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1. Introduction 

Let q~ be a real-valued, measurable and bounded function on R and let F~L:(R). 
Introduce the Fourier t ransform/7 of F 

P(~) = f~_~ e-ir 
and the convolution 

�9 *F(x) = q~(x--y)F(y) dy. 

Let us consider a Tauberian relation of  the form 

(1.1) [~*F(N)I <-- 0(x), x _-> Xo 

where Ox,, 
In an earlier paper [6] a new method was developed and a new set of  condi- 

tions on P were introduced in order to derive an estimate of  ]q~ (x)[ as x ~ co f rom 
(1.1) and a Tauberian condition for ~. As an application such results were proved 
when l / F ( 0 ,  ( =  ~ +iq, is analytic in a strip --~ <~/< ~ around the real axis and the 
order of  magnitude of 1/P in this strip is known. 

In the present paper I use the results in [6] and a lemma for analytic functions 
proved in Section 2 below to obtain corresponding results when 1//7 is analytic in 
the strip 0 < t / < 7  only and the order of  magnitude of 1/t 7 in this strip is known. 
In this way some new results are obtained. For instance, Theorem 1 in Section 3 
below uses no condition on the derivative of  l /P,  a condition which is imposed in 
all earlier theorems of  this type (but for the partial result contained in Theorem 1 
in [5]). In Theorems 2 and 3 conditions are imposed also on the derivative of  1//7. 
Theorem 2 extends earlier results of  Ganelius and Frennemo and Theorem 3 deals 
with the case when the ' remainder '  Q(x) in (1.1) is majorized by e - ' x  for some ~=>~. 
In 3.3 1 also consider the case when l / P ( 0 ,  ~ = ~ + iq, is analytic in a domain 0 <  t /<  7 (4) 
which tapers off at infinity. Theorems 4 and 5 deal with this case. 
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The theorems are stated for the Tauberian condition @ ( x ) + K x / ,  x > x 0 ,  
for some positive constant K. I t  is easy to see that corresponding results for the 
more general Tauberian condition used in 4.2 in [6] can be obtained in an anal- 

ogous way. 
The estimates obtained in Theorems 4 and 5 are best possible and the same 

holds true for Theorems 1 3 for a wide range of majorants of  1//r and remainders Q. 
All functions are supposed to be measurable. I use the notations 

M= {f; a, b} : (S~ IS(x)l: dxf 
and 

I l f l l ,  = M : { i ;  - ~ ,  ~}. 

2. A result for analytic functions 

2.1. Preliminaries 

Let ? be a positive, even function on R such that ? ( ~ ) \ ,  4=>0. Let ~=~+i r /  

and let D r denote the domain 

(2.1.1) D r = {(; 0 < r / <  ~(~)}. 

Let W o ( X ) / ,  X>-O, and introduce the class ~ o = d o ( ? ;  Wo) of  functions g on R 
as follows. 

Definition. gE~r Wo) if g(~), ~CR, are continuous boundary values of  a 

function g analytic in D r and such that 

(2.1.2) M~{g(~+i6);--X,X}<=Wo(X), 0 < - - 6 < ~ ( X ) ,  X>-Xo. 

Let W~(X),I, X_-->0 and 

(2.1.3) 1-~ Wo(X)/XWa(X) <= 1. 

Introduce the function 

(2.1.4) W =  l/-~ Wa. 

The class a l l = a l l ( ? ;  Wo, W0 is defined as follows. 

Definition. g C d l ( ? ;  Wo, W1) if gC~r Wo) and 

(2.1.5) M~{g'(~+i6); --X, X} <- WI(X), 0 < 6 < ?Of), X >- Xo. 

I f  g6do (~ ;  Wo) then g(r 6 ~ 0 + ,  uniformly on every compact  in- 
terval.  Hence, for every a > 0 ,  

(2.1.6) M2 {g(~ + i6)-g(r --a, a} -~ O, 6 ~ 0+. 
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Let us now prove that if g ~ l ( ? ;  Wo, WO then g'(~+i6)~g'(~), g---0+, almost 
everywhere on the real axis and, for every a > 0 ,  

(2.1.7) M2{g'(r -a ,  a} ~ O, 6 -~ 0+. 

Choose b > a  such that 

(2.1.8) /'~b) (Ig" (b + iq)i z + Ig' (-- b + iq)l 2) dq < ~ ,  do 

and let co denote the open interval ( - b ,  b). The assumption (2.1.5) implies that 
there is a function hCL2(co) and a sequence (6,)~ such that 6 , ~ 0 + ,  n ~ ,  and 
g'(~ +i6,) converges weakly in L2(co) to h(O as n ~  ~o. By using the identity 

g(~+ibn) -g( -b+i6 , )  = f~bg ' ( t  +i~,)dt, r 0 < 6n < ?(b) 

and letting n-~ ~ we thus obtain 

g(~)--g(-b)  = f~_b h(t)dt, 

It follows that g'=h a.e. on co. Thus g'EL2(co) and 

(2.1.9) l ira f~bg'( t+i6,)k( t )dt  = fb_ag'(t)k(t)dt, kELP(co). 

Let K~, 0=<6<?(b), denote the open rectangle with corners in +_b+i6, +_b+i?(b), 
let F~ denote its boundary and put K=Ko, F=Fo. If ( ~ K  then by representing 
g'([) by its Cauchy integral over F~, n>no and letting n--,oo we obtain from (2.1.8) 
and (2.1.9) that g'([) may be represented by its Cauchy integral over F. Therefore 

1 f g'(W)w_( d w + ~ i f ~ ,  ~awg'(w)" g'~( ) = ~- /~/Jr-~ = ~o1(0 +~o~(~), ~ K .  

