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1. Introduction 

Paul Lrvy initiated his profound study of Brownian motion on the line in his 
article [10] of 1939 and expounded it in one chapter of his book [11]. The article con- 
tained a wealth of ideas that inspired a generation of research. A pivot in his approach 
is the time set when the Brownian path takes the value zero. His idea was to use this 
set to partition the time axis, so as to resolve the behavior of  the path into two parts: 
the location of the zeros, and the motion in a zero-free interval. This idea is a natural 
extension of the consideration of  successive entrances into a fixed state in a discrete 
time recurrent Markov chain. But since the zeros of a Brownian path do not form a 
well-ordered set in the natural order of the line, the execution of the intuitive ideas is 
not easy. Indeed, Lrvy had recourse to another time set, that when the path is sur- 
passing its previous maximum, which he found to be of the same stochastic structure 
as the zero-set. He based his analysis on the new set, which also led him to the disco- 
very of local time. Despite this brilliant detour, it turned out that a direct attack on 
the zeros brought quick success, as shown in Theorem 1 below. Moreover, once the 
crucial calculations have been made, the rest of the denouement follows the pattern of 
last-exit phenomenon now familiar in Markov processes. The analogy may be pushed 
further by treating "zero" as a unique boundary point. There is much to be gained 
from the analogy even from the analytic point of view. For  many explicit expressions 
reveal themselves to be the results of juxtapositions and cancellations of  basic proba- 
bilistic quantities, and their combinations and transformations are facilitated by the 
probabilistic insight. This is the gist of  the contents of  w 2, which may be regarded as 
a re-stumping of L~vy's old ground with a new guide. 

* Research supported in part by NSF grant 41 710. 
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The Brownian motion restricted to the maximal zero-free interval containing the 
time t is called the "'excursion process straddling t" ,  and the portion of it up to t is 
called the "meandering process ending at t". The latter term is borrowed from D. L. 
Iglehart. The basic structure of meandering is given in w 3, that of excursion in w 4. 
It is a key fact that conditionally on the duration of each process, its law no longer 
depends on t, namely on its location along the time axis. By way of treating a parti- 
cularly interesting functional, we derive the distribution of the maximum of  each 
process. It is noteworthy that the result for excursion can be obtained from the cor- 
responding distribution for the unrestricted Brownian motion by two successive 
partial differentiations, followed each time by setting the respective variable equal 
to zero. This procedure seems to mimic the action of tying down the path to vanish at 
both ends of the excursion. The resulting distribution may well be new and presents 
some analytic interest. This is pursued further in w 5. It should be clear that the method 
of deriving these distributions is applicable to other functionals. We content ourselves 
with studying occupation times in w 6, and end by extending an assertion by L6vy 
concerning the second momem of the occupation time of  a neighborhood of zero 
during an excursion. This apparently fills a gap in the literature. Making use of the 
results in this paper it is now possible to carry further L6vy's approach to local time 
problems. A note on this will appear elsewhere in joint work with R. T. Durrett. [4b]. 
In the final w 7 we show how to obtain the clues to Brownian excursions by obvious 
analogy with the boundary theory for Markov chains. 

Some of the results in this paper were announced in [4]. 

2. Basic calculations 

Let B =  {B(t), t=>0} be the standard Brownian motion with all paths continuous. 
For each t>0 ,  we define 

7(0 = sup {sis <- t; B(s) = 0}; 

[l(t) = inf{sls => t; B(s) = 0}. 

Then ~(t) is the last zero of B before t, and fl(t) is the first zero of B after t. Since 
B( .  ) is continuous, and P {B(t)----0}----0, we have almost surely 

(t) < t < fl(t). 

This is true for each t, hence also, e.g., for all rational t simultaneously, The stochastic 
interval (y(t), fl(t)) is called the interval o f  excursion straddling t. Clearly B keeps 
the same sign in each such interval; let [B [= Y, which is known as the reflecting 
Brownian motion. 
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The first entrance time into the singleton {x} will be denoted by T~, 

T~ = inf{sls > O; B(s)  = x}. 

Recall from classical theory the following formulas obtained by the reflection prin- 
ciple. For  t > 0  and arbitrary x, 

(2.1) P~ E dt} = , Ixl e-~/~t dt; 
V 2rc? 

for t>O, x > 0 ,  y>O, 

1 
(2.2) ex{B(t)Edy; To > t} -- ]/~.{ {e=(x-r)2/2t-e-(X+Y)v2t}dy. 

Here P~ denotes the  probability associated with the Brownian motion starting from 
x, and po will be usually written as P. The differential notation above as an abbrevia- 
tion for the corresponding integrated formula will be used throughout the paper. 

It follows that if 0 < s <  t, X >0,  y >0,  then we have from the meaning of  7 (t) that 

(2.3) P{7(t) =< s; Y(s)Edx; Y(t)Edy} - 

= P{Y(s)Edx; Y(u) # 0 for all uE[s, t]; Y(t)Edy} = 

= P(Y(s )Edx}ex{B( t  s)Edy; To > t - s }  = 

1/ 1 {e -(x-r?/2(t-') -- e -(~ +r)=/2('-*)} dy. 
V Trs e-~2/~ dx ]/2rc([ ---~ 

The first major step is to integrate out dx in the above. Straightforward calculation 
yields 

{- dt = r x ~ (x+y)~ ! f ~ w e - Z V 2 d z e - , V 2 , ~ s ( t - s )  
f .~  exp 2s 2-(t - -s ) /  t 

where w = y  t ( t - s )  " Using this in (2.3) we obtain 

(2.4) P{7(t) ~ s; Y(t)Edy} = 2 dYe - " mfoe -==/2dz .  
rcl/t d, 

A simple differentiation with respect to s gives the key formula below. 

Theorem 1. We have for  O<s<t ,  y > 0 ,  

(2.5) P{?(t)Eds; Y(t)Edy}-= Y e-r2/2e-S)dsdy. 
1 S (  t - s )  3 
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It  is trivial to integrate out dy in the above,  we obtain 

ds  
(2.6) P { ~ ( t ) s  - rc -'---:---~" s) 

2 
P { r  (t) <= - -  - arc s in 

7~ 

Now Theorem 1 can be cast in the following conditional form. 

Corollary. 

