| .lixl)n—2 X(]x[r tls ’2)dx] dtl dt2'
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Using homogeneity properties we get

A By =C [ ¢@)|xPE—D+1-"K(2h|x]) dx,
where
K(7) = fng [ty P g (8 —1,, T)(A a, 4, tz))"‘sx(l, 1y, 1) dt, dt,.

We shall show later that we have |K(7)|=C/(1+7%**"). This being granted we have

holk—a -2
1 +((2h/|x|)2k+1)

oo ‘52(k —a)—1 o
_C[ T+t ][fR,. o ()] [x ]2 = 9=+ dx].

The first integral converges and collecting both estimates we get

Jo VEolbpra dx = C [ 1f#f(0lxPO-21(1 + x dx.

f:’“ hz(k—u)—lA(ﬁ, h)dh = CfR" l‘l’(x)| lxl2(B—k)—n+l [j’:‘” dh] dx

We now have to prove the estimate of K(t). By change of variables we get
Koy=cf f{(s perss o @siymy ST P (s, DIE = DA =D s dt.

Let us set

(1~SZ)("‘3)/2f:m(tz—s2)ﬂ‘”+2(t2-1)("_3)/2dt if ls‘ <1,
L(s) =
(sz__])(n-s)/z f; (sz_tz)ﬁ—n+2(1 _tZ)(n-—?.)/z dr if Isl = 1.

Both integrals converge because f<(n—2)/2 and n=2.

Lis a C~ function on }—1, 1] and by Lemma 3 it is integrable in a neighbour-
hood of —1 and of 1 (because f>—1). In addition, when |s| tends to infinity,
we have L(s)=O0(s**""*%) 50 L is integrable.

We have K(1)=C [*7 uy (s, ©)L(s)ds, so when s tends to zero, K(z) tends,
save for a multiplicative factor, to the 2k™ derivative of L at the origin.

In addition |K(7)|=C [*Z t(12+s) % |L(s)|ds, thus K()=0(z|"%*?),
when |t] tends to infinity. And the proof is complete.

4. Proof of the Corollaries

Proof of the first Corollary.

The hypothesis fELP(R)NLIR") implies fx* f c "R~ L*(R™) where r and
s are defined by 1/r== 2/p —~1, 1/s=2/g—1.

More precisely ”f*f”y(m)-”f”Lp(Rn) and ”f*f”u(n")—”f”L‘I(R")
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Let us denote by r’ and s” the conjugate exponents. We have
Se 1 Bpslbgradx = CIFIE(S
+Cifz(/f

The first integral converges if f<n(1/p—1/2)—1/2, the second if a<p+1/2—
n(1/g—1/2). So we get a result if

—1 < B <inf((n—2)/2, n(1/p—1/2)~1/2)

' xl(zﬁ—n +1)r dx)”',

lxl(z;}—za—u +1)57 dx)lfs'.

|x|<1

and
0<a<pB+1/2-n(1/g—1/2).

Proof of Corollary 2.

Let f be a function in LY(R"), let us multiply f by the characteristic function
of a ball and use Corollary 1 with p=1:if « lies in ]1/2, m—1)/2—n(1/q—1/2)]
one can choose a suitable . We conclude using the inclusion B3*(R)C Ay 1R

5. Proof of Theorem 2

We shall first prove the following inequality.
Lemma 4. Let Q denote a cube in R" with diameter equal to 1. Then
S I ElBzrdx = C,u [ If 0P dx, fEF R, @)

if n=3,n/(n—1)y<p<co and a<l1/p.

We need the following notation. Choose Y €Cy (R") such that supp (Y)C
{¢:1/2<|{|<2} and
e Y277 =1, £#0.

Set ¥, (O)=y¢(277¢), v€Z, and let ¢ and ¢,, v=1,2,..., be defined by ¢=y
and ¢,=y,. Here the Fourier transform ¢ is defined by

0@ = [ e Ho@ar

It follows that ¢,(t)=2"¢(2"t), v=1,2,.... We also define ¢, by setting
¢o=1—27¥,. Then the norm in the Besov space B%? is given by

Mlsze = (202 lo,xfI3)/5, 1=p,g=c, a>0.

Here || ||, denotes the norm in L?(R) and we make the usual modification for g=-co.
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We observe that it suffices to prove the lemma and the theorem with B;’l
replaced by B3 ?. This follows from a well-known application of Hélder’s inequality:

quuB;vl = 2’;0 QWa=r) v o, * qup = (Z;" 2v(a—r)p’)1/p’ (Z;o 27| 0, % F,l\g)”P
§Cl7,a”Fx”B;’P, Whel'e O << P = l/p and l/p_l_l/p/: 1.

