On the instability of capacity

Claes Fernstrom

§ 1. Introduction

Let E be a Borel set in the space R?. It is well-known that the Lebesgue measure
m is unstable in the sense that

lim m(B(x, 8))'m(E n B(x, §)) =1 or lim m(B(x, 8))*m(E N B(x,8)) =0

almost everywhere on R?, where B(x, J) is the open ball of radius & with center at x.
Vitushkin discovered that the continuous analytic capacity o has a similar property,
namely lim, o0~ 20(ENB(x, 6))=0 or lim,,6 *a(EnB(x, §))=1 with the
exception of a set of zero area, where E is an arbitrary subset of the complex plane (see
[8]). In [6] Lysenko and Pisarevskii investigated the classical Newtonian capacity, here
denoted by Cy,,, in this direction. They proved that lim,_,d72Cy ,(EnB(x, §))=0
or lim,_,,C; 4(B(x, §))~1 C. 2(ENnB(x, 8))=1 almost everywhere on R3, if E is
a Borel set. See also in this connection Gonchar [3] and [4]. L. I. Hedberg discovered
in [5] that many capacities C are unstable in a certain sense. He proved that for all
Borel scts E the following two relations are equivalent:

(@) C(EnQ)=C(Q) for all open sets £,

(b) ims_,, 6" *C(En B(x, §))=0 almost everywhere on R?.

The purpose of this paper is to generalize the theorem of Lysenko and Pisarevskii
to RY and to more general capacities C,, 4 (see Section 2 for a definition of C, ). Our
result can be found in Section 4, Theorem 4.1. In Section 4 we also prove that there
is a similar gap, if we replace “almost everywhere” by “C, ,—a.e.”. See Theorem 4.2
and Theorem 4.3. In Section 3, Theorem 3.2 we show that

C,,o( B(x, 9)) 1 C,(EAB(x, §))~1 when §—0,

if Eis a Borel set and if x is a density point for E with respect to the Lebesgue
measure.

The subject of this paper was suggested by Lars Inge Hedberg to whom the
author is deeply grateful for generously given advice.
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§ 2. Preliminaries

The underlying space in this paper is the Euclidean space R?. Let p and ¢ be
real numbers such that 1<p<oo, 1<g=oco and p~'+g'=1. Let .# be the set of
all positive Borel measures p such that u(R*)<oo and let

LiRY = {f; | £12= [pal fIrdm (x) <o},

where m denotes the d-dimensional Lebesgue measure. The set of all non-negative
functions f€L(R% is denoted by L% .
For feL'(R%) and a=0 we define a potential

Ui(x) = [|x—yl*=4f () dm(y),

and for p€# we similarly define
ULx) = [ |x—y*=4du(y).

Definition 2.1. Let E be an arbitrary set and let «a=0. Then C, (E)=inf| f|Z,
where the infimum is taken over all f€ L% such that Uf(x)=1 forall x€E.

The classical Riesz capacities are obtained by setting g=2.

Let B(x, 6) denote the open ball of radius & with center at x. Various constants
are denoted by A. The complementary set of a set E is denoted by [E.

It follows from Definition 2.1 that

@1 C,(B(x,8)) = 45—,

where A is independent of é and x. It is easy to see that 4=0 if and only if ag=<d.
We always assume in the rest of this paper that the capacities are not identically
equal to zero.
The following theorem will be used several times. For a proof see Meyers [7,
p. 273].

Theorem 2.2, Let E be a Borel set. Then
C,,,(E)/1 = sup v(RY),

where the supremum is taken over all vEM, such that v is concentrated on E and
U ,=1.

A property, which holds for all points on EN\E; with C, ,(E)=0 (m (E)=0),
is said to hold C, ,a.e. on E (a.e. on E).
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§ 3. Density points

Definition 3.1. Let E be a Borel set. Then x is a density point for E if

. m(EnB(x,8) _
BT RBme)

The purpose of this section is to prove the following theorem.

1.

Theorem 3.2. Let E be a Borel set and let x be a density point for E. Then

. C,(EnB(x9) _
im C, . (B(x9) L.

The following corollary follows directly from Theorem 3.2.