Y e "r~/2(t's) dy.  (2.7) P { Y ( t )  ~ dy l  ~ (t)  = s} = t - s 

The last result corresponds to L6vy's Theorem 42.5 in [11] which played an 

essential role in his treatment. He stated it in an apparently more general form and 
proved it in an entirely different way. His method is to consider another process Y1 
defined by 

Yx(t) = max -B (s) - B (t), 
O ~ s ~ t  

and shown to be equivalent in law to Y (see [6; p. 32] for a neat p roof  of  the latter 
assertion). He then used the joint distribution of max0=s~_tB(s ) and B ( t )  to derive an 
analogue of (2.7) for ]11. My inability to follow his arguments was the original motiva- 
tion for the present investigation. The method used here is more direct and without 
difficulties. In the language of point processes, where the points are the zeros of  the 
Brownian motion, the conditioning in (2.7) is that of  a "horizontal window" whereas 
Lrvy 's  is a "vertical window".* As a matter of fact, since y(t)  depends on t and is not 
an optional random variable, formula (2.7) by itself is not as convenient as its 
source (2.5). 

Integrating (2.5) over s f rom 0 to t, we obtain 

(2.8/ e - ' ' m  = P { Y ( t ) E d y } / d y  = f ~  2 Y e - ' ' /2( ' -~)  ds. 

The identity of  the first and last members above may be verified analytically, but its 
importance is due to the probabilistic meaning. The indicated grouping of factors in 
the integrand is to bring out a fundamental feature of  the excursion, namely the 
last-exit decomposition of the Y process. To explain this and to pursue a remarkable 
analogy with known results for Markov chains, we introduce the appropriate nota- 

* Durrett was able to justify Lrvy's arguments after considerable labor. 
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tion below: 
1 

p(t; x, y) = ,--~-~e-~X-')~/2t; 
V~Yi 

(2.9) q(t; x, y) = p(t; x, y ) - p ( t ;  x, " y ) ;  

g(t; O, y) = lYl e-,V~,. 
~/ 2~? 

Note g(t; O, y)=(~/Ox)P(t; x, Y)l~=o for y > 0 .  Then (2.8) becomes, after cancelling 
a factor 2, 
(2.10) O,y) = f~p ( s ;  O,O)g( t -s ;  O,y)ds. p(t; 

This is the last-exit (from 0) decomposition of which the analogue in Markov chains is 

Poj (t) ----- f~  P o o  (s) g0j (t -- s) dx, 

see [1;p. 201]. Now observe that p(s; O, 0 )= p ( s ;  y, y), so that (2.10) may be rewrit- 
ten as 

(2.11) p(t; O,y) = f ~ g ( s ; O , y ) p ( t - s ;  y ,y)ds .  

In view of the interpretation in (2.1), this is just the first-entrance (into y) decompo- 
sition of which the analogue in Markov chains is 

poj (t) = f~ foj ~s)p~j i t -  s) ds, 

see [1 ; p. 205]. In Markov chains the two functionsfoj and goj are of course in general 
different. Here the fact that the same function g serves i n  both decompositions is 
another manifestation of the rich symmetry inherent in the Brownian motion. It tends 
however to confound matters also. The analogy with Markov chains now enables 
us to discover and exploi t latent relations obscured by explicit expressions. First we 
realize that {g(t; 0, -), t>0}  is an entrance law for the taboo transition sernigroup 
with {0} as the taboo set, i.e., for O<s<t  and y > 0 ,  we have 

f og ( s ;  O,x)q(t--s;  x,y)ax : g(t; O,y). 

This can again be verified analytically but  its probabilistic meaning is clear. Next, 
initiating the procedure in Markov chains [1; p. 207], we put 

oo 1 
(2.12) g( t ;0)  : f~  g(t, O, y)dy = ]/~_~; 

g(t; O, y) = y e_Y2/2t 
(2.13) h(t; y) = g(t; O) t 
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Rewrite (2.4) and (2.6) as follows: 

F(s, t; dy) = P{?(t) <:s; Y(t)Edy}, 

r ( s ,  t) = e{~ (t) <- s}. 

Then (2.5) and (2.6) become, respectively, 

(2.14) - ~  F(s, t; dy) = 2p(s; 0, O)g(t-s; O, y)dy, 

t) 2p(s; 0, O)g(t-s; 0). (2.15) ~ r(s, = 

The last-exit formula (2.8) may now be written as 

(2.16) P{Y(t) E dy}/dy = .]'to h (t - s; y) d~F (s, t) 

and becomes a particular case of the more general formula, valid for O_<-sl~ t: 

P{r(t) <- sl; Y(t)Eay}/ay = f o 1 h( t - s ;  y )4r ( s ,  t), 

which is the full force of (2.5). 
We need another quantity to be introduced in the next proposition. 

Proposition 2. For s > 0  and t>0,  we have 

1 
(2.17) f o  g(s; 0, x)g(t; 0, x) dx - - - .  

1/8~ (s + 0 3 
Proof The left member is equal to 

1 x 2exp[ (s+t)  x ~]dx, 
f2 2re 1 / ~  t 2st J 

which is easily evaluated. 
The quantity analogous to that in (2.17) for Markov chains is ~ j  go1 (s)f~o(t). 

It  is introduced in [2; Theorem 6.4] when 0 is regarded as a boundary point, as it 
might well be also in the present study. Hence we shall use a similar notation below: 

1 
(2.18) 0 (t) = ~ .  

Indeed, we could have obtained 0 from analogy with some fundamental relations in 
boundary theory, instead of the direct calculation in Proposition 2. This approach 
is~ given in w 7 for readers who are acquainted with boundary theory for Markov 
chains. 

To proceed, we multiply (2.5) in the form of (2.14) by the following formula, for 
O</<U: 

e{fl(t)EdulY(t) = y} = eY{ToEdu- t} = g ( u -  t; O, y) du 
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which is obvious by the Mark0v property of Y. The result is 

(2.19) P{v( t )Eds;  Y( t )Edy;  fl(t)Edu} = 

= 2p(s; 0, 0) g(t - s ;  O, y) g ( u -  t; O, y) dsdy  du. 

Integrating out dy in the above by using Proposition 2, we obtain the next proposition. 

Proposition 3, For O < s <  t<u ,  we have 

dsdu  
(2.20) P{~(t)~ds; ~(t)~du} = 2p(s; 0. O)O(u-s) dsdu. 

2~ ]/s-(u -- s) ~ 

Let us introduce two more random variables: 

(2.21) L - ( t )  = t - -y( t ) ;  L( t )  = f l ( t ) - -  7(t ). 