The function ~o a is analytic on co and hence ~01(~+i6)~q~1(~ ) as 6 -*0+ ,  uniformly 
on ( - a ,  a). The function tp 2 is analytic in the upper half-plane. By using well-known 
results for the Hilbert transform (see [7], Theorems 91 and 93) it is easy to see that 
there is a function ~o2CL~(R) such that q~(~ +i6)~(p2(~), 6~0+,  almost everywhere 
on R and 

Iko~(~+i~)-~o2(O[12 -~ 0, ,~ -~ 0 + .  

Let q~ ( 0  =cpl(O +q~z(O. From the above results for ~01 and ~o 2 it follows that 
g'(~ + i6) ~q~ (~), g ~ 0  + ,  almost everywhere on co and M2 {g'(~ + i6)-  cp (4); - a, a} ~0, 
6---0+, the last result by using Minkowski's inequality. Now g'(~+i6,) converges 
weakly in L2(co) to g'(~) as n-~oo and hence ~o=g" a.e. on co. Thus the result stated 
is proved. 
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2.2. A fundamental lemma 

The lemma below connects the classes do  and M1 with the classes #)3 and ~ 
introduced in 2.6 in [6] and thus makes it possible to apply the Tauberian theorems 
in [6] if 1/F belongs to do  or Ms. 

Lemma. Let gE~o(~;  Wo). Then for every X->max (Xo, 2y(0)), there exist func- 
tions f = f x  and k - k  x in L~(R) such that 

(2.2.1) g(~) = f ( ~ ) + k ( ~ ) .  - X  <= ~ =< X, 

where k is the Fourier transform in the L2-sense of  a function K=Kx  such that K(x) =0,  
x>O, 

(2.2.2) [[K[I~ <= (2z0-1/2Wo(2X) 

and 

(2.2.3) IKII. -<- 2Xa/2Wo(ZX) 

and f satisfies 

(2.2.4) M2{f~"~; - X ,  X} <-- 2nl Wo(2X)?(2X)-", n = 0, 1, 2, .. . .  

Let us further suppose that gEM~(7; Wo, Wx) and let W be defined by (2.1.4). 
Then there exists )(1 such that i f  X>=Xx then it also holds true that 

II/ll= <= 3XW(2X) 

Ilgllx <= 2W(2X) 

(2.2.5) 

(2.2.6) 

and 

(2.2.7) M2{f("); - X ,  X} ~ 5 ( n -  1)! WI(2X)?(2X) l-n, n = 1, 2 . . . . .  

Proof. Let us suppose that gEMo(Y; Wo) and let us choose X ~ m a x  (Xo, 2~(0)) 
and put /~=7(2X) and a=X+fl .  Then g is analytic in the rectangle ~ <2X, 
O<~/<fl and 

(2.2.8) m2{g(~+i6); --2X, 2X} <= Wo(2X), 0 <- 6 < ,8. 

Let u(~), ~ER be continuous, u (~ )= l ,  l~I<-a, u(~)--0, 14 _->2X and u linear over  
the remaining intervals. Since a = X + ~ < 2 X  we have 

(2.2.9) Ilugl[2 =< Wo(2X). 

Introduce the inverse Fourier transform oI ug, 

G = (ug) v. 

Parseval's relation yields 

(2.2.10) ilG[I2 - (2~)-1/2Wo(2X) 
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and using Schwarz' inequality we have 

(2.2.11) IIGII~ <- [ugl[1 <= 2X1/~W0(2X). 

Let H denote the Heaviside function, H(x)--  1, x >0, H(x) -- 0, x < 0 and let f--- (GH) ̂  
and k = ( G ( x ) H ( - x ) )  A, the transforms being in the L2-sense. Then K(x)=  
= G (x)H(- -x)  satisfies (2.2.2) and (2.2.3) according to (2.2.10) and (2.2.11). Further- 
more, f + k = u g ,  a.e. on the real axis and hence 

(2.2.12) f ( ~ ) + k ( ~ ) - g ( ~ )  = 0, a.e. on ( - a ,  a). 

To prove (2.2.1) and (2.2.4) let ~=r  and introduce the functions 

f ( O  = fy e-*r G (x) ax, tl < o, k (0 = f[ = e-  'r G (x) ax, rl > O. 

These functions are analytic in the domains where they are defined, 

lira f ( ~ - i 6 ) = f ( O  a.e., lira g(~+i6) = g ( O  a.e. and 
~ 0 - - "  ~ 0  a- 

(2.2.13) []f(~-i6)-f(O[l~+][k(~+i6)-k(~)H2 ~ O, 6 ~ 0+ ,  

(see [7], Theorems93 and 95). Furthermore, by Parseval's relation and (2.2.10) 

(2.2.14) If/(~-i6)ll~+llk(~+i6)ll~ <= Wo2(ZX), 6 >- 0. 

Now, by Minkowski's inequality and (2.2.12) 

M2{f(~--i6) + k(~ + i 6 ) -g ( ~  + i6); - a ,  a} <- 

<= [If(~ -- i6) -f(r + []k(~ +/6) - k(~)][2 + M~{g(~ + i6) --g(~); - a, a}, 

O<6</L  
Hence, by (2.1.6) and (2.2.13) 

(2.2.15) M ~ { f ( ~ - i 6 ) - - ( g ( ~ + i 6 ) - k ( ~ + i 6 ) ) ;  --a, a} ~ O, 6 --,- 0+.  

