A refined saddle point approximation

TraoMAas HOGLUND

We consider high convolution powers

e = 3 fw). . fw)
K)o Fap=2
of an arbitrary function f: Z — [0, c0) with finite support S = {x € Z|f(x) > 0},
and our aim is to obtain an approximation of f**(x) which is sharp for all x € Z.

It will be easy to see that our approximation below (properly interpreted) holds
when § is a one point set. To avoid trivialities we exclude this case from the re-
mainder of the text. Let 2 and & stand for the smallest and largest point of 8§,
respectively, and let I denote the convex hull of § considered as a subset of R,
x=min S, £=max 8, [ =[x &].

In order to be able to give the announced approximation we have to require
that the support of f** tis a convex subset of Z for all n sufficiently large. This is
the case if and only if both -1 and & — 1 belong to S. Forif & — 1, say, does
not belong to S then n& — 1 € supp f™* for all n, and hencs the support of f**
never becomes a convex subset of Z. (Note that the integer interval [an, Zn] is
the convex hull of supp f™* considered as a subset of Z.) Conversely, if = + 1
and & — 1 belong to S then supp f™* contains all points of form

k1$+k2(25+1)’1“]93(92—1)+k472:n25+(k3+k4)(5—@_1)+k2+k4,

with k,, ..., k, non-negative integers satisfying k& + ...+ k= n. That is,
supp f™* contains all points of form ng 4+ h(% — x — 1) + hy, with 0 <k <,
0 <hy, <mn, and hence supp f™* = [ng, n&] for all n > max(l,Z — z — 2).

Let u stand for the measure on Z which assigns the weight f(x) to the point =,

u(B) = f(x).
x€E

The approximation will be formulated in terms of quantities which are naturally
tied to the family of probability distributions whose densities relative to the measure
i consist of the closure of the exponential family p.(x) = ¢*/p(a), o € R. Here
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pla) = >, ¢“f(x) is the Laplace transform of f. To complete the family we thus
have to add the two probability distributions given by the densities

Po(@) = lim p,(x) = 0.,/f(z) and p, (@) = m p,(v) = &,[f(Z)

a—>— a—>-+ o

(the Kronecker delta).
The above-mentioned quantities are among the following ones. The meanvalue

d
mo = [ apadue) = 3, log p(a),

the wvariance
2

o= [ @ mp@du) = g log wla),

and the entropy

H, = — fpa(x) log po(x)du(x) = log p(a) — am,.

If we note that m_, =2, m,, =& and dm,da =7v,> 0 for a €R, we see
that the meanvalue maps R onto I in a one to one manner. The fourth quantity
we will need is the maximum likelthood estimator, ¢ = m~, which is a one to one
mapping of I onto R. Its name comes from the identity

Piw(®) = max Pa().
a€R
Let us finally introduce the analytic function

T

1
o(d) = om fexp [Ae™ — 1 — dx)]dex.

—JT

The function ¢(d), A >0, s strictly positive and satisfies
0(0) = 1 > o(2) = (2ad)~ (1 + 0(1/2), as A co.

This will be proved at the end of the paper.
It is clear that f™*(z) = 0 when x/n € I, and that f**(z) > 0 when z/n €1,
provided n > max (1,& — 2 — 2). The local central limit theorem says

Fr(@) = eo(2mnvg)—Hexp [— dnlafn — mefoy] -+ O(n=4))

uniformly in x € Z, and hence it tells us nothing more than f**(x) = O(¢""/n)

except when x/n belongs to a subinterval of I of length o/ log n/n) (centred
around. m,). Richter [3] gave an approximation which holds when z/n belongs to
a subinterval of length o(1). But there are still better results. So-called saddle
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point approximations have long since been used in statistical mechanics. A rigorous
result of that kind was given by Martin-Lof [2]:

(@) = exp [nHa(x/n)](2nnva(x/n))_%(1 + O(1/n)),

uniformly in x €Z as z/n is within but stays away from the boundary of I.
It is also clear that

ST @) = fle/n) = exp [nHjym)]

when x/n belongs to the boundary of I.
The remaining gap is filled in by the refined saddle point approximation.

THeEorREM. 4s 7 — oo,

¥ (x) = exp [nﬂa(x/n)]é’(nv.‘z(x/n))(l + O(1/n))
uniformly for xzfn €I, and f**(x) =0 when x/n¢l.

