On fundamental solutions supported by a convex cone
ARNE ENQVIST

1. Introduction

Let P(D) be a partial differential operator in R*® with constant coefficients
and I’ a closed convex cone in R* Thus we assume that =,y € I" and s,{ > 0
implies that sx 4 ¢ty € I. The problem discussed here is to decide when P(D)
has a fundamental solution with support in I

When [ is a proper cone, that is, when [I' contains no straight line, this con-
dition means precisely that P(D) is hyperbolic with respect to the supporting
planes of I' which meet I' only at the origin (Garding [4], see also Hérmander
[5, Theorem 5.6.2]). In the other extreme case where I' is a half space sufficient
conditions were given long ago by Petrowsky (see Gelfand — Shilov [2]), and a
complete answer to the question was obtained by Hormander [6]:

In general the intersection I'N (—I") = W is a linear subspace and x € I
implies @ 4 y € I' for every y € W. This shows that I' is the inverse image
in R* of the image V of I' in R*/W under the quotient map. It is clear that
V is a propzr cone. We shall use the notations »' = dim W, »" =n — »’ and
coordinates x == (z/, ") such that W is defined by 2" = 0. Also for »" > 0
and n” > 1 sufficient conditions for the existence of a fundamental solution of
P(D) with support in I', analogous to those of Petrowsky for #»" =1, have
been given by Gindikin [3]. We shall extend these in the direction suggested by
the technique used by Hérmander [6]. However, when %’ > 1 there are poly-
nomials such that P({’, D”) is not hyperbolic for any ¢’. This introduces a new
difficulty and in consequence of this the result is far from complete.

In Section 2 we investigate the general necessary conditions. The methods
used are very close to those of Hérmander [6]. In the hyperbolic case the principal
part plays a very important role. (Ses L. Svensson [9].) Here the principal part
does not give so much information about the polynomial, and we have not been
able to find any substitute. However, in Section 3 we study some stability proper-
ties of the necessary conditions which allow us to carry them over to various poly-
nomials related to the behavier of P at infinity.
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In Section 4 we reduce the existence theorems to a priori estimates. To be able
to prove these estimates, we are forced to assume that P({’, D") in some way can
be written as a product of hyperbolic polynomials. In Section 5 we give general
sufficient conditions of that type and in Section 6 we investigate polynomials that
are partially homogeneous.

When deg P = 2, we solve our problem completely. (Section 7.) We have
also tried to find new methods to prove the existence of fundamental solutions.
In Section 8 we present a constructive method in the case of two variables.

The subject of this paper was suggested to me by Professor Lars Hérmander,
whose constant eriticism and encouragement have been invaluable. I am also very
grateful to him for many valuable suggestions.

2. General necessary eonditions

Let P(D) be a partial differential operator in R* with constant cosfficients
and let V be a proper, closed and convex cone in R*. Set I = R*XV, z=
(#',2") € R X RY and 2| = max,_;.,[7|. For every real number A we
define the set V% as follows

Vi={n€R"; (f,2a") =4, [a"| =1La" €V}

THEOREM 2.1. Assume that P(D) has o fundamental solution with support in I
Then the following condition is satisfied.

(2.1) There is a constant C such that the following is true: Let ' — ("({’) be
any analytic function such that P({', (') = 0, Im £"(L') € — Vi and
(& (&N S M for all & € &, B) = {' € CY; |8 — &| < R} where
£ €RY and R > 0. Then min (R, 4) < Clog (2 + M).

We need some lemmas for the proof.

LemMa 2.2. If P(D) has a fundamental solution with support in I, then for
every compact neighbourhood K of zero there are constants C and u such that

(2.2) [(0)| <C 3 sup |[D*P(Dyu|, u € Cy(K).

el —I

Proof. If P(D)E =6, supp EC I' then w(0)= E (P(D)u). Since the support
of K is a subset of —I", and I’ is regular in the sense of Whitney, we conclude
that (2.2) holds for arbitrary K. (See Schwartz [8, p. 98].)

Lemma 2.3. Let P(D) satisfy condition (2.2) and let y € CF(K) be equal to 1
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n a neighbourhood of zero. Set K' = (—I') N supp (dy). Then there exist constants
C and u, such that for all uw € C*(R") with P(Dyu =0

(2.3) lu(0)} < C > sup |Dl.

el <pe K
Proof. We apply (2.2) to the function » = yu, noting that P(Dp =
> avo (PHD)Yw)D¥y/ut.

Levma 2.4, Let yn(t) = N when |t| < 1/2N and yx(t) = 0 otherwise, t € R.
If ¢V is the convolution of N factors yy we have

@) suwppg’ (=) e¥ =0, [,
(i)  d*N(t)/dt* is a measure with total mass < (2N)* when 0 <k < N.

Proof. See the proof of Lemma 2.2 in Hérmander [6].

In the following lemma we use the notation

DY) = R~"¢"(&R) . . . ¢™(£./R).

Lemma 2.5. Let & € R™, and let F be a function that is analytic in the poly-
disc Q = Q(&, R). Set

wMa') = f ¢ <HE>P(E) ONE — ENE.

Then
(2.4) &’ (@) < (4N/R) sup |F(Z)], 0 <k < N.