We call (7(t), t) the interval o f  meandering ending at t. Thus L - ( t )  is the duration 
of the meandering ending at t, whereas L (t) is tlie duration of the excursion straddling 
t. For later reference we record (2.6) in the form 

dr 
(2.22) P { L -  (t) E dr} - 0 < r < t; ~ ~ '  

from which we obtain 

(2.23) P { L ( t ) E d l l r - ( t  ) = r} = --~ dl, 0 < r < t ^ l .  

It is sometimes more convenient to use the pair (~(t), L( t ) )  or ( L - ( t ) ,  L ( t ) )  rather 
than (? (t), fl (t)) to identify the interval of excursion straddling t, as we shall soon see. 

3. The meandering process and its maximum 

For each t>0,  the process Y restricted tO the interval (~(t), t) will be called the 
meandering process ending at t. Precisely, we define Z as follows: 

Z(u)  = Y ( 7 ( t ) + u )  for 0 <= u <= L - ( t ) .  

For each t > 0  and u=>0, Z is defined only on the measurable sample set {u<=L-(t)}. 
It would be futile to define it by decree elsewhere and we desist from doing so. 
The joint law of 7(t) and the Z process is given by the next theorem. 

Theorem 4. Let  m>- l, O~ul  < . . .  < u m < t - - s < t ,  and Yl,  "",  Ym+l be arbitrary 
positive numbers. We have 

(3.1) P{7(t)E ds; Z(u!)E dyl ; ... ; Z(um)E dym; Y(t)E dym+ ~ } = 

= 2p (s; O, O) ds g(ul; O, ya) dyl q (u2 - u,; y~, Y2) dy2. . ,  q (Urn-- U,~_ i ; Y,,-  1, Ym)dym" 

�9 q(t  -- S-- um; Ym, Y=+I) dym+l. 
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Remark.  When there is no u, i.e., when m=O, the formula above reduces to 
(2.5) or (2.14). 

Proof. It  is sufficient to indicate the proof  for m =2 .  Let qh . . . . .  q~m+l be bounded 
continuous functions on (0. oo); and for fixed s > 0  let 

ks  
dnk = -~- , 0 < = k < = 2 " ;  Ink = [dn.t~_l, dnk), l ~ k < _ - 2  ". 

I f  d . k + u ~ < t  and ~(t)EI.k, then ~( t )=~(d .k+ua) ;  thus {~( t )6I .k}={7(d ,k+UOC 
E I.k; fl (d.k + ul) > t }, Hence we have 

(3.2) e{y(t) < s; e ~ ( z ( u o ) ~ s ( z ( u 2 ) ) e 3 ( Y ( t ) ) }  = 

= h 'm Z~"=I E{7 (d.k + ul) E Ink ; fl (d.k + Ul) > US ; 

(Pl (Y (dnk -b ul))q~2 (Y(d,k -t- us))(P3 (r(t))}. 

Here and hereafter we write E ( A ;  q~) for the expectation of  q~ over the set A. By 
Theorem 1, followed by Markov property of  Y applied at d.k + ux, the k th term above 
is evaluated as follows: 

2 f , .  p(r, O, O) dr f o  g ( d , k - - r +  ul; O,y) tPl(Y)" (3.3) 

�9 E'{To > t - d.k -- Ul'~ ~02 (Y(u2 - -  ul))q~3(Y(t-- d.k-- u0)} dy 

where E y is the expectation induced by PL For  rE[0, s) let us put 

r . =  + 1 ~  

where the square bracket denotes the greatest integer function, so that r~=d~k if  
rEI.k, for 1 <_-k~<2 ~. Then if we sum (3.3) over k, we obtain 

(3.4) 2fop(r; O, O)drf~ g(r.-r +ul; O, y 0  ~0~ (yl)dye.  

�9 f o  q (u2 -u~; Yl, Y2) (P2 (Y2) @2 f o  q ( t -  1".- us; Y2, Y3) ~03 (y~) dye. 

Now g(u; O, y) and q(u; x, y) are continuous in u > 0  for fixed y and x, and for 0<a~_ 
~u~=b< oo there is the easy domination 

lyl --y2/2b. 1 e-(X-Y)2/2b g(u;O,Y)~= ~ e  , q (u ;x , y )<= 
1/ 2~a 
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Hence when we let n ~ co in (3.4), the result is 

2 f ~ p (r ; O, O) dr f ~ g(u~, O, yl) cpl(yl) dy~ f o q (uz . ul ; Yt, y~) cp~ (y~) dye. 

�9 fU q ( t  - r - -  us;  y~ ,  Y3) q~3 (Yz)  @ 3 .  

Differentiation with respect to s yields the integrated form of  (3.1). 
Switching from ~(t) to L - ( t )  and using (2,22), we obtain the conditional law 

below. 

Corollary. For O< ul < . . .  < urn< r< t, we have 

(3.5) P{Z(Ul)Edyl;  ; Z(um)Edym; Z(L- ( t ) )Cdym+I]L-( t  ) = r} = 

: 2]/~ g(ul; O, YO @1 q (u2 -- ut; Yl ,  Y2) @2. . .  q (r-- tl m "~ .]~m, Ym+l) dym+l. 

It  is easy to extend Theorem 4 pro forma to a general event belonging to the  
Borel field generated by the meandering process. We shall use such an extension in. 
the specific case below. For  0 < 6 < r  and x > 0 ,  4>0 ,  we have 

(3.6) P{ m a x  Y(u) <= ~; Y ( r  ) = r} = 
r(t)+~_u<=t 

= 2t/T~feog(8;O,y)PY{To > r - 6 ;  o~_,~=,-,max YCu),, =< ~ ; Y ( r - 8 ) E d x } d y .  

Let us write 
M(t )  = max B(s) ,  re(t) -- min B(s). 

O~_s~t O~_s~_t 

For a fixed 4 > 0  and O<x_<-~, we put also 

(3.7) tp(t; y , x ) d x  --- PY{0 < re(t) ~= M( t )  <- ~; B( t )Edx}  = 

= pO{_y < m(t )  ~ M( t )  <= ~ ' y ; B ( t ) C d x - y } .  