Corollary 3.3. Let E be a Borel set. Then

. C,,4(E N B(x,9))
lim —=
-0 Ca’q(B(x, 5))

Remark 3.4. Let K(r), r=0 be a non-negative, decreasing, continuous function
such that K(r)—>c when r—~0 and K(r)~0 when r—. For x¢RY, x#0, we

define K(x)=K(|x]), and we assume
G.1) S K@ dm(x) <o,

We call such a function a kernel.

Let K be a kernel such that for all ¢>0 there are 6=0 and y, 1=>7=0,
such that K((1—7)x)=(1+&)K(x) forall x, |x|=4. Then Theorem 3.2 and Corol-
lary 3.3 remain true if we replace |x|*~¢ by K(x). For a proof see [2].

=1 ae. on E.

Remark 3.5. Let H,_z denote the classical Hausdorff measure with respect to the
function 4=, For every B, 0<f~<d, there exists a compact set E with H;_z(E)= oo,
such that

lj__mC“’z(E N B(x, 9))
50 Ca,Z(B(xb 5))

The proof can be found in [2].

=0 forall x.

Proof of Theorem 3.2 Suppose that 0 is a density point for E. Let ¢==0 and let
0<y=<1. Theorem 2.2 gives that we can choose p;€.#, 5=0, such that u; is con-
centrated on B(0, (1—7) 8), u;(R)=1 and

) _ 14e 1/q
(3.2) 1T, = {Ca,q(B(O,(l—')’)é))} '
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Choose non-negative, continuous functions ¢; such that ¢;(x)=0 for all
X, ]x[%% 0,
(3.3) @s(x) = Ay=95—% forall x,
where 4 is independent of §, and
(3.4) [ os(xydm(x) =1.
Put dy(;(x)=(fgoa(x—y)du,,(y))dm (x). Then v;cM, vs(RY)=1 and v; is concen-
trated on B(0, 8). Now (3.3) gives
v5(LE 0 B0, ) = [1z50.0 ([0:(6— ) dps())dm (x)
=Am((E n B(0,5))y—*5°.

If we use that 0 is a density point for £, we obtain

vs((E n B(0,5)) -0 when 6~ 0.
Since v, is concentrated on B(0, §) and v;(R)=1, we get
(3.5) vs(E n B(0,8)) ~1 when & —0.
From the definition of v; we see that

el =) [ =y tdvs =1l [ [ x =y~ 0s (0 — D) dpts (2) dm ()
If we put y—z=1¢, we find that
1Ozl = 1| [ 1x =21 05 () dus()dm )], = | [ Uke(x— 1) @5 (e)dm (©)]

Minkowski’s inequality and (3.4) now give
(3.6) 1Uzsll, = [UFell .-

From (3.2), (3.5), (3.6) and Theorem 2.2 we get that C, ,(En B(0, §))>0. Choose
J5€L%. such that

3.D Uls(x) =1 forall x€E n B(0,6),
and

3.8 Ifsll, = {(1+8) C,,,(E n B, ).
Now (3.7) gives

(3.9) [ UL (x)dvs(x) = v5(E 0 B, 8)).

The Holder inequality, (3.6), (3.2) and (3.8) give
[ U5 dvs(x) = [ T3s) f5()dm(x) = Ul | folly = UL 1 Fol

_ { (1+£2C, (E A B(0,)) }”"
“ UG, ,(B(0.(1-7)9)) '
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Thus by (3.9)
C,..(E 0 B(0,5))
C‘,,,q(B(O,(l —y)é))

{(1 +£)2 }1/4 = v;(E n B(0, 8)).

Using (2.1) we find that
C,,,(E 0 B(0,5))
C,,q(B(0, 6))

The theorem now follows from (3.5) and from the fact thate, =0, and 9, 0<y<l1,
may be chosen arbitrarily small.

1/q
{(1 +&)2(1—p)a—? } = v;(E 0 B(0, 3)).

§ 4. The instability of capacity

In this section we prove the following three theorems.

Theorem 4.1. Let E be a Borel set. Then a.e. on R? one of the following relations
holds:

. C, (E n B(x,9) _
=G Br)

or

.
i Ceea(E mdB(x, N _o

50 )

Theorem 4.2. Let O<f=a and let E be a Borel set. Suppose that h(d) is an
increasing function such that
[o h(@yP1571d5 < oo,
Then C; ,a.e. on R? one of the following relations holds:
C,,(E 0 B(x,0))

R0 G, Bx)
or

. C,..(E n B(x,9))

}sl_{r(} - S4B =0.