Proof. See the proof of Lemma 2.3 in Hérmander [6].
Proof of Theorem 2.1. Consider
’LLN(.’E) — /ei<x', &>+ i<<a”, C"(E')>(Z§g(§’ _ {;(’))d&'

It is clear that P(D)u" = 0 and that «"(0) = 1. Let K’ be the set in Lemma 2.3.
We have to estimate %" and its derivatives in K’. By hypothesis (2", Im "('))
>0 for x € K’ and ' € Q(&, R), and furthermore there is a constant 6 > 0,
such that [v']>d or <", Im{"(L")y > A6 for all (' € Q(&, R). Set K, =
{x €K' ;|a'| > 6} and K, ={x € K'; (x",Im £"(¢')> > 64 for all ¢’ € Q(&, R)}-
Using Lemma 2.5 with k= N we obtain

[u¥(x)] < 4N/SR)Y, z € K,.
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Differentiation of ¥ gives factors, which are coordinates of ¢ or ("({’). Since
these are bounded by M we obtain

> sup [D*uN| < C(1 + M)“(4N[8R)".

’04 Sp Ky

Similarly we obtain
> sup [D%N| < C(1 +M) e,

el <u K,
If we use this in Lemma 2.3 and observe that «"(0) = 1 it follows that
(2.5) 1 <O+ My“((4N/6R)N 4 e=%4).

We choose the integer N so that (0R)/(8¢) < N < (6R)/(4e) which is possible
if R > (8e)/6. Then we obtain that

1 <O 4 Mg Gmn® A where O = min (1, 6/(8e)),
and this completes the proof.

The conditions in Theorem 2.1 are hard to apply since they involve rather
general polydiscs in P~1(0). However, when the function (' — {"({") is algebraic
of bounded degree and I is semialgebraic, it is possible to sharpen these conditions.
(A semialgebraic set is a set that can be defined by finitely many real polynomial
equations and inequalities.)

TrEOREM 2.6. Let q, be an integer and assume that P(D) has a fundamental
solution with support in the semialgebraic, closed and convex cone I. Then there
are constants A, and R, such that if the function C¥3 (' — "(J') € € is analytic
and algebraic of order <.q, in (&, R,) (& € R™) and if P(L', {"(J')) =10 in
Q(&, Ry), then there is at least one point ' € (&, Ry) such that Im "(¢') € — V3.

We need some preliminaries before the proof. The function ¢’ — £"({") in
Theorem 2.6 shall satisfy the following conditions:

(2.6) £"(¢) is analytic in (&, R). There are polynomials p; = pi(, 7),
j=n"+1,...,n With deg p; < ¢, such that (L', §;(8') = 0
in Q(&, R) and a(l)4;(¢') == 0 in Q(&, R). Here a; and A; denote
respectively the coefficient of the term of highest degree and the dis-
criminant of p; as a polynomial in 7.

Let U, be the set of all (&, R, A) € R*** with |&| < ¢, R <t, such that
there exists a function (”({’), satisfying (2.6) with [£"(Z)] <¢, Im {"(L') € — V5
and P(Z, (L) =0 for all ¢ in Q(&, R).

Lemma 2.7. The function
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f&) =sup{s; A&, R, A) €U, 0<s<A4,0<s <R}

is algebraic for large 1.

Proof. If the condition (&, R, A) € U, can be built up from equations and
inequalities involving polynomials in real variables, then the lemma follows from
the Tarski — Seidenberg theorem. However, the condition (&, R, 4) € U, can
be expressed in the following way:

|&| < t, R < t. In addition there are polynomials p; with degp; <gq,
and |a;(ZNA(L)R 0 when |{' — &| < R, such that for some 7
with  |pi(&, 7j0)2 =0, j=n"+1,...,n we have Im7t=
Im (tyyq..-57,) €— Vi [P, 7) =0 and |v| <t forall ¢’ with
It" — & <R, if 7; is the value for 6 = {’ of the unique continuous
solution o of p;(f,0) =0 defined on the line segment between &
and {', such that o= 17, for § =&,

By Lemma A.9 in Hormander [6] this condition can be expressed in the required
algebraic form.

Proof of Theorem 2.6. Theorem 2.1 shows that f(f) < Clog (2 +4-t). Sincz f
is increasing and algebraic for large ¢, lim, . f(f) exists. Lot A, > Lim,  f(t)
and set R, = A,/y, where y is the constant we get in Lemma A2 in [6] for v = »’
and M > deg (T]% +1(#;4;)), whenever p; are irreducible polynomials of degree
< ¢, This proves the theorem, for a polydisc Q(&, R) with this radius con-
tains one with radius A4, and real centre where ¢; and A; do not vanish.

CororLrary 2.8. If P(D) has a fundamental solution with support in the closed,
convex and semialgebraic cone I', then P satisfies the following condition:

(2.7 There are constants A, and R, such that if & € R™, {",n" €C”, 5" + 0
and (&, Ry)D ¢ — (L) €C is an analytic function satisfying the
equation P(Z, &+ 1(l')m") = 0 when ' € (&, Ry), then there is
at least one point (' € (&, Ry) such that Im (" -+ ©({')y") € — Vi,

Remark 2.9. Assume that P(D)E = 8, supp B < I' = {x € R"; @, 1 = D wosl%l}
If BECpygse--rLa) €D (RY) is the Fourier transform of X with respect to
Tyinseo %, weobtainthat P(Dy, ..., Duy, Cusasevvs C)B(Cuyasevns 8 =
=0y, ...,%y,) and E is an analytic function of Cwyas---» L, with values
in &'(R**"). Now it follows from Tréves [10] (see also Appendix) that the operator
PDy,...,Dy1, Cyyss -, L,) has constant strength. It is not clear if this fol-
lows from the conditions in Theorem 2.1.