Observe that the factor pr{...} in the right member of (3.6) is then just ~o ( r - 6 ;  y, x).  
It  is well known that for 0 < y < r  0 < x < r  we have 

(3.8) qo(t; y, x) = ~o= - ~  q(t; x,  y +2n~);  

see, e.g., [6, p. 26]. A little inspection shows that for arbitrary t > 0  and x > 0 ,  we have 

~o (t; 0, x) = ~o (t; 4, x) = 0 

and that q~(t; y, x) is periodic in y with period 24. The partial derivative of ~o with 
respect to y is given formally by 



164 Kai Lai Chung 

The series converges uniformly in the region O<a<-t<=b<% 0<-y~24,  0<x-<2r  
by easy domination. It follows that q~r is continuous in (t, y, x) in the region 
0 < t < ~ ,  0<=y_<24, 0<-x<-2~ and is indeed represented by the series. In particular, 
we have 

]/-2- x + 2 n ~ e x p [  (x+2n4)  2) 
(3.1o) %0; o, x) = ?7 Z 7 = - = - - - 7 - -  2t - 

= 2 ~~  g(t; 0, 2n4 + x ) - - 2  Z~~ g(t; O, 2n4--x). 

We are now going to evaluate the limit of the right member of (3.6) as &0. 
By partial integration, and that ~o (r--6; O, x)= (p ( r -6 ,  4, x)=0, we have 

(3.11) f~o g(a; O , y ) ~ ( ~ - a ;  y, x)dy _ 1 f~ Y e-r~/2ar y ,x )dy  = r oT ~- 
1 r _r2/2~ 

- - - f ~ e  % ( r - a ;  y,x)dy.  
I/2~a 

As 6 ~0, it is easy to see that the last-written integral converges to (1/2) % (r; 0, x) by the 
,continuity and boundedness of  ~pr mentioned earlier. On the other hand, the left 
member of (3.6) converges to a similar probability with the 6 there erased. Putting 
things together, we obtain the next theorem. 

Let us put 
M - ( t ) =  max Y(s); M * ( t ) =  max Y(s). 

~(t)~s<=t "e(t)_s~fl(t) 

Thus M-(t)  is the maximum of  the meandering process ending at t; M*(t) is the 
maximum of the excursion process straddling t. The latter will be treated in w 4. 

Theorem 5. For O<r<t and 0 < x < 4 ,  we have 

(3.12) P{M- (t) <= 4; Yft) < dx [ L -  (t) = ,'} = 

= I/2-~-r { ~ =  0 g(r; O, 2n4 +x) -- ~ = 1  g(r; O, 2n4 --x)} dx. 

The last expression may be written as 

a [ (2.4 +x)q 
Z~-- - -  0-7 e x p .  2rr )" 

Integrating out dx as we may term by term, we obtain 

(3.13) 

P{M-(t)<= { ] L - ( t ) = r } = 2 Z _ _  exp ~r ) - e x p  - 2r }/ 

f = 1 + 2  z~'=l (--1)nexp t--~T) 
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Multiplying (3.12) by (2.22) and integrating over r, we have 

e{M-(t) <= 4; Y(t)Cdx} -- 

= f~2p ( t - r ;  0, 0){~'n=0 g(r;  0 ,2nr  O, 2n~--x)} dr. 
But 

f~p(t--r;  O, 0)g(r;  0, y)dr = p(t; O, y) 

by the last-exit decomposition (2.11); hence we obtain 

(3.14) P{M-(t)<~ 4; Y(t)Edx} = 2 ~ = o p ( t ;  0, 2n~ + x ) - 2  ~ = l p ( t ;  O, 2 n ~ - x ) =  

= 2p(t; 0, x ) - ~ = l q ( t ;  x, 2n~). 

Integrating out dx we get after some simplification 

(3.15) P{M-( t )  =< 4} = 2z~~ (-- 1)"P{n~ ~ B(t) < (n+  1)~}. 

The last formula has also been obtained by John B. Walsh by a direct application of 
the reflection principle. 

We can also derive (3.15) from (3.13) by an interesting detour. The key formula 
is as follows: 

1 e-~2/~(t-r) dr = ~ / ~ -  (3.16) f~ 7r ]/r(t-r) ~ f;= e =y2/2t dy. 

To show this in a probabilistic setting, we rewrite the left member as 

f ~@r~  J - 2  t O,O)dr f ~ g ( t - r ; O , y ) d y =  2 Y e-YVe(t-r'dY f~p(r; 
l/2zc (t -- r) z 

= 2 f ]  dyf~p(r; 0, O)g(t-r; O,y)dr; 

and then apply (2.11) to get 

2 f xp ( t ;  O,y)dy 

which is the right member of (3.16). It follows that if we multiply (3.13) by (2.22) and 
then integrate with respect to r form 0 to t term by term, the result is 

l +4 Z L l  (-1)" f~r p(t; O, y)dy. 

This is seen to be the same as the right member of (3.15) by partial summation. 
Let us observe that if we put x=~2/2r in the second member of (3.13), then we 

obtain the following distribution function: 

(3.17) F(x) = Zn=-= (-- 1) "e-"'x, 0 < X < ~o 
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This is known in the theory of  theta functions. In fact, using one of Jacobi's 
identities (see, e.g., [12; Vol. I. p, 8]), we have 

_ _  e - n x  

In this form it becomes clear that F is increasing and F ( 0 + ) = 0 ;  only F ( +  ~ ) =  1 
is obvious from (3.17). 

4. The excursion process and its max imum 

For each t >0,  the process Y restricted to the interval (? (t), fl (t)) is the excursion 
process straddling t. Thus it is a prolongation of the meandering process ending at t 
and is defined by 

Z(u)  = Y ( 7 ( t ) + u )  for 0 <= u <= L(t) .  

Its fundamental structure is given in the following theorem. 

Theorem 6. Let  m ~- l , 0 < U l < . . . < u , ~ < l ,  and Yl , . . . ,  Ym be arbitrary positive 
numbers. We have for  s + l > t :  

(4.1) P{?(t)Eds;  Z(Ul)Edyl;  . . . ,  Z(um)Edym; L( t )~d l}  = 

----- 2p(s; 0, 0) ds g(ul ; O, Yl) dyl q (us - ul ; y~ , Y2) dy2 ,.. q (u,. - u,,_ l ; y , . -  ~ , Y,.) dy,, . 

�9 g ( l -  u,n ; 0, y, . )  dl. 

Remark. When m = I and when we substitute the random variable L - ( t )  for the 

constant u~, then (4. I) reduces to (2.19). Such a substitution must of  course be justified. 

Proof. Again we take m = 2 and proceed as in the proof  of  Theorem 4. To lighten 
the typographical burden we shall write 

t t 

ul = d,k + ul, Us = d,k + Us. 