The function f is analytic in the lower half-plane and the function g- -k  is analytic 
in the rectangle - -a<r  0<r/<fl .  The relation (2.2.15) implies that f can be 
analytically continued across the interval ( - a ,  a) by g - k .  Therefore f is continuous 
on ( - a ,  a). The function g has continuous boundary values on (--a, a) by assump- 
tion and hence k has continuous boundary values on ( - a ,  a). Since X < a  the identity 
(2.2.1) thus follows from (2.2.12). 

To prove (2.2.4) let ~k denote the analytic function which equals f in the lower 
half-plane and equals g - k  in D r. Then 

M~{~(~- i6 ) ;  - a ,  a} ~_ Ilf(~-i6)ll~, 0 ~_ 6, 

M2{~(~q-i6); --a, a} ~_ M2{g(~+i6); --a, a}+ Ilk(~+i6)l[2, 0 < 6 </~, 

and hence, by (2.2.8) and (2.2.14) 

(2.2.16) (ff_o l~(~+in)12d~) v ~ _  2Wo(2X), r / <  ft. 
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The function ~ is analytic in the rectangle [~[<a, ~/]<fl. Therefore, Cauchy's 
formula and an application of Schwarz' inequality yield 

"' f~ r l f " 'Y r "  1@(")(r = 2zcf l"Jo  $({ +fld~176 <='27 tP-aT") J o I@(r +Bd~ 

Integrating over the interval ( - a + f l ,  a -B)  and inverting the order of integration 
we have 

f ,-a 1 ( n!'l 2 C 2" fa-a 
a+a r = ~ ,+p 

The inner integral can be majorized by 4W~(2X) according to (2.2.16). Since 
X = a - f i ,  fl=y(2X) and $ - - f  on the interval (--a, a) this proves (2.2.4). 

Let us now prove the results under the assumption gEdl(7 ;  Wo, W1). Choose 
~, 1<~<=9/8. According to (2.1.3) there exists X1,Xl>-max(Xo,~(~--l)-a7(O)), 
such that 

(2.2.17) W0(ZX ) <- 2c~XW~(ZX), X >- Xi. 

Choose X, X>-X1, and introduce fl=7(2X), a=X+f l  and the functions u, G, f,  K 
and $ as before. Combining (2.2.3) and (2.2.17) we have [IK][= <-2a/%tl/2X W(2X) 
which proves (2.2.5). Furthermore [u'({) - (2X-a)- I<=~X -~, a<[{[<2X, u'({)=0, 
{]<a, and u vanishes outside ( -2X,  2X). Thus (2.2.8) and (2.2.17) yield 

lu'gll~ <-- ~x-lw0(2x) <= 2~2w1(2x) 

and the assumptions for g'  imply that Ilug'il2<= Wl(2x). Hence 

(2.2.18) - ~  (u(~)g(~))I i < (1 + 2~2) WI(2X). 

Now, by an inequality by Carlson and Beurling, Ilalll <--l[ GlI2 II ~'!12, By applying this 
inequality with G=ug and using (2.2.9) and (2.2.18) we get 

llGh --< (1 + 2~2)l12W(2X), 
which proves (2.2.6). 

To prove (2.2.7) we observe that 

(2.2.19) 11f5(r ][k'({ +i5)[l~ <= (u(~)g({ 6 > O. 
2' 

By using (2.2.18), (2.2.19), the definition of ~ and the assumptions for g" we obtain 

(2.2.20) (f"_, ,~k' ({ +ir/)[2 d~) 1/2---_ 2(1 +=2)W~(2X), * /</ / .  

The inequality (2.2.7) then follows from (2.2.20) in the same way as (2.2.4) was 
derived from (2.2.16). This completes the proof of the lemma. 



An application of a general Tauberian remainder theorem 243 

In some cases when g ' (O~0  as [~[~oo, frED,, it is better to use L~-estimates 
instead of L2-estimates. In this way the following result is obtained. 

Remark. Let s be constant, 1-<s-<2, and 1/s+l/s '=l .  Let g satisfy the con- 
ditions in the definition of d~ but for the fact that M2 is replaced by Ms in (2.1.2) 
and (2.1.5). Then there is X~ such that, for every X>-X~, (2.2.1) holds true, where 
k=I~, K(x)=0, x > 0 ,  and, but for a constant factor depending on s, the inequalities 
(2.2.4)--(2.2.7) hold true if M2 is replaced by Ms and W is replaced by W]/~' W~/~. 

3. Tauberian theorems 

3.1. Preliminaries 

Let @ be bounded on R and FELl(R). Let us consider a Tauberian relation 
of the type 

(3.1.1) IqS*F(x)[ ~ O(x), x ~= Xo, 

where 1/F belongs to the class d0(y;  W0) or all(y; W0, W1) introduced in Section 2 
and 0 belongs to the class d ~ defined in 3.1 in [6]. This means that 0>0,  0"x and for 
every e>0  there exist x, and 6, such that 

o ( x - y )  <= (l + e ) e ( x ) ,  x >= x . ,  O <= y <= ~,. 

For the sake of simplicity I also introduce the following regularity conditions 
on O and on the functions IV,, n=0 ,  1. Note that the condition (3.1.3) below makes 
regular in the sense introduced in 4.3 in [6]. 

I f  S ( x ) / ,  x > x  0, let Zs denote the function 

xD+ S(x) 
(3.1.2) )~s(X) = S(x) 

Let limx_~ (log W, (X)) - a (log log W,(X))-a/.w.(X) exist, finite or infinite and let 
r = 1]0 satisfy 

(3.1.3) lira (log x) -1 log X,(x) = co. 