Remark 2.10. In the proof of Theorem 2.1 (and Theorem 2.6) we have only
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used the existence of a local fundamental solution, i.e., a distribution E such
that P(D)E = § in a neighbourhood of zero and supp £ c I

We finish this section by proving a theorem which shows that there is no re-
striction in assuming that I' has interior points. Thus, we shall assume this later on.

THEOREM 2.11. The operator P(D) has a fundamental solution with support in
the hyperplane {x, N) = 0 if and only if P({ + tN)= P({) forall t€ R, { € C".

Proof. We can assume that N = (0,...,0,1) and P(D)= >t a(D')Dj.
Let E be the fundamental solution. Locally we can write B = 3¢ E(x') ® D] d(,).
From P(D)E = we obtain that

> a(D"E, =

=i

{6(90') for ¢ =0
0 for ¢ > 0.

Hence, ay(D")E, = d(z') and, if m > 1, a (DVE, =0, a, (DYE,_, + a, (D)E, =
=0,.... By induction it follows that o '(D)E,_;=0. Thus 0=

(D) ag(D)Ey = (a,,(D'))+*8(x'), which implies that a, = 0 for m > 1.

3. Stability of the neecessary conditions

We shall here prove a theorem which gives some information about P at
infinity.

THEOREM 3.1. Let P(D) satisfy (2.1) with respect to I'= R” X V. Assume
that & € R", s, € R, a; €C, where s; and t,— o, j— o and that there is
a constant N such that |&| <t', t; < s, s; <& for all j. Furthermore, assume
that

Q&) = a/jP(E; + 8;5’, & + tE) > Qo(&), j — .

If &€ R” and Qu(&', &") = 0 for some & € R", then Qo(&', L") 0 forall I" €C™
with Im " € — int V*.

Proof. Let & € R” be such that deg.. (&, £’) =1 and assume that (" € C",
Im({" € —int V* and @&, ") = 0.

Let 7 €C and take N” € R such that deg, Qy(&, " + TN") > 1 and let
bj(&') be the coefficient of the term of highest degree with respect to v of the
polynomial @;(&’, {” 4 ©N"). Now, consider @,(&, " + vN”) as a polynomial of
(¢, ) and write it as a product of irreducible factors. Set d; = the product of
the discriminants of these factors, considered as polynomials of 7. We have that

Ay = A[L") = b;(L)d;(L") == 0 is a polynomial of ¢’ and if = = 7({’) is a contin-
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uous solution of the equation @;(¢’, {" + TN") = 0, then 7({’') is analytic when
4,87 == 0.

Let Bc € be a ball with centre & € R” and radius r > 0. Then by Lemma
A2 in [6] there is a ball By, B with centre & € R and radius yr > 0, such
that 4,(f') # 0 in B, Furthermore, for every j there is a ball B, C B, with
centre £ € R” and radius p% > 0 such that A;(¢’) =0 in B;. This implies

that there is a ball B C B, with real centre and radius »%/2 = y,r > 0 and
a subsequence 4; of A; such that 4; (') # 0 in B for all k. In order not to
complicate the notations we assume that this is true for the whole sequence, i.e.,
A(E) %0 in B for all j > o. _

Now, consider the solutions of the equation @4(¢/,.¢" 4 =N")= 0, (' € B.

These are analytic in B and if the radius » > 0 above is small enough, there is
a constant & > 0 such that some of the solutions, say 1, satisfies the condition

Im (& + 7o(¢)N") € — V* for all ¢’ € B. If 7,(¢’) has the multiplicity u when
¢’ €B and if UcC is a small neighbourhood of zero then Rouché’s theorem

shows that the equation @;(¢, "+ t&N") =0, ¢’ € B has exactly p solutions
in 7(¢') + U for large j. Let 7; be one of these. Then 7; — 7o uniformly on

B when j— o. This implies that
Im (&' 4 4(L')N") € — V*, for all '€ B
if j is large. Thus, for large j
PE + 58, & + 4" + 5()N") =0, for all '€B

and

Im (& + (0" 4 7()N")) € — V;;;ﬂ for all ¢’ € B.
It follows that (2.1) is not valid since then we would have

min (e/2, sywr) < C log (2 + [§] + Culs; + 4) =

= O(min (log #, logs;)), j— o,
which implies that
min (g, 7) = 0.
This completes the proof.
CororLrarY 3.2. Let P(D) have a fundamental solution with support in I'==

= R" XV and let p be the principal part of P. Then for every & € R” we have
that p(&', D"} is either hyperbolic with respect to V or zero.
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4. Reduction of existence theorems to a priori estimates
In this section we shall assume that P satisfies the necessary conditions of

Theorem 2.1. Let k € K(R") so that for some constants ¢ and N

k(E + ) < k@1 + C ).
(See p. 34 in [5].) If 1 <p < o we shall use the norm

e = (@ [ i), ue s,
As before, let I'= R” XV be a convex cone with interior points. (Cf. Theorem
2.11.) Then we are interested in the quotient norms defined by
Hu]Prk = lnf{]]vﬂp,k; v=u on I = —1I, v ES(R")}, u GS(R").
THEOREM 4.1. Let P be a polynomial and a an element of X(R") such that
for every compact set K there is a constant C for which

iy < O IP(Dyul{7ye for all u € C5(K).