Theorem 4.3. Let 0<f=o and let E be a Borel set. Suppose that q=2—p/d.
Then Cy j-a.e. on R? one of the following relations holds:

flegas s -

. C,,.(E n B(x, )
bim =y =0

or
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Remark 44. Let K be a kernel with the same properties as in Remark 3.4.
Then Theorem 4.1 remains true if we replace |x|*"¢ by K(x). See [2].

Remark 4.5. Let K be a kernel. Suppose that there is a constant 4 such that
K(x)=AK(@2x) for all x, |x|=1. If we furthermore assume that K(r)r¢~* is an
increasing function for all r, 0<r=r,, we may replace |x|*"¢ by K(x)in Theorem 4.2
and Theorem 4.3. See [2].

In order to prove the theorems, we need some lemmas. The first lemma, which
can be found in Bagby and Ziemer [1], is essential for the following.

Lemma 4.6, Suppose that f€LY(RY). Then

@) lim - an D)~ (@)fdmz) =0 ae. on R

and

.. 1
(i1) llng i fB(x,&) f)|tdm(y) =0 C, ae. on R4

Before proving the next lemma we need some notation. Let E be an arbitrary
set. Then we define

E(C,,;; 0% = {X;}E} Ca,oE r;ﬁB(x, 8)) - 0}_

Lemma 4.7. Let =0 and let E be an arbitrary set. Then E (IC(,’ o5 0% is a Borel set.

Proof. Put
C,..(E n B(x,6))
S5

E,,={x;1i_rn >i} for n=1,2,3,....
30 n

Let x€E,. Choose 8,(x), i=1,2,3, ..., such that §;(x)=2"" and

@.1) Coal E0B&GM) 1 o0 103,

d:(x)f n
Put

AD = L’JE B(x,8,(x)), B,= N4 and B= UIB,,.
x€E, i=1 n=
Then B is a Borel set. It is enough to show that E(C, ,; 6*)=B. We have the fol-
lowing chain of implications:
Z€E(C, 43 6%) = z€E, for some n = z€AP for some n and all i = z€B,
for some n = z€B.
Thus

4.2) E(C, ;6 C B.
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On the other hand z€B gives that z€ A9 for some m and all i. For every i there
exists x;€E, such that z€B(x;, 6;(x;)). If we now use that C, , is an increasing set
function and (4.1), we get

C,,o(E 0 B(z, 26,(x)))
{26, ()

If we use that ;(x;)=2"*, we obtain

1 Cyo(E 0 B(x:, 0:(x)) 1
ey {0: ()} T m

=

i CealE0 BE9)
50 oF
Thus
BcC EC,,,; 5%,
and (4.2) gives B=E(C, ,; 6%).

Lemma 4.8. Let E be a Borel set and let f¢ LY . Suppose that Ul(x)=1 for all
xCE. Then

@) Ulxxy=1 ae. on EUE(Q,,,
and
(i) Ul(x)=1 C;ae on Eu E(C,,; 5 5.

Progf. The proof follows an idea used by L. I. Hedberg in [5]. We prove (ii).
The proof of (i) is similar. The proof of (i) can also be found in the proof of Theorem 9
in [5].

Let xo€E(C,,,; 6°7%9). It is no restriction to assume that UZ(x,)< <. Applying
Lemma 4.6 we may also assume that

.1
(4.3) i S3on IF@l1dm(x) = 0.

50

Theorem 2.2. gives that we can choose v;€.# such that v, is concentrated on
EnB(x,, 6), v;(RH=1 and

(4.4) Ul = {CM(E A B(x,, 5))} '

If we use that Uf(x)=1 on E, we find
1= [ U[()dvy(x) = [ Ue(x) f (x)dm ().
Thus it is enough to prove that

@.5) lim| f V22 (x)f () dm () ~ Uf ()| = 0.