These assumptions are maintained throughout the present paper. 
Let v ( x ) / ,  x=>0, v (x )> l ,  x > 0  and introduce the class R[v] as in 2.3 in [6] by 

the following definition. 

Definition. oER[v] if 0>0 ,  0"x, 0(x)~0,  x~oo and O(x-y)<=O(x)v(y), y>-0, 
xER. 

In the theorems below I impose a condition of the type 0 ER[v], where v is a 
function determined by the class d0(V; W0) or ,~I(V; Wo, WO respectively. This 
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condition can always be replaced by 0 C R[bv] for some constant b > 1 and the same 
result will hold true but for the fact that the constants will depend also on b. 

For  the sake of simplicity I use the following Tauberian condition. Let, for 
some positive constant K, 

(3.1.4) r  x >- Xo. 

This condition may be weakened in the following way. If  the result of the theorem is 
�9 (x )=O(a(x) ) ,  x~oo ,  then (3.1.4) may be replaced by 

(3.1.5) ~ ( x ) - ~ ( x + y )  <= Ka(x),  0 < y <= a(x), x >- Xo 

and the same result will be valid. 

3.2. The function 1/F analytic in a strip above the real axis 

Three theorems will be proved in which the domain D r 
is a strip, i.e. y=constant .  

Introduce the functiohs to and t in the following way. 

(3.2.1) 

and let Uo 1 

(3.2.2) 

and 

With these notations the theorems may be stated as follows. 

Theorem 1. (1) Let �9 be bounded on R and ~ ( x ) + K x / ' ,  X>Xo for  some K >0 .  
Let F~LI(R) and I~ .F(x ) l<-~(x ) ,  x>-xo. 

(2) Let 1/FC do (~; Wo), 7 -  constant, and let 0 = ~ * F satisfy 

(3.2.4) M2{~O; x, ~o} <_ ~(x), x --> x, .  

(3) Let 0 be constant, 0 < 0 < 1 ,  and 

0 C R [e~ 

introduced in (2.1.1) 

Let W = I / W ~ ,  let 

Uo(X) = XWo(X) ,  u ( x )  = x w ( x )  

and U -~ denote the inverse functions of Uo and U respectively. Let 

where Cl=Ca(y),  C2=C2(y, 0) and to is defined by (3.2.2). 

(3.2.5) 

Then 

(3.2.6) ~ I~(x)] ~ C1K+C2, 
x - ~  to(X)  
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(3.2.8) 

and 

Theorem 2. Let Conditions (1) and (3) of Theorem 1 hold true and let 1lEE 
C ~qr (?; W0, WI), y-- constant. Then 

(3.2.7) ~ [r ~ CxK_bC2, 
x - =  t ( x )  

where C1=C1(7), C2=-C2(y, O) and t is defined by (3.2.3). 

Theorem 3. Let Condition (1) of Theorem 1 hold true and let 1/ff~ g l  (?; Wo, W0, 
y--constant. Let t be defined by (3,2.3) and suppose that for some constants O, e and 
fl, 0->1, e=>O, f l>? ,  

e ~R[1 + (Ox)C+le~ 

(3.2.9) Wx{t-~lxC+3/2exp(xflO~logO)<- W ( t - ~ ) , x > - x l .  

Then (3.2.7) holds true with C1=C1(?, c) and C2=C2(7, e, 0). 

Before proving the theorems I shall make a number of comments. Introduce Zw 
according to (3.1.2) and let W be defined by 

(3.2.10) W = min (W0, W0. 

If  W(X) = o (W(X)), X ~  ~o, then C2 is independent of 0 in Theorem 2. If  Zw0 (X) ~ 0% 
X~oo, then we may choose C2--0 in the result of Theorems 1 and 2 and also in 
Theorem 3 provided that (3.2.9) holds true with t replaced by rt, 1 <=r<-B, for some 
B > I .  

Let 2 denote a positive constant and replace the assumption ~ ( x ) + K x /  by 
(3.1.5) where o-=2t0 in Theorem 1 and a = 2 t  in Theorems 2 and 3. Then the results 
(3.2.6) and (3.2.7) respectively hold true with Cx=( l+2)C(y)  and C2=C2(?, 0). 

The condition 0 < 0 < 1  can be replaced by 0_->1 in Theorem 1 provided that, 
for some A >0, 

(3.2.11) logW0(X) ~_ AZwo(X), X>= X1, 

and in Theorem 2 provided that 

(3.2.12) log W(X) <= AZw(X), X >= )(1, 

and then the results (3.2.6) and (3.2.7) of these theorems hold true with C1= C1(~:, 0, A) 
and C2=0. 

It follows from the last remark that Theorem 3 is of any interest only if (3.2.12) 
is not satisfied. In fact, Theorem 3 can be applied 0nly if W and 0 are sufficiently 
small. This is due to the fact that (3.2.9) and (2.1.3) imply that 

(3.2.13) t(x) = O(x -~c-3 exp (--2xflO 2 log 0)), x ~ ~o 
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and (3.2.8) implies that l l 0 ( x ) =  O(xC+~e~ x~,o .  If  the conditions of Theorem 3 
are satisfied for some 0 > 1 then, by the above inequalities and the definition of t, W 
is dominated by a polynomial and ~ is exponentially decreasing. 