Let T o ( u ) = i n f { t > u :  B(t)=0}.  Observe that on the set {u~<fl(t)}, we have 
fl(t)=u~+To(U~). Now we have, in analogy with (3.2), 

(4 .2)  E{r( t )  < s; ?( t )+u2 < fl(t); qh(Z(ul))q~2(Z(u2))~3(fl(t))} = 

= lim ~"=~ E{~ (u;) E I.k; fl (u;) > u~; q~ (r (u;) )  ~o s (r(u~))~o~ (u~ + T o (u~))}. 

The k th term in the sum is evaluated by Theorem 1 applied with t=u~,  followed by 
r 

Markov property of Y applied successively at u~ and u s. The result i s  

2f,. p(r; o, 0)dr fo = g(u;-r; O. YI)~(y l )+ i f [  q(u;-u;; y,, ys)~s(y2)" 

�9 E~' {u; + To > t; ~o.(u~ + To)} dys. 
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Using (2.1)we see that 

�9 , f~o , , EYs{u~ + To > t,  q~3(us+ To)} = __t-.t)+ g ( v - u s ;  O, ys)q~3(uz + v) dv. 

p 
When rCI.k, r .=d.k ,  so t h a t u ~ = r . + u i ,  u2=rn+u s. Substituting into (4.2), we see 
that the sum there is equal to 

2fop(r; o, O)dr fo  g ( r , ' r + u l ;  O, y l )qh(Yl )ay l  f o  q(us--ul;  y l ,  y~)q~(y2)dya" 

�9 f l  ~ Ys) ~o3 (u2 + v) dv. 1-u'~)+ g(v; 0, 

Letting n-~ ~ so that r.-+r, we see that the result is tentamount to 

P{r (t) E as; ? (t) + u s < [3 (t); Z (ul) E dyl; Z (b/2) ~ dy s; [3 (t) - V (t) - u2 ~ dr} = 

= 2p (s; O, O) ds g(ux, O, YO @1 q (us - ul; Yl, Ys) dY2 g(v, 0, Yz) dr, 

i f s + u s + v > t ;  = 0  otherwise. Writing I for uz+v we see that this is (4.1) when m - 2 .  

Corollary�9 We have f o r  0 < s < t ;  O<ux<. . .<u , ,< l ,  and arbitrary positive 

Yl ,  . . . ,  Ym : 
(4.3) P {Z (/e/1) ~ dy I ; . . .  ; Z (zl m) ~ dy mlv (t) = s, Z (t) = l} = 

= r g(u I ; 0,  Yl) @1 q (U2 -- Ul ; Yl, Y2) dys, . ,  q (urn -- u,,_ 1 ; Y , -  1 ,  ym). 

�9 g ( / - -  U m ; 0, Ym) dym. 

Proof  Rewrite (2,20) as 
dsdl 

(4.4) P{?(t)~ds; L( t )Edl}  = ~ for t - I  < s < t; 

and divide (4.1) by (4.4). The result is (4.3). 

Note that the factor l/8rd a in (4:3) is just 1/0(/); so that i f  we put m = l  there 
and integrate out dy,,  the result indeed checks with Proposition 2. 

We can now use the method of finding the distribution of M -  (t) in Theorem 5 
to find that of M*(t), by basing it on Theorem 6 instead of Theorem 4. 

Theorem 7. For 0 < t - a < l < r  we I~ave 

(4.5) P{M* (t) --<= {IV(t)= s , L ( t ) =  I , =  l+2z~;=l[1-4ni{------~2Jexp[-2ni{----~ j .  
I - -  % I - -  N 

Proof. It follows from the Corollary to Theorem 6 that for sufficiently small 
positive 6 and e, we have 

(4.6) P /  max Y(u) ~ < { I V (t) = s, L (t) = l} = 

t/~l~fCog(a; O,y)dYfCoe~{To> l - a - ~ ;  max Y(u) <_- 
O~_u<=l . - -6 - - t  

<: ~; Y ( l ' ~ - ~ ) 6 d x } g ( e ;  O,x). 
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Using the function qo in (3,7), the second integral above may be written as 

(4.7) ff.q,(l-a-e; y ,x )g (e ;  0, x)dx.  

By the argument in (3.11), we see that as el0 this integral converges to 2-1(p, ( l -  5; y, 0) 
where (Px is the partial derivative of q~(t; y, x) with respect to x. I f  we substitute this 
limit in (4.6), its right member becomes 

r  �89 g(5; O, y) q~x(l-- 6; y, O) dy. 

The same argument shows that  as 650, this integral converges to 

1 
(4.8) ]/8--~-U. ~ q~,(/; 0, 0). 

Here c?~y(t; y, 0) is the partial derivative of cp,`(t; y, 0) with respect to y. Its continuity 
and boundedness must be checked as done before for ~oy in (3.9). F ro m  (3.10) with 
x and y interchanged we obtain by differentiation 

2 -  (Y + 2n~)2 exp - . 

Hence the expression in (4.8) is equal to the right member of (4.5) as asserted. Theorem 
8 is proved. 

Putting x=2{2/ l in  the right member of (4.5), we see that the function F below, 

(4.9) r ( x ) -  l + 2 Z 2 = l e - " ~ x ( 1  2n2x), 0 <  x <  ~,  

is a distribution function. Observe that F ( 0 + ) = 0  as a consequence of Theorem 7, 
but this cannot be deduced by putting x = 0  in (4.9) because the series does not con- 
verge uniformly in the neighborhood of x - 0 .  Direct analytical verification of the 
properties F is not trivial.* One method is to pass to La place transforms, and using 
Euler's partial fraction expansion of (e = -  1) -1 to get 

4rc22e-2= f2 
- f 2 "  e-aX dF(x) - 

This shows F(0q-)=l imz+ ~ 2fi(2)=0. But to recognize the last member as the Laplace 
transform of a distribution function, we need the formula, not so well known but 
computable: 

2re ]/~e -=l~ 
E(e-~S) - 1 - e  -2'~t/'~ 

* In fact, when the distribution was first found, the onty confirmation was obtained by Iglehart 
on the computer. 
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where S is the first entrance time of the 3-dimensional Bessel process into the singleton 
{n/I/2}. Thus F is the distribution of  the sum of two independent copies of S. For 
a deduction which apparently goes inthe opposite direction, see [13]. 

A quicker analytical verification of the properties of F has been furnished by 
W: A, Veech as follows. Introduce the theta function 

3(x) = 1 +2Z~~ 
We have then 

V(x) = O (x) + 2xg' (x). 