Let £>0. Since U/(x,)<ec, it is possible to choose ¢=>0 such that

(46) /B(xo,e) x—xo[*~f (x)dm(x) < e.
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Let 0, 0<d<p/2 be arbitrary. Then
[ Uzs(0)f () dm ()~ Ul(xo)| = [ 0o (3) =[x —xo*~|f () dm (%)
= [ho0 X=Xl CIAMG) + [0, 20 Uae () S (0)dm (x) +
+ J o5z 15— xg)me U Cf () dm () +
+ [ o=ix—xl ‘U;«s(x)—— ]x~x0{°‘—"[f(x)dm(x) =L+ 1L+ L+,

From (4.6) we get
4.7 I <e.
The Holder inequality and (4.4) give
1 = VU204 [ | G2 m ()}

254~pa 1 e
= {ca,q(E ~ B 5) T o oo}

Now (4.3) and the fact that x,€ E(C, ,; 6°7%) give
(4.8) lim I, = 0.

-0

If we use that v is concentrated on B(x,, 8), v;(R‘)=1 and (4.6), we obtain
Iy = [ dv;0) faszpe— woize K= VP (R)dm(x)

= [dvs0) [5000, 0106 = 5024 f (x) dm (%)

=207 [ o X —Xal* U (R dm(x) < 29,
Thus
4.9 Iy < 242,
If |x—x,|=0, itis easy to prove that U's(x) tends uniformly to |x—x,/*”¢ when
0 tends to zero. Thus
4.10) })11101 I, =0.

Now (4.7), (4.8), (4.9) and (4.10) give (4.5). This finishes the proof.

Lemma 4.9. Ler E be a Borel set.
(i) There exists for all x¢R® and for all 3>0 a Borel set O, 5 such that m(0O, ;)=0

and
Cpo(E 0 B(x,8)) = C, ,((E v (E(C,, 45 \Oy,5)) 0 B(x, ).

(ii) There exists for all x¢R® and for all $=0 a set O, ;suchthat Cg (0, ;=0
and
C,(E n B(x,8) = C, ,(E U(E(C, . *PH\O, ;) N B(x,9)).
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Proof. We prove (i). The proof of (ii) is the same. Put E(C, ,; 6°)=FE,. Let
5=>0 and x€R? be fixed. Choose f,€L% such that

“.11) Uh(z) =1 forall zcE o B(x,9),
and
(4.12) £l = C, (E n B(x,8)+1/n for n=1,23,....

Let ycE,nB(x, 6). Then B(y, &)< B(x, d) for small &. Now using y€E, we find
m Ca,q((E n B(x, 5)) N B(y; 8)) — th Ca,q(E (;dB(y’ 8)) - 0.

g0 sd g0

Thus
4.13) Ey 0 B(x,8) C (E n B(x, 8))(C,, 45 69 = (E 0 B(x, 6)),.

Lemma 4.8 (i) and (4.11) give that there are Borel sets O, such that m(0,)=0 and
Uh(z)=1 on (En B(x,8) v ((En B(x,8))\0,) for n=1,273,...
Now (4.13) gives
(E n B(x,6)) U ((E n B(x,8))\0,) D (E U (E;\O,) N B(x, ).
Put O=J,_,0,. Then m(0)=0 and
Un(z)=1 on (Eu(E)NO) N B(x,6) for n=1,23,...
Using the definition of C, , and (4.12) we get
Coo(E U (EN\O)) 0 B(x, 8)) = C, ,(E N B(x, 5)).
But (EU(E,\0))nB(x, )D EnB(x, 8). Thus
C,,(E U (E)NO)) n B(x,8)) = C, ,(E 0 B(x,5)).

Proof of Theorem 4.1. Lemma 4.7 gives that E(C, ,; 6°)=E, is a Borel set.

Let x be a density point for EUE,. It is enough to prove that
. C,..(E 0 B(x, )
lim —24 =
320 Cy.(B(x,0))

Let §;, i=1,2,3,..., be a sequence of positive numbers such that §,~0 when

i-eo, Lemma 4.9 (i) gives that there are Borel sets O;, m(0;)=0, such that

4.14) C,,o(E n B(x,6)) = C, ,(E U (E\O)) N B(x, 5)).

Put O=J;-, O;. Then m(0)=0. Since x is a density point for EUE,, x is
a density point for EU(E\O). Now (4.14) and Theorem 3.2 give
i CedEO B o Cof((E Y (ENO)) 0 B(x,8)) _
i>oo Ca,q(B (x’ 61)) iso Ca,q(B(x5 51))
Since the sequence J; was chosen arbitrarily, the theorem follows.

1.
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Lemma 4.10. Let E be an arbitrary set. Suppose that 0<f=a. Then

Cp,o(E 0 B(x,9) _ 4 C,..(E 0 B(x, )
64-p1 = C..(B(x,0) ~

where A is independent of x and 6.