The condition (3.2.4) of Theorem 1 is irrelevant if M2{~; x, ~}~AQ(x),  x ~ x  o 
for some constant A. The same holds true for a larger set of functions Q if Wo does 
not increase too slowly. For  instance, if ~EL~(xo, ~) for some s, 0 < s < 2  and 
(3.2.11) is satisfied or if 1/log (1/~)EL~(xo, ~) for some s > 0  and log log Wo(X) <- 
<=AXwo(X), X>=XI, then the condition (3.2.4) of Theorem 1 may be omitted and 
the same result holds true but for the fact that C1 will depend also on s and A. 

Let the conditions of Theorem 2 and any of the above-mentioned conditions 
on ~ and W0 be satisfied. Then either Theorem 1 or Theorem 2 may be applied, 
and if WI(X)=o(Wo(X)),  Y ~ ,  Theorem 2 seems to yield the best estimate. This 
is so, however, only when W0 does not increase too fast. Let us suppose for instance 
that, for some A >0,  

(3.2.14) logX<= AZwo(X), X >= X1. 

Then log X<=2AXw(X), X>=X~. By combining this inequality with (2.1.3) we get 
Wo(X)<= W(e2aX), X>=X~ and hence q(x)<=e2at(x), x>=xl . Thus Theorem 2 does 
not, except possibly for the value of the constants, yield a better estimate than 
Theorem 1. If  Wo(X)=o(Wx(CX)), X~oo for every C > 0  then to(X)=O(t(x)), x~oo, 
and Theorem 1 yields a better estimate than Theorem 2. 

It follows from a theorem of Ganelius ([4], Th. 4.2.1, p. 34) that the estimates 
obtained in Theorems 2 and 3 are best possible in the sense that (3.2.7) cannot be 
replaced by ~b (x) = O (6 (x) t (x)), x ~ co, for any function 6 such that fi (x) ~0,  x ~ ,o, if 

(3.2.15) logW0(X) = O(Xe), X ~  co 

and if either (3.2.14) is satisfied or XW~(X)=O(Wo(X)) ,  X~oo. Therefore, by the 
above argument, Theorem 1 is best possible in the sense that (3.2.6) cannot be 
replaced by �9 (x) = O (6 (x) to (x)), x ~ co, for any function 6 such that 6 (x) ~0 ,  x ~ % 
if (3.2.14) and (3.2.15) hold true and ~ and W0 satisfy any of  the conditions which 
yield that the assumption (3.2.4) may be omitted in Theorem 1. The above statements 
hold, in fact, true if (3.2.15) is replaced by 

7C 
(3.2.16) x~=~nnnnnnnnnnnnnnnnnli~ X -  ~ log log Wo (X) < ~-?. 

This follows by applying Ganelius' method with the auxiliary function e - ~ ,  used 
by him, replaced by exp ( - e ' X - e  - '~) where 

7C 
111111111111111111Tm X -  ~ log log Wo ( X) < ~ < 2---? " 

X ~ o o  

Proceeding to the proof  of  the theorems I shall first introduce some notations. 
These are the same as the ones used in [6] but for the function S and the classes 



An application of a general Tauberian remainder theorem 247 

~1 and N2. For the sake of convenience S and hence ~1 and N~ are introduced here 
in a way slightly different from their definitions in [611 

The sequence P = ( P , ) o  and the function ha, are introduced as in [6]. Thus 

co x n  

(3.2.17) he(x) = ~--ff-, x >= O. 

For the conditions on (P,) the reader is referred to 2.1 in [6]. For the present purpose 
it suffices to know that the sequences P,=n! ~-", n=0,  1, 2 . . . .  and Po=I,P,= 
= (n-1) !  71-", n =  1, 2, . . . ,  satisfy these conditions. Note that these sequences are 
also regular in the sense introduced in 4.3 in [6]. 

The functions S,, n=0 ,  1, 2 . . . .  and $1 are introduced as in 2.1 in [6]. Thus 
S , ( X ) / ,  X>=Xo, n=0,  1, 2 . . . .  , So(X)<=~XSI(X), X>-X1, and 

(3.118) St = sup S,.  
n_~l 

Let S ( X ) / ,  X>-Xo, and 

(3.2,19) S =~ 1/SoS1. 

When S and Q are given, the function "C=Zs, o is introduced as in 4.3 in [6] 
by the following definition. Let T(X)=XS(X), let T - t  denote the inverse function 
of T and 

(3.2.20) z ( x ) =  1 / T - I I ~  } . 

The classes ~x((P,), (S,), S) and g2((P,), (S,), S) of functions g(~), ~CR are 
introduced literally in the same way as the classes ~ and ~ are introduced in 2.6 
in [6] by the following definition. 

Definition. g~l ( (P , ) ,  (S,), S) if for every X>=Xo there exist functions f=fx  
and k=k  x satisfying 

f ( ~ ) + k ( ~ )  = g(~), - x  <_- ~ <_- x ,  
and such that 

M2{fr - X ,  X} <= P,S,(X), n = O; 1, 2, ... 

and k = / ~  where K(x)=0,  x > 0 ,  I]K[]=<=XS(X) and 

(3.2.21) Ilgl[1 <= S(X). 
g~((P,), (S,), S) denotes the class of functions g satisfying the above condi- 

tions but for the fact that k is Fourier transform in the L~-sense of K and (3.2.21) is 
replaced by 

Ilgll~ <= S(X). 