Let 1 <p; < oo and k€X(R"), j=1,2,.... Then for every fEB;fj‘fkj(R"),
j=12,..., with suppfC I' there is a solution u to P(D)u =f such that
suppu < I" and wu GB},“”ak(R"), j=12....

The proof is rather long so we first prove the following local version.

THEOREM 4.2. Let o € K(R*), 2 C C R* and let P be a polynomial for which
there is a constant C such that

]]u]] < HP(D)qu ye for all u € OF(—2Q).
Then there is a w € B, , with suppu C I' such that P(D)yu = 0 in Q.

Proof. The equation P(D)yu = 6 in £ means that #(P(D)v) = v(0) for all
v € 0P (—L). We have that

w(0)] < [olin < C Pl e v €CP(—Q).

Then the linear form
P(D)yw -+v(0) on PD)YF(—2)
can be extended by the Hahn-Banach theorem to a linear form # on CP(R")
such that
fi(w)| < Cllwlliy,

Thus « is a distribution with support in I, such that P(D)u = 3 on 2 nap
u€B, ,
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Using local fundamental solutions of the type introduced in Theorem 4.2 we
can prove the following approximation theorem.

THEOREM 4.3. Let 0O, C Q, be bounded open sets in R"™ and let P satisfy the
conditions of Theorem 4.2 for every QcC cC R* Set [I°=int I and denote
by N; the set of solutions w € 0%(L;) of the equation P(D)u = 0, such that
supp u © £2; N I'. Furthermore, let Nj have the topology induced by C*(£). If
p €€ (R, I°Nsupp uC 2,, I'° N supp P(—D)p €C 2, = I'° N supp u CC 2,

then the restriction to 0, of the elements in N, form a dense subset N, of N,.

Proof. If we prove that every » € €'(£2,) which is orthogonal to N, is also
orthogonal to N,, the statement will follow from the Hahn-Banach theorem.

Let 2, 2, be open bounded sets such that Q,cc 2, and CQ, + Q,C
C O,. Furthermore, let E be a local fundamental solution in Q,, i.e. P(D)E = ¢
in Q, suppEcC . Set w=¢=xE where ¢ €0(I'N (€ Q,)N Q,). Then
PDyw =0 in £, and suppwu C I Thus

0= (g B)=gxEx+30) = (E *r)(g), ¢€CINCRy)MNQ).
Let 4 €CP(2,) be 1 in a neighbourhood of £, and set u— y(E %»). Then
I’Nsupppuc 2, I°Nsupp P(—D)uccC Q,.
Thus by hypothesis
I*Nsupp pC C 2.

Hence we can choose y € CP(£2,) such that v =1 in a neighbourhood of

I°Nsupp p. If we set u; = yu = & *x») and v, = P(—D)u, we obtain
that u, € € (Q,), v — v, €E(L2,) and I°Nsupp (v —»;) = @, which implies
(v — vy (w) =0 and vy(u) = u(P(D)u) =0 for all u € N;. Thus w(u) = 0.

Lemma 4.4. There is a set 2 C R* such that if Q, = vQ then the pair of sets
Q, and L, , satisfies the hypotheses in Theorem 4.3 for all » > 1.

Proof. Let p be the principal part of P and let o > 0. Set N, = (0, Ny),

N, = (N, oN,),...,N,=(N,,oN,), where Ng,..., N, €int V* and p(I;, &)
£0 for j=1,2,..., n. Furthermore, we choose the vectors N; so that
every & € R* can be written as a linear combination of —No, N1, ..., N. with

non-negative coefficients. (Observe that this condition is independent of o > 0.)
Set

Q={x€Ry {(,Nj><], j=12,...,n, {x,Nop>—1}

and Q, = »Q. We shall prove that these sets will do if w > 0 is large enough.
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It is clear that £ is a bounded neighbourhood of zero. We now want to show
that
p€E(RY, I"Nsuppuc ., I°Nsupp P(—D)pcCcC R, =
= I"Nsuppuc C L2,

Set Ujs)={x€R"; a"€int V, <z, N;j>>s}, j=1,2,..., n. Then the
statement above is a consequence of the following:

u€E MR, u=0 in Uis), P(—D)u=0 in U,t) = pu =0 in Ut)
G=12,...,n).

From Theorem 5.3.3 in Hérmander [5] we now get that it is sufficient to prove
that every characteristic plane that intersects Uj(t) also meets Uj(s). A plane
that does not meet U;(s) has a normal that lies in the dual cone UF of Uy0).
However, Uj"‘ is the convex hull of {AN,;h > 0}U I'*, since this is closed.
Thus we have to prove that if N = (0, N”) € I'* then p(hN; + N) + 0 for all
h > 0. (Note that a plane with normal in I'* is defined by an equation in the 2"
variables, so it meets Uj(s) if and only if it meets Uj(t).) However

(4.1) p(AN; + N) = k"p(N;,oN; + h7'N") & 0 for large » and k> 0.