Proof: Let x be fixed. It is easy to see that there is a constant NV independent
of x and 4 such that

(*.15) {[irans WIE=02dm )} {2€, , (BGs, N} < .

Let &, O=<e=<I, be arbitrary. Now choose f;€L% such that

(4.16) Ule(z) =1 forall z€E n B(x,d)
and
(4.17) 1£:18 = C,. o(E 0 B(x, 8))+¢6C, (B(x, ).

If we use the Holder inequality, (4.17) and (4.15), we get

Sistns P15 4s(z= ) dm3) = { fiy1mms V102 dm 71 £,

- 1
= {[yrans PIE-07dm )} {2C,, (B, )" < =
Now (4.16) gives

Soizns W1 2f5(z—p)dm(p) =1 if z€E A B(x, 6).
Thus

Sistmns WE4 12100205z~ p)dm() =1 if z€E n B(x,d).
If we use that r*~9r9=f is an increasing function for r=0, we find
[ 1yP=4(NSy—8 2fy(z—y)dm(y) =1 foralt z€E n B(x, ).
The definition of C; , and (4.17) give
Cy.4(E O B(x, 8)) = 24 Na=—P goa~ba f, |
= 2IN1C-Hga—i5i-ba(C, (E n B(x,8))+eC,, (B(x, ).

Since ¢ may be chosen arbitrarily small, we find

Cp,o(E 0 B(x,9)) _ 24 Na(a—5) C,..(E n B(x, 8))
§4—ba - 5d—ca ?

which gives the lemma.
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Lemma 4.11. Let E be a Borel set. Suppose that g is an increasing function such

that
FIOR G d(S
Sk 5§

= Cp,4(E 0 B(x, 5))
= 20
Proof. See L. 1. Hedberg [5], Theorem 8.

Then Cq a.e.onE

Lemma 4.12. Let E be a Borel set. Suppose that q=2—p/d. Then C, ;a.e.
on E

/ {Cﬁ o(E 0 B(x, 5))}” s

544 5
Proof. See L. 1. Hedberg [5], Theorem 4 and Theorem 6.
Proof of Theorem 4.2. Put E(C, ,; 8* P)=FE,. It is enough to prove that
Cy ae.on EVE,.

i C,.(E N B(x,8))
-0 h(8)C, ,(B(x,0))

(4.18)

Let x€EUE, be fixed. The function g(6)=A(5)6?"#1 fulfils the assumptions in
Lemma 4.11. Lemma 4.7. gives that EWE, is a Borel set. Lemma 4.11 now shows
that we may assume that

Cs,o((E v Ep) N B(x, 5))
(4.19) Lim —~: R )57

Lemma 4.9. (ii) gives the existence of a set O, such that Cp,4(05)=0 and
(4.20) Coo(E 0 B(x,0)) = C, ,((E.L (Es\Oy)) N B(x, 6)).
Applying that C; ,(0;)=0, Lemma 4.10 and (4.20) we get

Cs,,((E U Eg) N B(x, 5)) Cs,((E v (Es\Oy)) 0 B(x, 5))
57-Pa 5d—Pa

(o q((E U (E\O,)) 0 B(x,3)) _ AC, ,(E 0 B(x,9))
C,,q(B(x, 9)) T Go(B(x, )

Thus
Cy, q((E u Ey) 0 B(x, 5)) AC,, q(E N B(x, 5))
F iz = C,, q(B(x, 3))

Now (4.19) immediately gives (4.18).
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Proof of Theorem 4.3. Put E(C, ,; 6* #)=E,. It is enough to prove that
Cs ;a.c.on EVE,
p—1
@21) fl{c“’“(E 0B, 5))} CLA.
0 C.. q(B (x, 9)) o
Let x¢ EUE, be fixed. Lemma 4.7 gives that EUE, is a Borel set. Applying
Lemma 4.12 we may assume that

4.22) fl { C,.,((E U Ey) n B(x,9)) }”'1 ? _

0 o4—ka

In the same way as in the proof of Theorem 4.2 we have for all é

Cy,o((E U Ep) 0 B(x,8)) _ AC, (E 0 B(x,9))
54-pa T G (B(x,0)

Now (4.22) gives (4.21).
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