The condition (3.2.19) thus replaces the definition S =  1/SoS~ used in [6]. It is 
easy to see that the theorems in [6] hold true also for functions S satisfying (3.2.19) 
if z and M~ and ~2 are defined as above. 
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If  S =  I / S ~  I use the same notation as in [6]. Thus, for k = 1, 2, let 

~k ((Pn), (Sn)) = ~k((Pn), (Sn), r  

When all the functions S, equal S, I write, for k = l ,  2, 

&k((P,), S) : ..~k((Pn), (Sn)), Sn = S, FI ~ 0, 1, 2 . . . . .  

Proof of Theorem 1. Let P,=n! ;~-", n=0,  1, 2 . . . . .  and let h e be defined by 
(3.2.17). Then he(x)=e rx and ~ER[h~,(Ox)] according to the assumption (3.2.5). 
Let S(X)=2Wo(2X).  By applying the lemma in 2.2 we find that the assumption 
1/PEdo(y; Wo) implies that 1/ffE~2((P,), S). The function S is regular in the sense 
introduced in 4.3 in [6] according to the regularity conditions imposed on Wo, and 
the sequence (Pn) satisfies 

(3.2.22) log(Pn+l/P,) = o(n), n ~ co. 

The assumption I / rEdo(7 ;  Wo) further yields that 1 / f  is continuous on R and 
hence P cannot vanish on R. Thus the conditions of Theorem 3 in [6], modified 
according to the remark in 4.4 in [6], are satisfied. By applying this theorem we get 

(3.2.23) ~ I~(x)/z(x) <= CoK+ C, 

where v is defined by (3.2.20), Co = C0(y) and C = C(7, 0). Since z=2to this proves 
(3.2.6). 

Proof of Theorem 2. Let us choose P,=n! ~,-" as in the previous proof. Then 
oER[hl,(Ox)] and (3.2.22) is satisfied. Let •  (1, ~), W = m i n  (Wo, W0 and let 
us choose So(X)=2Wo(2X), S , (X)-5~:W(2X),  n = l ,  2 . . . . .  and S(X)=5~W(2X) .  
Then 1 / S ~ <  S and So(X)<=XSI(X), X>X1, according to (2.1.3). From the lemma 
in Section2 and the assumption l / f E d ~ ( y ;  W0, W0 it follows that i/fiE 
E&I((P,), (S,), S). Furthermore, Sx<-S and S is regular in the sense introduced 
in 4.3 in [6] according to the regularity conditions imposed on W o and 1411. Thus, the 
conditions of Theorem 3 in [6] are satisfied. By applying this theorem we obtain 
(3.2.23). Since z-<-5xt this proves (3.2.7). 

Proof of Theorem 3. Let Po=l ,  P , = ( n - 1 ) !  ~-n,  n = l ,  2, . . . .  Then (3.2.22) is 
satisfied and hp (x) = 1 + xe "~. Thus ~ E R [(I + Ox) ~ hp (0x)] according to the assumption 
(3.2.8). Let So(X)=2Wo(ZX), S , (X) -5W~(2X) ,  n = l ,  2 . . . . .  and S(X)=5W(5X) .  
Then ] / S ~ < S  and So(X)<=XSI(X), X>-X1. The assumption (3.2.9) implies that 
WI(X)=o(W(X)) ,  X ~ o ,  and therefore gl(X)<=S(X), X>=X2. From the lemma in 
Section2.2 and the assumption 1/fE~r Wo, W0 it follows that l / rE  
E N~((P,), (S,), S). Since z = 5t the assumption (3.2.9) yields 

(3.2.24) $1 1 x~+ 3/~ exp (x~O 2 log O) ~ , x => Xo. 
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If  the inequality (3.2.24) were satisfied with x c+~12 replaced by x c+~' then Theo- 
rem 4 in [6] could be applied and (3.2.23) would follow with Co= Co(g, c) and 
C-C(~ ,  c, 0). To obtain (3.2.23) under the assumption (3.2.24) we proceed as 
follows. Let 

X n 
p(x) = sup-~ , ,  x => 0. 

Theorem 4 in [6] was proved for a large class of sequences (P,) satisfying the inequality 
he(x)<-C(P)(1 +x)p(x), x>-O. For the sequence chosen in this proof  it is easy to 
verify the stronger inequality 

(3.2.25) he (x) <= C(y) (l + l/x)p (x), x ~ 0. 

By taking into account the improvements obtained in Lemma 3 in [6] and hence in 
Theorem 4 in [6] by using the inequality (3.2.25) the result (3.2.23) follows. Since 
z = 5 t  this proves Theorem 3. 

3.3. 1//~ analytic in a domain above the real axis which tapers off at infinity 

Let us now consider the case when I /P  is analytic in a domain D~ of the type 
(2.1.1) and y(~)~0,  ~ .  Proceeding as in 5.4 in [6] we introduce an auxiliary se- 
quence (3'/,) o such that the sequence P,=n! Mn, n=0 ,  1, 2 . . . .  satisfies the condi- 
tions introduced in 2.1 in [6] and is regular in the sense introduced in 4.3 in [6]. 
To this end it suffices to choose (M,) such that M 0 = l ,  Ma,/"/, n>~l, M 1 / " ~ ,  
n---~, (n! M,) o is logarithmically convex and lim,~= (log n) - :  log (M.+:/M,) ex- 
ists, finite or infinite. 

Let m be the function defined by 

X n 

m (x) = sup-~--~,, x -~ 0. (3.3.1) 

Then, for r 0, 

(3.3.2) y({)-"  ~ M,m(y({) - i ) ,  n = 0, 1, 2 . . . . .  