To see this we first observe that AIN" € V*, N/ € V* and p(N;, D") is hyper-
bolic with respect to ¥ by Remark 2.10 and Theorem 3.1. It follows from Theo-
rem 1.3 in [9] that also p(N;, —iD") is hyperbolic with respect to ¥V, which by
Theorem 5.5.4 in [5] implies (4.1).

Proof of Theorem 4.1. Let £, be the sets defined in Lemma 4.4 and let
@, €CP(L2,) be 1 in a neighbourhood of 2, ;. Then it will be sufficient to prove
that there exist u, € N7 B;,‘;f ay; Such that

”(p,u(uv+l _ u”)HPj'“kj S 2—1), u S v, j S v,
PDywu, ,=f in Q,, and suppu, ,CI.

In fact, for such w, we obtain that %, -> « in B;,‘;fakj as v — oo, where P(D)u = f
and suppuC I

Set u, = K = {@3f), where E is a local fundamental solution in a large neigh-
bourhood of zero. Then w; € N Bpj,akj, PDyu,; =f in £, and suppu, C I
When u;,..., u, are chosen, we want to construct w,,,. Then there is a dis-
tribution vy, € N{° Bpj, ak; such that P(Dy, = ¢,,,f =f in £,., suppy,C I
If v = v, — u, then P(Dyv = P(Dw, — P(Dyu, =0 in 2, ,. Choose y € CH(I)
so that suppy < —2, and |g,(p*v — )l at; < 277 for p<w, j<wv It
follows from Theorem 4.3 that there is a C® function w such that P(D)yw = 0
in Q,, suwppwcC I and g, (w—p =), w < 2771 for w<w, j<w Set
U, = v, — w. Then

v

Iy
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”(p,u(ur+1 - uv)”pj,akj S 2“1” lu S Y, .7 S v, P(D)uﬁ-l :f il’l Qﬂ+2

and
supp %,,, C I

This proves the theorem.

5. Sufficient conditions

If the operator P({’, D”) is hyperbolic with respect to V for sufficiently many
{' € C”, then we can prove the existence of a fundamental solution with support
in I'= R¥ X V. The following definition helps us to describe sets which suffice.

Definition 5.1. Let 0 << 6 << 1 and let B < C¥ be a ball with radius B and
centre ;. We say that a subset S of B is of type N; if for an arbitrary,
logarithmically plurisubharmonic function ¢ > 0 the following inequality is true

9(%o) < (sup g)'~*(sup g)°
B S

(Cf. Lemma 3.2 in [6].)

THEOREM 5.2. Let P be a polynomial in n = n' + n” variables and let N =
= (0, N”), where N" € V* = V& Furthermore, let a({’) =0 be the coefficient
of the term of highest degree of P(C -+ TN) as a polynomial in t. Then the operator
P(D) has a fundamental solution E € B~ with suppEc I'=R" XV if P
satisfies the following condition:

(5.1) There are constants R >0, A and 8, 0 < 8 << 1, such that in every
ball B with radius R and real centre &, there is a subset S, of type
Ny for which it is true that (' €S, Im ("€ — V% = P({) & 0.

It is sufficient to prove the theorem for A = —1. (Cf. page 349 in [6].) For
1 <p< oo, k€KRY) we set
lulys, = inf {|lo]l, ,; =2 on V_=—V, v€S(RY)}, u€S(R"),
where

1/p

[llp. s = ((2ﬂ)_"” f(lf)(&”)l k(E”))PdE”)

Lemma 5.3. Let @ be a polynomial in n" wvariables with Q(C") & 0 when
Im "€ —V*, and let k € K(RY). Then there is a constant C depending only on
A, n" and deg @ such that

)"~ < ClQD")ul}=, for all « € CP(R™).

p. Ok —
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Proof. Set

v

Blu) = (2™ f aAE")QE") de.

Then supp EcCV, QUD")E =46 and

E)| <0 f (e 1GE") d”,

where C' only depends on 4, #” and deg @, thatis ||E, g <C. If g = QD"
on V_, then Exg=w on V_ so that

IIquV,'Gk < B # glip, 5 < C llgllp, x
which shows that
][u][;-ak < HQ(D”)uHIZ-k for all u € CP(R™).

Lemwma 5.4. If (¢, 2") is analytic in &' and k € K(R™) then |, )%
18 logarithmically plurisubharmonic.

Proof. AL, -)H;’, + 18 the norm of an analytic function with values in a Banach
space, hence it is logarithmically plurisubharmonic.

LemMA 5.5. If the polynomial P satisfies condition (5.1) with A = —1 and
K c c R, then there is a constant C such that

sup (&', I’ < O'sup [PE, DY, )l
R rY

for all w € CY(K), k € K(RY). Here 4(&',-) is the Fourier transform of w with

respect to x'.

Proof. For ([’ €8, we have
() (", Mg < CIPE, DY, pa < C G

where G = supgw ||[P(&, D")a(&, ~)||1Z-k. The first estimate follows from Lemma
5.3 and the second from the fact that the function

=P, DY, )
is logarithmically plurisubharmonic and of exponential type. The properties of

the set S&.{ now show that
la(&o)| (&, )pa < O ( sup  la(Z)| 1AL, )60 <

|&'—&'| <R
< O (sup |a(&)] [[4(&’, )7 °6°, 0 <d <1,
rY
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which implies that
(@)} e, ) < 0@, & eR™.
However, by Lemma A 1 in [6] there is a 6§ € 4 such that
A&y < CaE +20) <O a4+ 20)], z€C, [z|=1.
Thus
a(&) 1a(E + 28, )l < O G-

Since [[u(§ + 26, -)H;‘k is subharmonic as a function of z we now obtain the re-
quired estimate.