It will follow from the details below that the statement above is still true if we
replace the error O(l/n) by O(min (m;;(x/n), 1/n)).
The proof starts with the identity

1
¥ (x) = 2 fe“(“““)”(p(a + ix)"dx.

We put @ = d(x/n) and conclude

T

1
7% 3 . ~ — n
f (x) = exp [nHa(x/n)] 21 fy;(x/n)(“) d“’

- JT

where

ylo) = f (o) () dpu(z).

We have to show that

7T

1
D= ‘% f Yol\dex — o(nv,)

—J

= O(o(nv,)/n),

uniformly in @ for — o0 <a < o and @ of the form @ = d(z/n). The proof will
be separated into two cases: 0 <a < oo and — o <a <0, and the second
case will be omitted since it is quite analogous to the first one. The word constant
(in formulas written Const.) will be used for numbers which do not depend on
a,x, Or n.
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Let

Then c¢y(a) = v. and

yald) = 1 > = asla)

Lemma 1. Jela) — (— e f(& — 1)/f(@)] < C%e %, k=2,8,... for some
constant C > 1 and all a > 0.

This and the lemma below will be proved at the end of the paper. Put

n) =3 U (ala) — (= 1)
k=3 :

It follows from the lemma that
lew(@) — (— 1),] < 2C% 2 < Const. 0%,
and hence also that |r,(x)] < Const. (x>, for |x|<m This motivates the
decomposition
Yalo) = 1 + va(e7™ — 1 4 dx) + ra(x).
Note that r,(x) is negligible compared to the other terms not only when v, is small

but also otherwise provided |«| is small. Small x give the main contribution to

f T v.(x)"dx in the latter case.
Introduce the abbreviations

7= Ya(), ¢ = va(6™™ — 1 4 ix), r=r4x), = o (@) — (= 1)*v.),
k=4 .
and M = max (|y], |e/71], |e7* 1], gmra2),
Then y =1+ ¢+ r and
yr— = (" — ) (e — (1 - o))
+ mr(e™ — e7™aX %) L pgeT™a 2 L pp — g)eT™a¥2,

(This complicated decomposition is unnecessary if we are content with the error
O(rn—%) instead of O(1/n).) The inequalities

Jo" — ") < mle — y) (max (|z], [y))"" and |¢¥ — 1 —a| < |af%e)2

together with the familiar estimate [y — 1| < w.x?/2 yields
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" — 1)
<Mty — e < nM vy — 1% 712 < Const. MM (nwas®)n for x| < .

(Note that sup.v.<< oo, and hence also 1/M < expvx’/2 < Const.) In a
similar way we obtain

le"@=D — e*(1 4 nr)| < Const M™(nva?)n
and
(e’ — exp (— nwax?[2))] < Const. M"(nvax®)in for |x| < m.
(Here we used the inequality |e* — 1 — ix — (ix)?/2] < |x|*/6.) Finally
[ns exp (— nvax?/2)| < Const. M™(nvas”) /.

(The estimate |s| < Const. v?|x|' is a consequence of lemma 1))

LemMMma 2. There are positive constants & and 6 such that M < exp (— ex’v,)
Jorall — o <a< o0 and —a <& <a satisfying valx| < 0.

We use the fact f T (r — 8)exp (— nwex?/2)dx = 0, make the substitution
&« — — « in the integral representation of p(2), and split the domains of integration
in the expression D into two parts: || < min (r, /v.) and /v, < || < z. The
result is

D < Constglumlfn + [ ()" exp (e — 1 — in) o,
Sfeg Claf<m

where

o) = [y - (s
lo) < n

It is clear that g(A) < Const. (A* 4+ 4%), A >0, and the substitution «— x)—%
shows that g(4) < Const. A-3. Hence g(1) < Const. min (1, 1*)o(4) for all 1 > 0.

The second term in the sum dominating D is non-zero only if the domain of
integration is non-empty, i.e. only when v, > é/m. According to lemma 1 this
implies that « belongs to a compact subset, K, of R. We also know that
n = inf, 0/v. > 0, and it is wellknown that |y.(x)] <1 for all a € R and
0 < x| <. (See lemma 3, p. 475 of Feller [1].) It is easy to see that the function
(@, &) = ya(x) is continuous,

(lya(oc) — ()] < f [Pa() — po(@)|du(z) + |x — ﬁ!) ;

and hence also

sup  fya(x)] < L.
a €K
N ol <a
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The estimate
1] = e®* 1 = exp (— wa(1 — cos xr)) < g~ o=

(valid when 6&/v. << |[x| < @) finally shows that there is a > 0 such that the
integral in question is dominated by

o

Const. e~ << Const. ¢~ ¥™e < Const. min (1, (nw.)")o(nva)n, where ' < I/max, v.