Let us first suppose that g = l / P E d o ( 7 ;  W0). Choose X, X->max (X0, 2g(0)), 
and introducef=fx and k = k x  as in the lemma in Section 2. By combining (2.2.4) 
and (3.3.2) we get 

(3.3.3) 

Let 

(3.3.4) 

and 

(3.3.5) 

Ms{f("); - X ,  X} <= 2n! M, Wo(2X)m(y(2X)-:), n = 0 ,  1, 2 . . . . .  

S* (X) = 2141o (2X) m (7 (2X)- :) 

P , = n ! M , ,  n = 0 ,  1,2 . . . .  
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and let hp be defined by (3.2.17). It follows from the lemma and (3.3.3) that 

(3.3.6) 1/PC ~2 ((P,), S*) 

and the theorems in 4.3 in [6] may be applied. 
In certain cases it is possible to obtain sharp results also with this method. 

Let us suppose that (M,) can be chosen so that, for some # > 2 ,  

(3.3.7) 2Wo(2X)m(~(2X) -1) ~= Wo(#X), X ~- X1. 

Let 
s ( x )  = Wo(t~x). 

Then S*(X)~=S(X),  X>-X1 and (3.3.6) yields that 1/PE~2((P,),  S). 
I f  ~ b ( x ) + K x / ,  x>=Xo for some K>0 ,  q~,F(x)]<=e(x), x~--xo and ~ = # . F  

satisfies M2 {~; x, ~ } ~  0 (x), x>-Xo, then Theorems 3" or 3 in [6], modified according 
to the remark in 4.4 in [6], may be applied and yield that q~(x)=O(z(x)),  x--,o% 
where z is defined by (3.2.20). Since z<#t0 we thus obtain a result of  the same form 
as in Theorem 1, namely 

y / "  ~ \  

where U0 is defined by (3.2.1). 
In Theorem 1 the function ~ was constant, and if x is constant, 0 < x < ~ ,  then 

(3.3.8) holds true for ~ER[e'~X]. In the present case when y(~)-~0, ~ o o ,  the result 
(3.3.8) is obtained only for a smaller class of functions 0. For  instance, if 0 is con- 
stant, 0 < 0 < 1 ,  and P,=-n!M,  satisfies (3.2.22), then (3.3.8) holds true for 
oER[hp(Ox)]. 

To illustrate the method we shall prove the following theorem in which W o is 
chosen as the exponential function. The result of the theorem is best possible in 
the sense that (3.3.9) cannot be replaced by q~(x)=O(6(x)/log(l/Q(x)),  x--,oo, for 
any function 6 such that 6(x)-+0, x-+ oo. This follows from Ganelius' theorem in 
the same way as the corresponding result for Theorem 1 since Wo(X)=exp (fiX) 
satisfies (3.2.11), (3.2.14) and (3.2.15). 

Theorem 4. Let K, o~, fl and s, s<2 ,  denote positive constants. Let q) be a bounded 
function on R such that ~ ( x ) + K x / ,  x~=xo. Let FEL~(R) and ] ~ . F ( x )  - ~ ( x ) ,  
x ~ x o, where o E U (Xo, oo). Suppose further that 1//r Wo) where y (~)=(log ~)- ' ,  
~>=~o, and Wo(X)=ex p (fiX). I f  r  (Bx/(log(x +e))')] for  some B > 0  then 

( (3.3.9) �9 (x) = O 1/log , x -+ r 

Proof o f  Theorem 4. Let M,-- ( log (n + e)) ~", n = 0, 1, 2 . . . . .  and let m be defined 
by (3.3.1). It  is easy to see that log m(x)=o(exp(xal=)), x-+~o. Therefore (3.3.7) 
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holds true for p = 3  and it follows that 1/PEN~((P~), S) where S ( X ) = e x p  (3fiX) 
and P,=n! M~, n=O, 1, 2 . . . . .  The sequence (P,) satisfies (3.2.22). Let hp be defined 
by (3.2.17). It is easy to verily that h r (x )>exp  (xOog (x +e))-=), x>-xl . Let 
~= �89  B -1) and 0"=0 "(1-'/2). Then o~ER[bhp(x/2)] for some b > l  and 
~k= ~ ,  F satisfies M2 {~P; x, oo}~M= {Q; x, r 0* (x), x>-xl. Theorem 3 in [6], mod- 
ified according to the remark in 4.4 in [6], may be applied with Q replaced by 0*- 
Thus we get 

�9 ( x ) = O  1/log , x ~ .  

Since 0 " =  0 ~(~-~/~ this proves (3.3.9). 
Let us now suppose that g=l/FEdl(7; Wo, 1410 and 7(~)~0,  ~ .  In some 

cases when Vgl(X)/Wo(X) tends to zero in an appropriate way as t ' -*  ~, and ~(~) 
does not tend to zero too fast as ~ ~ ~,  we may obtain sharp results even when W 0 
is a polynomial and thus (3.3.7) cannot be satisfied. Let us suppose that (M~) may 
be chosen so that, for some 2 ~ 1 

(3.3.1 O) ~ W~ (X) m (7 (X)- 1) W(X)- ~ < 2. 

I f  X is large enough and f= fx  denotes the function introduced in the lemma in 
Section 2 then, by (2.2.7), (3.3.2) and (3.3.10) 

M2{f(n); - X , X }  ~= 5&(n--1)!Mn_tW(2X), n -= 2, 3 . . . . .  (3.3.11) 

Let 

(3.3.12) So(X) = 2Wo(2X), S~(X) = 5W~(2X), S~(X) = S(X) = 52W(2X), 

n = 2, 3, . . . ,  
and 

(3.3.13) P o =  1, P , = ( n - 1 ) t M , _ a ,  n = l ,  2 , . . . .  