Lemma 5.6. Let P be a polynomial and b € X(R™). If for every compact set K,
there is a constant C, such that

(5.2) sup |[4(&", N < €1 sup [PE, DYAE, )
Rn/ Rn/
for all u € OP(K), k€ X(RY),

then for every k€ K(R") there is a constant C such that
(5.3) lullpre < CIP(D)ulys, for all u € CY(K).

Proof. See the proof of Theorem 3.10 in Hormander [6].

Proof of Theorem 5.2. The theorem follows immediately from Lemma 5.5, Lemma
5.6 and Theorem 4.1.

6. Partially homogeneous operators

Let P be homogeneous in the &” wvariables, that is

P&) = 2, a £ .
lal=m
If P(D) has a fundamental solution with support in A ={x€R";x, ., =
¢ >n.s |2}, ¢ >0, then by Remark 2.9 we know that the operator P(Dy, ...,
D1, &gss -+ -5 &) has constant strength. This implies that b(&') = ..., 0(&")
is stronger than a, for all «, i.e. there is a constant C such that

(6.1) a(&) < CbE) for all & and all & € R".

Set
X =3p=1{Q; Q") = lim, (P(, £)/b(&})) for some sequence & € R”

] >0

such that d(;, b-Y(0)) — « as j—> oo},
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where d(&;, b7%(0)) is the distance in C” from & to the zeros of b. We assume
here that b is not a constant, for this would imply that P is a polynomial in &”
which is a trivial case. The set X isa compact subset of the set of all polynomials
of degree m. Furthermore, we have

TrEOREM 6.1. If the polynomial P(§) = ZIa[:m a (&)E™ satisfies (2.1) and a,
is weaker than b for every o, then Q(D") is hyperbolic with respect to V for every
Q in 2p

Proof. (Cf. the proof of Theorem 2.2 in Hérmander [7].) If P(£;, £)/b(§;) — Q(£")
as j— oo, then we can assume that every coordinate of & has fixed sign. In
order not to complicate the notations we assume that all these coordinates are non-
negative. It follows from the Tarski-Seidenberg theorem that if @Q(&") = Zq,&"
then

(6.2) inf{n;; 2 |a,(n)/b(n') — q,P =1/t A0y, b70) =6, =0,...,7, =0}

is an algebraic function of ¢ for large ¢. By repeated use of the same theorem we
get that the infimum of non-negative #,, when the infimum in (6.2) is attained,
is an algebraic function of ¢ for large f, and so on. For large ¢ we have the Puiseux
series expansion

7' () = % ejtj/k
and P(y'(t), &)/b(n'()) — Q(&") as t— oo. Let ¢ > 0 and consider.
P/ (t) 4 &', &) by’ (t) = D, al&n’ @)t PIEPIBNE™ (b’ (8)).-

o B
Since a, is weaker than b and d(y'(t), b=*(0)) > ¢ it follows from Theorem 3.3.2
and Lemma 4.1.1 in [5] that a®)(y’(£))/b(x’(¢)) = O@¢~#!), t — oo, if B = 0. Thus,
if 0<<e<<1 we have

P(n'(t) + &', &")[b(y'(t)) =
= P(y'(t) + 17§, t&")[t"b(n' (1)) — Q(£"), t— oo.

Now the theorem follows from Theorem 3.1.

We are going to study two special cases of partially homogeneous operators.
First we will consider the case »n” = 2 and later on operators, such that Q(D")
is strictly hyperbolic for all @ € Xp. Thus, let n” = 2 and P(§) = D, _,, @,(§)E".
First we reformulate the necessary conditions.

TurorEM 6.2. Let P(§) = 2 a (&')E0, &2y, where b = qa, o ts stronger than
a, for all «. Assume that P satisfies the mecessary conditions of Theorem 2.6 with
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respect to R XW andlet V = {a" € R?; @, ., > ¢y |, 4|} beacone € W such
that every @ € X is hyperbolic with respect to V. Then for every ¢ > ¢, there are
constants R, and t such that if P({', ©({), 1) = 0 in a ball B with real centre &
and radius Ry, where T is analytic, then we have Im ©({') = 0 for some (' € B.
Furthermore, |t(0)) <c¢ if d(0',0740)) >t and 6 €B.

Proof. Assume that d(&,b40))— co and P(E, &)bE) —QE)EX as
v—oo. If P& + ¢, 7,(), 1) =0 for || <R, then we obtaln from Rouché’s
theorem (cf. the proof of Theorem 3.1) that there is a subsequence of 'rv(Ck’), which
converges to 1 as v - oo, uniformly for [{'| =< R,, where Q(4,1) = 0, so that
[A] = ¢;. This proves the last statement. Write P as a product

m

-I—r w1l T ' ,) n’+2)'

1

From Theorem 2.6 we now obtain that there are constants 4 and R, such
that for every §&,,,€ R there is a point ¢’ with [’ — &'| < R, such that
Im¢, ,7(0) = A. If welet &, ,— + oo we see that there is a point ' with
|1 — &} < R, such that Im z({’) = 0.