Using Jacobi's functional equation 

= • o ILl 
i x j  

we obtain 

(4.10) 

If we put 1t/x=z, we have 

F@x)- 2--- O' [1} 4z 

[-~/ 4 3/2 .~-r~ 1,12e_n2 z 
F ~- ~ - ~ z  l..~ n = 1 

and it is now clear that limmoF(x)=0. It is trivial from (4.9) that limx.~F(x)--l.. 
Next we get from (4.9) that 

F" (x) = 2 ~ = 1  e~"~Xn2( 2 n 2 x -  3). 

Hence F ' (x)>0 for x>3/2, On the other hand, we get from (4.10) that 

/ 3x / 4re .~,~ _n2n/Xn2 n27z__.~ - 1rF'(zrX) = ~-~ Z~,=le 

Hence F ' (x)>0 for 0<x<2nz/3, Since 3/2<2rc~/3, we have shown that F'(x)>0' 
for all x>0.  

Iglehart [7] had the idea of studying a "scaled meandering" by the methods of  
weak convergence, and this was extended to a "scaled excursion" by W. D. Kaigh 
[9]. In the terminology used here, "scaled" means "of duration equal to one (unit)". 
Kaigh's result corresponding to Theorem 7 reads as follows (private communication). 
Let {X,, n @ 1 } be independent, identically distributed random variables such that )(1 
takes the values +1 and - 1  with probability 1/2 each; and let S , = ~ = I X ~ ;  
T=min{n~ l  IS,=0}. Then 

lira P{amax [Sk]/]/~nn <-- x l T =  2n} = F(2x 2) 
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where F is given in (4.9). A result corresponding to (3.13) is obtained when the con- 
dit ion " T = 2 n "  above is replaced by " T > 2 n " .  These results can then be shown to 
ihold for more general Xn's by an invariance principle due to Iglehart, and yield 
,chemes which converge weakly to the scaled meandering and excursion processes. 
Further investigation of the various relations will appear in a paper by Durrett and 
Iglehart [5]. 

5. A curious connection 

There is a way of reaching Theorem 7 via Theorem 5 which involves some in- 
-teresting calculations. 

Proposition 8. For 0 < x < ~  and u > 0  we have 

(5.1) P ~ { T  o < Tr ToEdu } = - - ~ = _ ~ p x ( u ;  0, 2n~ + x)du 

,where px (u, x, y) = (O/Ox)p (u; x, y). 

Proof  The probability in the left member of (5.1) is expressible as 

lim fr oPt{T0 > u--e;  max Y(s) <= 4; Y(u--e)Edy}Pr{ToEde} = 
elO d Y = O~_s~_u- -  e 

= lim fo~ r  x ,y)g(e;  O,y)dy 
er 

in the notation of (3.7). The last limit was evaluated under (4.7) with u = l - 6  and x 
and y interchanged as 2-1rpv (u; x, 0), which is seen to equal the right member of (5.1). 

The Laplace transform E~{To<T,; e -~r0} is known (see. e.g., [8; p. 29]) and 
(5.1) may be obtained by inverting it. But the argument above, part of the proof of 
Theorem 7, is more in the spirit of this paper. 

Now we multiply (3.12) with (5. I), and observe that the right member of (3.12) 
is just 

- 1 / ~ r 2 ~ = _ ~ p x ( r ;  O, 2n~+x).  
We obtain thus 

(5.2) fr P { M - ( t )  <= 4; Y( t )Edx]L-( t )  -- r}pX{To < T,; ToEdu} = 

= 2r  o, 2 n ~ + x ) ~ 7 = _ = p x ( u ;  O, 2n~+x)dx .  

I f  we put M*(t)=maxt_<__s<_a( o Y(s),  then it is clear that 

P {M + (t) <= 4 ; fl (t)E t + du[ Y(t) = x} = PX {To < Tr ToE du}. 

Using this in (5.2) we see that its left member is just 

P{M*(O <- 4; L( t )  = r + d u l r - ( t )  = r}. 
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Dividing this by (2.23), we get 

(5.3) P{M*(t) <= r  = r,Z(t)  = r +u} = 

= t/8n (r + u) 3 f0  r Z ~ =  - co ~ =  - ~ Px (r; 0, 2m~ + X)px (u; O, 2n~ + x) dx. 

It is remarkable that the last-written series can be evaluated (term by term). Using 
the fact that p satisfies the heat equation 

1 O 0 3 
2 fit p(t; x , y )  = - ~ z p ( t ;  x ,y) ,  

we transform the integral by partial integration as follows: 

~ ' , ,  Z ,  {p(r; 0, (2m+ 1) {)px(u; 0, (2n+ 1 ) r  0, 2m{)px(U; O, 2n{)}- 

~'mZ. ~ HoP(r; O, 2m{ + x)p(u; O, 2n{ + x)dx  ~ 2 

where all the sums range over all  integers. The first double sum above vanishes 
becausepx(u; 0, y) is an odd function ofy.  The second may be evaluated as a repeated 
integral by putting k = r n - n  and summing first over n. Making use of the convolution 
property ofp  as well as its being a function o f ( x - y )  2, we reduce the sum to 

_ o ~ 1 = 0, 2/c~)}. 2-b--ff tTP(r +u; 0, 0)+Z~ lP(r+u; 

Carrying out the partial differentiation and substituting in (5.3), we see that the right 
member of (5.3) agrees with that of (4.5) with l = r + u  and s = t - r l  This was indeed 
the way formula (4.5) was first "computed out". It is recorded here as an item of 
curiosity. 

6. Occupation times 

As another application of Theorem 6,  we can calculate easily the expected 
occupation time during a meandering or excursion, Let (a, b ) c  (0, ~), and define 

S-( t ;  (a, b)) = f (o I(a,b)(Y(u))du; 

S(t; (a, b)) = f~((tt) ) I(a,b)(Y(u))du; 

where I(a,b)is the indicator of (a, b). We begin with the observation that for O<t,  
x>O, y>O, we have 

(6.1) f~g(s;  O , x ) g ( t - s ;  O, y)ds  = g(t; O,x + y). 
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This follows at once from (2.1) from the meaning of g as density of first entrance 
time and basic properties of  the Brownian motion. Now we have by (4.3) 

(6.2) E{S( t ;  dx) Iv( t )  = s, L ( t )  = l} - f~  e { Z ( u ) E d x l ~ ( t )  = s, L ( t )  = l} ds 

-- f~  81fg-~ g(u; O , x ) g ( l - u ;  O,x)dudx  

= 1/8~zlag(l; O, 2x) dx = 4xe-~X2/tdx. 