Then 1/SoSI<S, So(X)<=XSI(X), X>-Xa and SI(X)=S(X), X>=X1. From the 
lemma and (3.3.11) it follows that 1/PENI((Pn), (S,), S). If ~ .F(x )  NO(x), x>---xo 
and �9 (x)+Kx/' ,  x>-xo for some K > 0 ,  then Theorems 3" or 3 in [6] may be applied 
and yield a result of the same form as in Theorem 2, namely 

where U is defined by (3.2.1). In Theorem 2, ~--70 and the result (3.3.14) holds true 
for oER[e € if  g is constant, 0 < ~ < 7 o .  In the present case where 7(~)~0,  { -~o ,  
(3.3.14) is obtained only for a smaller class of functions 0 which cannot contain 
the class R[e € for any ~>0 .  I f  W is majorized by a polynomial then such a restric- 
tion on the class of  functions 0 for which (3.3.14) holds true is necessary. This is a 
consequence of the following theorem ([5], Th. 6, p. 347). 
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Theorem. Let 6, x and ~, ~<  1, be positive constants and let (1 + xl)6+~/~F(x) 
CLI(R). I f  [ ~ . F ( x )  <O(x), x>=Xo, implies that ~ ( x ) -O (Q (x ) ' ) ,  x - ~ ,  for every 
bounded function �9 satisfying the Tauberian condition (3.1.4) and for every oER[e ~] 
then 1/P(~), r ~R, are continuous boundary values of  a function g ( O, ~ = ~ + iq, analytic 
in the strip 0 < n < ~ .  

I f  W is dominated by a polynomial then 1/U-a(1/O(x))=O(o(x) ') ,  x ~ o  for 
some ~, 0<~-<1,  and from the above theorem it follows that it is impossible to 
obtain the estimate (3.3.14) for oER[e ~] for any x > 0  if the conditions for l i f t  are 
imposed only in a domain D r which tapers off at infinity. 

The method described above will be used to prove Theorem 5 below. The 
L2-conditions for 1/F and its derivative are now replaced by an O-condition in 
order to include the case when the assumption (3.3.15) holds true with 0<a<=l/2.  
If  a > 1/'2 then the assumption (3.3.15) may be replaced by the corresponding L2-con - 
dition and if 0<a~_ 1/2 it may be replaced by a corresponding L~-condition, 0 < s <  
< 1/(l--a). 

The result of the theorem is best possible in the sense that (3.3.16) cannot be 
replaced by �9 (x) = 0(6  (x) ~ (x)l/(a+~)), X-~ ~, for any function 6 such that 6 (x) ~0,  
x ~  ~. This follows from Ganelius' theorem in the same way as the corresponding 
result for Theorem 2. 

Theorem 5. Let K, a and c~ denote positive constants. Let 4) be a bounded function 
on R such that @ ( x ) + K x / ,  x>-Xo, let FELl(R) and ~ *  F(x)l<-o(x), x>=xo . Sup- 
pose that 1/P(r ~ ~R are boundary values of  a function g(O, ~ = r +i  q, analytic in 
the domain D~={ff [0<~/<7(~)} and such that 

(3.3.15) (1 + ~f)l-ag'(0 is bounded in D~.. 

I f  7(~)=(2c~/log ~)~, r and QCR[exp (Bxl/(~+l))] for some B, 0 < B < ~ + I ,  then 

(3.3.16) r  = O(Q(X)I/(a+~)), X ~ o~. 

Proof o f  Theorem 5. Let us first consider the case a > l / 2 .  The assumptions 
on P imply that 1/P~d~(7; W0, W0 where, apart from constant factors, Wo(X) - 
= X  a+1/2, W I ( X ) - X  ~-~/2 and W ( X ) = X  a. Let M 0 = l ,  M , = n ' e  -n', n = l , 2  . . . .  
and let m be defined by (3.3.1). It is easy to see that log m (x)<= ~x 1/~, x >-0. Therefore 
m(]I(X)-I)~X 1[2, X~:~-~rl . Since W ~ ( X ) = O ( X  -a/~ W(X)) ,  X - ~ o ,  (3.3.10)is satisfied 
for some 2 ~  1 and (3.3.11) follows. Therefore 1/PE~I((Pn), (S,), S) ,  where (S,) and 
S are defined by (3.3.12) and (P,) by (3.3.13). The sequence (P,) satisfies (3.2.22) 
and z (x)=cons t  Q(x) ~/(~+~). It is easy to see that 

he(x) >- exp ((1 +e)xl/( l+ ')) ,  x -> x 1 . 
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Let  O = ( B / ( l + c O )  1+~. Then 0 < 0 < 1  and  o CR[bhe(Ox)] for  some b - > l .  The  result  

thus  fol lows f rom Theorem 3 in [6]. 

The  case 0 < a < _  - 1/'2 is t rea ted  similar ly by  using LS-est imates ins tead o f  L2-esti - 

mates  and  by  the aid o f  the remarks  to the l emma in Sect ion 2 and  to L e m m a  1 in 

2.2 in [6]. The  detai ls  are omit ted .  

In  Sect ion 5 o f  the pape r  [6] some examples  were given under  the a s sumpt ion  

tha t  1/ f f  is analyt ic  in a doma in  including the real axis. Cor respond ing  results when 

1 / F  is analyt ic  in a d o m a i n  D r o f  the type (2.1.1) were s tated wi thout  proof .  These 

results  now ei ther  fo l low direct ly  f rom the above  theorems  or  are easily p roved  by  

us ing the same methods.  
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