TaEOREM 6.3. Let P(D) satisfy the conclusions of Theorem 6.2 and set W =
={a"€R%; 2, =>ct|x, .|}, where ¢ is the constant in Theorem 6.2. Then the
operator P(D) has a fundamental solution E € By with support in A = R” X W.

The proof is similar to the proof of Theorem 1.1 in Hérmander [6]. Write
P(Z, L, 11,1) as a product of irreducible factors and let A be the product of their dis-

criminants, when they are regarded as polynomials of £, ;. Set R = BEHALE Y™
where M is a large integer and set for v € OF(R™)

N, (v, {') = max [R(L")b(L")] ll]— wi1 = G Doy 20, Nip o
where the maximum is taken over all labellings of the zeros 7;. (k € K(R™).)
Lemma 6.4. The function N (v, L") is logarithmically plurisubharmonic.

Proof. See the proof of Lemma 3.6 in Hormander [6].

Lemma 6.5. Let v € CP(R") with v(x) =0 for |2'| > H. Then

N, ) <™l gup N (v, &), »=0,1,..., m.
RY

Proof. See the proof of Lemma 3.7 in Hérmander [6].
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Lemma 6.6. Let P(D) be as in Theorem 6.2. Then for every compact set K there
is a constant C such that

sup N (v, &) < Csup N, ,(v,&), v€CPK), v=0,1,..., m— L.
RY RY

Proof. By Lemma Al in Hormander [6] we first choose a finite set 4 ¢ R™
for polynomials of degree < deg P. Let B — R, + 3. For every & € R” and
B >0 we can find a 0 € A such that the distance from & - z0 to the zeros
of R is at least B when [z] = B. Let

Of ={& +4-20; |2l =B, ImzZ 0}

and denote by QF, j= 0,1, 2, the points at a distance < R, j from @*. In
what follows we shall work in the sets ; the same arguments can be applied
in the sets £, .

From Lemma 5.3 above and Lemma 3.2 in Hormander [6] we obtain the fol-

lowing estimates

Sl}rP [B(L) [Hr w1 — T(EN D V(L )7 <
< (sup N, (v, ")~ SUP+ O T vt — (8D V(L NN <
aF ve o]

Im zv_i_l(C’):O
p41

< (sup N,(v, I'))'7°( sup S nT wi1— T Dy 0, )I5) <
oF reof
Imz, 1 (Z)=0
< (sup N, (v, £))' *(sup N, (v, {))’ < C (sup N, (v, &) (sup N, (v, &))°.
oF ot RV rRY

Here 0 << 6 << 1; the first inequality follows from Lemma 3.2 in Hormander [6],
the second is a consequence of Lemma 5.8, and the fourth follows from Lemma 6.5.
If we now take the maximum of the left side over all labellings of the zeros we
obtain that

sup N,(v, ') < C (sup N,(v, &))" (sup N, (v, &))".

of RV R

The same estimate holds for £; and since the function N (v, (') is plurisub-
harmonic, we can use the maximum principle for the function XN (v, & + 20).
We obtain that

sup N, (v, &) < C (sup N, (v, &) *(sup N, (v, &))’,

RV rY R

ie.,
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sup N, (v, &) < Csup N, (v, &).
Rn’ Rn’

Lemma 6.7. Let P(D) be as in Theorem 6.2. Then for every compact set K there
is a constant C  such that

sup R(E)D(E) D&, |77 < C sup RE) [PE, D'WE, ) P, if 0 € CP(K).

R R
Proof. Repeated use of Lemma 6.6 gives that

sup [R(EDDE)] D€, )lp.z = sup No(v, &) <

Rn/ Rnl
< Osup N, (v, &) = O sup |R(&)| P&, Do, )z <
RY RrY
< Csup R (&) |P(&, D)o, )|F7 = C 6.
R

By Lemma 6.5 we have
[R(B(E) (L, Npx < O G for [Im '] < const.

Let A be the set we get from Lemma Al in Hormander [6] when we apply it to
polynomials of degree < deg (Rb). For every & thereisa 0 € A such that

~ ~ -~

REBE) < O RE + 0)b(E + 20) < ' |RE + 20)b(E -+ 20)]
for |z| = 1. This gives that

~

RENDE) 9 + 20, )F < C G, |2 =1,
which implies that

REE) 5, )57 < 0 G,

where C is independent of &'.

Proof of Theorem 6.3. Lemma 6.7 and Lemma 5.6 show that for every compact
set K and every k € K(R") there is a constant C such that

s, < CIP(Dylii=, . u € OF(K),

‘p,Rbk -

8o the theorem follows from Theorem 4.1.

We have not been able to prove any analogues of Theorems 6.2 and 6.3 for
arbitrary =", so we must put some extra conditions on the polynomials when
n” > 3. Therefore, we shall now study polynomials satisfying the following con-
dition:
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(S) P(&) = 2 ui=m @(E)E™ has real coefficients,
o is stronger than a, for all « and @Q(D") is strictly
hyperbolic with respect to V for every ¢ € 2.

Let W be a convex cone such that int W O ¥ \ {0} and set 4 = R” X W. Then
we can prove

TarEOREM 6.8. If P satisfies condition (S) then the operator P(D) has a fun-
damental solution E € By with support in A.