(Remember that v, > d/n.)
Proof of lemma 1. We point out the fact that

1= pa() = e~ @) (@1 + 0e™))
as a— oo, It is clear that m, = & + O(e“’). Also

@) — (— D f(@ — D/f@)] < |(& — ma)"pa(®)| +

FIE =1 = mafpuld — 1) — (= Ve E— D] S (e ma) )]

The- first expression to the right is dominated by (Const.e™*)*, the third by
(Const.)*¢™*, and the second by
(& — 1 — ma)* — (— 1)¥|pa(& — 1) + Const. e7>* <
< (Const.)* |# — m,le™™ + Const. e72* < (Const.)* e
The lemma follows.

Proof of lemma 2. We have

Re (ya(x) — 1) = Re va(e™™ — 1 -} ix) + Re ra(x) < — wa(l — cos &) + [ra(x)] <

= — v2)7’ + Const. ofx < — v,a?/10,

provided |x| <z and w.|x| issufficiently small. Here we have used the inequality

1 — cos & > a22/a?, valid for |x| <z These estimates take care of |¢’"'| and
‘e‘I‘*‘]'[l‘

In order to estimate [y.(x)] we note that [log (1 + z) — z| < |2[2 for |z| < .
But |pu(x) — 1] <war?/2 <1 for jof <a and w.|x| < 1/n. Hence
Pal@)] = eI Zexp (p — 1+ ia'/4)] <
exp (— 2,6°/10 ++ val/4) < exp (— v,&7/20),
provided |o| <z and w,|x| is sufficiently small.

The function o(A). It is clear that |[g(4)] < p(0) =1 for i > 0. In order to
show that p(1) > 0 for 1> 0, we note that

7T

© ]'k 1
-4 2 (k1)
= k! 27 fea dex.

-
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Hence
Z.;“
o(A) = e™* a > 0
for 1=0,1,2,..., and
A 2 ¥ sin 7(4 — k)
o) =" 2 W T —

otherwise. But sina(l — k) = (— 1)¥sinwA, and sgn (sinwld) = (— 1) for
A€ R — Z. Tt therefore follows from lemma 3 that g(4) > 0 also for 0 << 1¢ Z.

Levma 3. Put

S(A) :;2:0 B AER — Z
Then S(2) > 0 if [A] is even and non-negative, and S(A) < 0 otherwise.

Proof. Observe that

<(# 2 1 (— J)H+! 1 )
( =

SH=2\ e 2= T ek a ok 1

k=0

© sz ( 1 1 )
RPN COTACT N Sy 7Ty oy &

and that (4 — 2k)(A — 2k — 1) > 0 if and only if 4 — 2k <0 or A — 2k > 1.
Hence S(A) <0 if (A —2k) (A —2k-—1)>0 for all £=0,1,2,..., ie. if
A<C0 or [A] is odd.

Similarly

1 © ((_ l)2k+1 1 (_ z)2k+2 1 )
Sh= g+ 2\ e i1t @i ko3

1 o )L 1 1
=72 ot 1)!<2k T T 2k — ) — 2k — 2))’

and hence S(1) > 0 if [1] is even and non-negative. The lemma follows.
Since

1
(2rA)~ = P f et (1 4 A(ix)?/6)do
it remains to show that the difference between this integral and the integral defining
o(2) is O(2 %) as A— oo. It should be clear that the contribution to these

integrals from values of « satisfying |x|>1 is less than O(A7*?). Put
(o) = €% — SR L (i) fjl. Then |sy(x)| < ||*/k!, and
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1

l0(d) — (27A)73| = 1*2; f e Hat(e @ 1 — A(ix)*/6)dx | 4+ O(A~P).
la<<1

The inequality |¢* — 1 —y| < |e* — 1 —a| + |v — y| < [x[%™/2 + |x — y|, ap-

plied to @ = s;() and y = A(ix)*/6, shows that the integrand to the right is

dominated by

[(Aa®)Pe™ 4% - (AalPe= ][4
provided |x| < 1. Hence ¢(4) = (2n1)~%(1 -+ O(1/A)).
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