This result is due to L6vy (cf. his derivation on p. 221 of [11]). It constitutes the basis 
of his fundamental theorem on local time cited at the end of this section. 

To obtain the unconditioned expected occupation time we multiply (6.2) by 
(2.20) with l = u - s ,  and integrate over s: 

1 ds i.~ 4x e_2~,/t dl. (6.3) E{S(t;  dx)}/dx = ~ f~ v7 a,-s r 
Setting y = 2x V ( t -  s)]l we obtain 

1 
x tl/7~-s f~x  e-r'/'(t-s) dy 

for the second integral in (6.3)', so that 

(6.4) E{S(t;  dx)}/dx = -~fo2 , r f~Xe-'~t2(t-O dy. 

This can be evaluated by (3.16). More directly, we cast it into a probabilistic form, 
using (2.6) and (2.7) after integrating the latter over (y, oo), 

t 8x 
(6.5) 2 f~  P{r (t) C ds} f o  P{Y(t) > Y lY (t) = s} dy = 

= 2 f 2  ~ P{Y(t) > y} dy = 2E{V(t)^2x}. 

Next, we calculate the expected occupation time during a meandering. We have 
by (3.5), 

(6.6) E { S - ( t ;  d x ) / d x l Z - ( t )  = r} = jo" P { Z ( u ) ~ d x l Z - ( O  = r} du 

= f 2  2r~Tg(~; O,x)P~{To > r -u}du  

= 2 V ~ - f f f o P ~  > r-u)au 

-- r p0{r~ < r < r~x}. 

Recall the notation M(r)=max0~_,a, B(s) and the basic formula 

I f - - f :  (6.7) P{Tx < r} e{M(r)  > x} 2 oo _y,/~, = = - -  e dy. 
7zr 
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Using this in the last member of  (6.6), we obtain 

(6.8) E{ST(t;  dx)/dxlL-(t) = r} 2 f~ 'e - 'V~r  dy. 
Hence by (2.22), 

E { S -  (t; dx)}/dx f t  2dr_ f z x  e_y~/2, ay. 

Comparison with (6.4) and (6.5) shows that this is equal to 

(6.9) 2E{Y(t) ^ 2x} -- 2E{Y(t) ^ x). 

For (6.9) it is perhaps easier to calculate the difference below: 

E{S(t;  d x ) } / d x - E { S - ( t ;  dx)}/dx = E { f f l  '~ I,.,,,(Y(u))du}/dx 

= f~ 2p(t; O , y ) d Y f o  q(u; y, x)du 

= f o 2 p ( t ;  O,y)2(xAy)dy  

= 2E{Y(t) Ax}. 
Subtracting this from (6.5) we get (6.9). 

Moments of  higher order can be calculated in the same manner. For instance, 
we have 

E{S(t;  (a, b))2ly(t) = s, L(t) = l} = 

- 2 f~"  "'-"'au2f~ax, f~ax~e(z(ul)~axt; Z(u~+u~)~dx21~(t) = s, Z(t) = 1} = 
- -  a u l  J o 

2 8(g~ f 2 dxl fb  dx, f ; "'-"' = t dUlJ o du2g(ui; O, xx)- 

rx~+x~ "U 
�9 J i l l =  ~~i gl, ~; O, z )  dz g ( l -  ul --  u~; O, x2) 

since 
q(u; X l ,  X2) = fXl+Xs 0"[11" O, Z)  dz. 

d l x x - x t l  b ' ,  ~ '  

By (6.1) this simplifies to 

2 8 1 / g ~ f ~  ~ x*+~' - dxa f2 dx~ f,~,=~;,g(l, O,x~+ x2+z)az = 
b b x l + x  ~ = 4 f2 d~, f  d~,f.x~_~,, (Xx +x,+~) exp (-(x~ + x, +,)~/20 dz. 

It is possible, but perhaps futile, to evaluate this in exact terms. 
In general, we have for integer k ~ 2 :  

(6:10) E{S(t;  (a, b))k]~(t) = S, L(t) = I} = 

b b f x i + x  ~ f x k _ l + X k  = 2k! f2 dx~.., f2 dx~ dz, dZk_I(Xl+ZI"+ +gk.l+Xk) d l x l _ x 2 1  "'" d l X k _ x _ x k  I "'" 

exp{ (~l+Z~+"-- +~-l+xO~] 
21 /" 
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This remains true for k = 1 by (6.2) when there is no z in the formula. A little inspec- 
tion shows that 

f f l+x2 azl  ... fxk-1+xk az _l(x  + + .. + zk_  + < ( k +  1)2 -1x  . . .  xk .  Ixa-xml d l x k _ l - - x k l  �9 : 

Using this in (6.10) we obta in the  inequality below. 

T h e o r e m  9. For any s>0 ,  I>0,  0 < a < b <  ~ and integer k>=l, we have 

(6.11) E{S(t ;  (a,b))kl~(t) = s,L(t)  : l} -< (k+l)! (b2-a2)  k. 

It is remarkable that the estimate does not depend on s or l. In particular, if 
a=O, b = ~ > 0 ,  we get 

(6.12) E{S(t;  (0, ~))k} <= ( k +  1)!~ 2k. 

Consequently we have for any )~< 1 

On pp. 3 3 8 9  of [10], L6vy asserted an asymptotic form of (6.12) for k = 2  
(with some constant in lieu of 3 ! in front of e4 there), "par raison d'homog6ndit6". 
This is not clear to me. It is true that for the unconstrained Brownian motion, 
starting from any x >0,  the occupation time in (0, ~) until the first entrance into zero 
has a finite second moment. But to transport such a result to an arbitrary excursion 
seems to require an additional argument. This is now supplied and generalized in 
Theorem 9. L6vy's estimate played an essential role of the proof of his fundamen- 
tal result that 

1 
lim~0 2ee measure {sis <= t: B (t) C (-- ~, 5)} 

exists almost surely for every t>0 ,  and equals the local time at zero up to time t. 
As far as I can ascertain, no other author has returned to his original approach 
(see the remarks on p. 44 of [8]). For a new derivation of  a related result 
about "downcrossings", see [4b]. 