Proof of Lemma 4. Let p and « satisfy the conditions in the lemma. We shall
prove the inequalities

S looxFlpdx = C, [ 1f0)lrdx ©)
and

Jor G2l x Flz) dx = C,, [ 1f(x)lPdx (4)

for f€L(R"). It is clear that the lemma is a consequence of (3) and (4). We have
oxFw = [Low-0F@di= [ ([ o.w-0fx=1y)di)ds(y) (5)

= [ 0 =D fG=y|="*dy = @, ,%f(x), XER", u€R, v=0,1,2,..,

where ¢, (V)=0,u—|y) |y
We first prove (3). Since

loo* Fell, = ool | Fill, it is sufficient to prove that
J NNz dx = ¢, [ 1f(x)lrdx. ©
Using the Minkowski inequality we obtain
1/ ’ ’ 1/
(S Nz ax) = (ff oo fx=ty) do(y)| dx i)
= [ ff o FE— 1Y) dx dn)"? do (y).
Let 6 denote the diameter of Q. We then have

Jf o fe=tpdxar = Sy [0 (f 1fGe— 1)l dx) e
= [7(Zi [, =+ 3k0)y)

for every '€ S"~1. (6) follows from this estimate and hence (3) is proved.
We now prove (4) and first observe that

lovdioan = [ los@=lyDlyI="*dy = C [ lo,@ldt=C, v=1,2.. (7

?dx)dt = 35 fm [f(x)|? dx

For the Fourier transform @, , of ¢, , we then obtain the estimate

I¢v.ull~@m =C, v=1,2,...; u€R. ®)
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We shall also prove that
1@y, ull L=y = CQ* u)="=V2, 2¥|u] = 1. ®
For u<0 this follows from the inequality
10w, dli=aey = lovuluan = C [ 2*|o(2"—0)] dt
—_ Yu —~N - v —N’
=C[ llo@ldt=C [ A+n"dt=C@ )™,

where N and N’ are large positive numbers. For u=0 we set ¢=2'u and
assume a=l.

Performing a change of variable x=uy we have

¢.s@) = /4 e % * g, (u—|x]) [x| " dx = fn" e ™vap(a(l—[yD) |y~ dy.
Hence

@y, ullL=®m = [/l L~®n, where J(§) = - e %Yap(a(l—[yh)lyl="*'dy.
Assuming |£[=a/2 and invoking the well-known estimate

8@ = [, e do(y) = 0(L="""), [~ <,

we obtain
@ =| [ ap(a(t—1)s(2) dt|
S ale(aq-n)|l6@dldr+C [ alpan)|dv
=¢ f " alfﬂ(a(l—t>)|(tlél>“"-”’2dt+ Sonun [P@Idv = Ca=0Dr

For |é|<af2 we use the fact that ¢$(z) vanishes for [t|=1/2 and get
ll(é)lélf”_l(ff e alp(a(1—1)|dt

6+ y'/a)do(y)+C [ alp(an)ldo = C [~ lp(d]dt = Ca™™,

where N is a large positive number. Thus (9) is proved.
We let || | M, denote the norm in the space M,(R") of Fourier multipliers on
LP(R"), 1=p=oo. It follows from (7) that

1By, ullae. =G,
and from (8) and (9) we conclude that
1@y, ullage = CA+2°fu]) =72,
Interpolation between p=2 and p=-< yields

@y, ullae, = CQ+2"[u)=0~D, 2= p=co. (10)

sn-1
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By duality we also obtain
10v,ular, = C+2* [uf)=C~D-Dip, 1 =p=2. (11)
We now use (10) and (11) to prove (4). Denoting the left hand side of (4) by B we have

B= 37,27 [ (f 00ux P dx) du
= 7. 2% 10wk, du)(f . [f P dx).

We denote the first integral on the above right hand side by 7, ,. We shall prove
that

I,,=C,27", (12)
from which (4) follows, since a<1/p. For p=2, (10) yields

L,=C [ (1+2u™+du = cz—VfO”(Hu)—mdu = C27,

where we used the assumption #=3. For n/(n—1)<p<2 we have (n—1)(p—1)>1
and from (11) it follows that

I, = Cf: (142" )~@=D@-D gy — Cz—vf: (14u)~0-De-D gy, = C,27

We conclude that (4) holds and the proof of the lemma is complete.

Proof of Theorem 2. 1t is sufficient to prove that if Q is a cube with diameter
1 and feL?(R") then

S N Fllbg»dx = Gy o [ 1f P dx. (13)

This can be proved by use of the fact that (5) holds for almost every xcR"

if f€ LP(R"), but one can also argue as follows. We may assume that f is non-negative
and let (f;);" denote a non-decreasing sequence of step functions tending to f almost

everywhere. It follows from the proof of Lemma 4 that (13) holds with f replaced
by f¢ and F, by the corresponding function F, ,. Fatou’s lemma yields

S Jim (R~ Fop(0)di = lim [ (F0) = Foa () de

= e im [ (F(t)— Fou() =t dt
koo &

— 8_n+1’zi_ (Fa—y»)—filx—y))dy =0

oo ¥ E<[yl<N

for 0<e<N. We conclude that for every x€R", F (¢)=lim,_ _ F, ,(¢) for almost
every t. We have

SV Feilpyr dx = Gy [ AP dx (14)
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and hence also
SN Eedlpdx = €, [ 1f@)IPdx. (15)

Letting &k tend to infinity in (15) we obtain
S IFddx =C, [ \f@Pdx

and it follows that F,€LP(R) and lim,_ [[F,—F,,l[,=0 for almost every x.
As a consequence we also have lim,_ _ llo,* F, /[,=lo, * F.l,, v=0,1,2, ..., for
almost every x. An application of Lebesgue’s theorem on dominated convergence
yields

lim [ lloyx Fdlpdx = [ llgy* il dx

and letting k tend to infinity in (14) we obtain (13). The proof of the theorem is
complete.
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