It  should be possible to compute from (6.10) the exact value of, say, 

l i m E { 1  S( t ; (a ,a+e) )~IT( t ) -=s ,L( t )=  l} 
eJ~O ~ 

and thereby to determine the limit distribution of S(t; (a, a+e))/~ as el0, The latter 
exists because of obvious tightness and Carleman's condition by (6.12). What it is 
remains to be seen. 
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7. Analogy with boundary theory for Markov chains 

We may follow the recipe given on pp. 153--154 of [2] or pp. 85--86 of [3] to 
derive the basic quantities for the excursion process. First, here is the preliminary 
list of correspondences: 

BM 

pij(t) 

p(t; x, y) dy 

f~j(t)* lz(t) 

q(t; x, y)dy g(t; O,x)dx 

a 
ei  

l d x  

Apart from notations, these are obvious except possibly the last item. Now since the 
Brownian motion is spatially homogeneous, the Borel-Lebesgue measure on the 
line is invariant with respect to its transition semigroup, i.e., 

1 dxp(t; x ,y)dy = ldy. 

Hence ldx plays the role of e~ (see p. 68 of [3]). Next ,we compute the quantity cor- 
responding to 

e~ -- Z ,  eafq (t), 
which is 

dy-fo dxq(t; x ,y)dy = dy-PY{To > t}dy = PY{r0 <- t} dy. 

According to the recipe the entrance law {q~.(t)} with respect to the minimal semi- 
group {~ (t)} is then obtained as follows: 

d a 
rl~ (t) : --~ {e j -  Z i  etflJ (t)}. 

Here the corresponding step yields 

d 
= -  vy {To < t} dy = g(t; O, y) ay. :It 

Thus g is indeed the entrance law to the excursion process, Next, the formula 

~raa(t) = , ~  q~(t)L~(~) 
becomes 

1 
(7.1)  r(t) = f o  g(t; O, x ) l  dx - 

* This is the transition probability for the minimal process, not the first entrance time density. 
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as computed in (2.12). The fundamental integral equation 

1 = f ~ E a ( d s ) a " ( t - s ) ,  0 < t < (7.2) 

becomes 

f~  1 , O < t < ~ ;  
1 = E(ds)  ]/2n ( t -  s) 

f rom which we obtain the unique solution 
t - - - z . - - _  

e (s) ds = E(ds)  = V @ s  ds. 

This is just 2p(s;  0, 0)ds, the probability density at zero for  Y(s) .  From a regenerative 
point of  view this would be the fundamental quantity. Note that (7.2) turns out to be 
the famous arc sin law (cf. (2.6)) 

f; 1 2 1 =  ds = - -  arc s in l ,  O < t < o %  
n ] / -~ t -  s) = 

and that there is a kind of reciprocity here: e ( t ) = 2 a ( t ) .  Next, f rom the recipe 

.(t) = f 7  
we get f rom (7.1) 

d 1 
o ( t )  = - - - d i -  = 

as given in (2.18). After these identifications further analogy with boundary theory 
may  be pursued easily. See for instance [4a] which contains the generic form of  
(2.20) above. 

References  

1. CHUNG, K. L., Markov Chains with Stationary Transition Probabilities, second edition, Springer- 
Verlag 1967. 

2. CHUNG, K, L., On the boundary theory for Markov chains II, Acta Math. 115 (1966), 111--163. 
3. CnUNG, K. L., Lectures on Boundary Theory for Markov Chains, Princeton University Press 

1970. 
4. CHUNG, K. L., Maxima in Brownian excursions, Bull. Amer. Math. Soc. 81 (1975), 742--745. 
4a. CHUNG, K. L., A bivariate distribution in regeneration. J. Appl. Prob. 12 (1975), 837--839. 
4b. CHUNG, K. L. and DURRETT, R., Downcrossings and local time. To appear in Zeitsehrift 

fiir Wahrseheinliehkeitstheorie. 
5. DURgETT, R. T. and IGLEI-IART, D. L., Functionals of Brownian meandering and Brownian 

excursion. To appear. 
6. FREEOMAN, D., Brownian Motion and Diffusion, Holden-Day 1971. 
7. IGLEHART, D. L., Functional central limit theorems for random walks conditioned to stay 

positive, Ann. Probability 2 (1974), 608--619. 
8. ITO, K. and MCKEAN, Jr. H. P., Diffusion Processes and Their Sample Paths, Springer-Verlag, 

1965, 



Excursions in Brownian motion 177 

9. KAIGH, W. D., An invariance principle for random walk conditioned by a late return to zero. 
To appear in Ann. of Probability. 

10. L~w', PAUL, Sur certains processus stochastiques homog6nes, Compositio Math. 7 (1939), 
283--339. 

11. L~vY, PAUL, Processus stochastiques et mouvement brownien, second edition, Gauthier-Villars 
1965 (first ed. 1948). 

12. P6LYA, G. and SZEG6, G., Aufgaben der Lehrsdtze aus der Analysis, Springer-Verlag 1925. 
13. W~LIAMS, D., The Ito excursion law for Brownian motion. To appear. 

Received January 7, 1976 

Added in proof 

Since the manuscript was prepared more than a year ago, I have given extensive 
lectures on it especially in Peking and Amsterdam (summer and fall of 1975), during 
the course of which the following amendments were made. 

(1) Mr. Berber gave a quicker proof of Theorem 1 by using the equivalent 
Brownian motion tB(1/t) ,  thereby reducing the consideration of (7(0, Y( t ) )  to 
(r(t), (t)). 

(2) Besides [5], the following two papers also treat the distributions of the 
maxima: 

D. P. Kennedy, The distribution of the maximum Brownian excursion (to appear 
in J. AppL Probability). 

D.R.  Miller, The distributions of the suprema of the Brownian paths (to 
appear). 

The distribution in (4.9) was  obtained by N. H, Kuiper in "Tests concerning 
random points on a circle", lndag. Math.  22 (1960), 32---37, 38 47. There it appeared 
as the distribution of the maximum minus the minimum in a Brownian bridge. 

(3) Here is an unexpected result. If  we denote the distribution in (4.9) by F~ 
and that in (3.17) by F1, then we have F 2 = F x . F  x where �9 denotes convolution. 
This is easily verified by Laplace transform and made my reference to E(e  -~s) 
on pp. 168--169 unnecessary. The curious coincidence is still unexplained, as well as 
its relation to previously known results by Ito-McKean and D. Williams, concerning 
the path decomposition of  an excursion into two Bessel (3) motions pieced together 
back-to-back, see w 2.10 of [8]. 

(4) I have calculated the first four moments of the unknown limit distribution 
mentioned after (6.13), namely that of S( t ;  (0, e))/e ~ as e~0. They are: 2, 16/3, 
17>(24/15, 31• The corresponding central moments are: 0, 4/3, 32/15, 
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