For technical reasons we will consider @Qy(&) = P(&', & — ¢N") where N” €
int W*,

THEOREM 6.9. Let K C R™ be a compact set and k € K(R"). If Q, is the
polynomial introduced above, then there is a constant O such that

luliz, < ClIQ(D)ul{s: u € CF(K).

Proof of Theorem 6.8. Set k(&) = 1/@0(5). Then it follows from Theorem 6.9
and Theorem 4.1 that Qy(D) has a fundamental solution K, € B’ 5 with support
in A. This implies that P(D) has a fundamental solution E € B2’ with sup-
port in A. (Cf. page 349 in Hoérmander [6].)

Lemma  6.10. Assume that Q(D") is strictly hyperbolic with respect to V  for
every @ in 2. Then there is a neighbourhood of X, in the set of all real polynomials
of degree m, such that all polynomials in this neighbourhood are strictly hyperbolic
with respect to the cone W if int W 2 V \ {0}.

Proof. We have to prove that there is a neighbourhood of X, in the set of all
real homogeneous polynomials of degree m, such that every polynomial @ in
this neighbourhood satisfies the following conditions:

QN") &= 0 for all N”" € W*\_{0}.

The equation Q(&” + tN") = 0, where N" € W*,
IN"| =1, & €RY, |&| =1 and N” 1 &", has only real simple zeros.

However, this is obvious for every polynomial in X satisfies these conditions
and X is compact. (Cf. Definition 5.5.1 in Hérmander [5].)

Let P satisfy condition (S) and set @, (£) = H(P(&, & — iN") + P&, & — iN"))
where N” €int W* and & = (&', 0). The first step in the proof of Theorem
6.9 is the following lemma.
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LevmA 6.11. There is o constant C such that

& N 5 <O 3 1@, DHAE, I

a=(«'>0)

for all & € R”, u € OP(R") and k€ K(R™).

To prove this we need a lemma due to L. Hérmander.

Lemma 6.12. Let Q < C* be a convex set and let @, ..., Qm be polynomials
of degree << N, such that Q;i({) &=0,j=1,..., m, when [ € Q. Then there are
functions g1, ..., gm, that are analytic in £, such that

1= 2Q(0)gi(0), L€,

and

lg:(0)1 < CI 3 1@5(0)1, € Q.
1
Here C is a constant that depends only on m and N.

Proof. The variation of the argument of @; is at most #(N — 1) when { € 2,
for if ¢, {, €2 then Qi1+ (1 — t)&2) = all{t — t;), where {; € [0, 1]. Since
£ is simply connected we can choose an analytic branch of @}¥ in Q. We obtain
that the variation of the argument of @ is < a(N — 1)/N < . Thus there
are constants a; € C,. |o;| = 1, such that |arg (4;Qj™)] < (N — 1)/2N < /2
when (€ . This implies that there is a constant ¢ > 0 such that

ol@j"] < Re (@@j™) < g™, (€.

Set ¢ = >7 a;Q;'". Then

(63) ¢ Z|Q <Req < lg] TGP and ¢ = (3 0@ = S Q.

1

Thus
- i Q0)g,(0), LE€Q where g(2) = h(O)g(l) ™.

The function A4; is a sum of terms of the form II(¢,@;"), where the products
consist of Nm — N factors. Thus, according to (6.3)

lhj‘ < OllQINm—N,
which shows that

19,0 < Calg@)™ < 0/(? Q,)),

where the constant C depends only on N and m.
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Proof of Lemma 6.11. We are going to apply Lemma 6.12 to the polynomials @,.
Since (afM(£')/b(&')) — 0 if |x| & 0 and d(&’, b-%(0)) — o, We obtain from Lemma
6.10 that there exists a constant ¢ > 0 such that Q (&, (") =0 if Im (" € N" —
— int W* and d(&, b-1(0)) > ¢. Lemma 6.12 shows that if d(&’, b-1(0)) > ¢ then
there are analytic functions g, ., such that

1=XQ.&, "y, ("), Im "€ —W*,

and
19, (&) < C[2 Q& ) = Oy /Qo(€, 8"), Im " € —W*,
(Cf. the proof of Theorem 5.5.7 in [5].) Set

v

B, () = (2m)™" f 0(&")g,, (E")E", v € CF(R™).

Then we see immediately that E’a, « €B, g, with |E .|, g bounded by a con-
stant that does not depend on &’. By changing the integration contour we obtain
that supp £, . W. Moreover,
WE, 2"y = > )E’a, o * (@&, DYa¢', ), u € CF(R").
a=(a> 0
If h,.€S and bk, (2") = QL &, D), 2") on W_ then hy(2")=
Z(E, o xhy, )a") = d(&,2") on W_. This implies that

180", Y e < Wz, gae < 21 By o % Py el g < © 2 MMy el i

Thus
14(E, W ae <C > Q& DY, I

a=(«, 0)
for all & € R with d(&,b-1(0)) >¢. When & € R” is arbitrary, then by Lem-
ma A2 in Hérmander [6] there is a point 6 = 6'(¢’) € R¥ with [0'| < #/y and
d(&" + 0',671(0)) > ¢. This implies that

I R G, e < O Z[Qu(E + 0/, DYAE, [T
Thus
6E Mg <O 3 1Qu(E DY I

for all & € R”, u € CP(R") and k€ XK(R").

Now we want to find a bound for the right-hand side of the estimate in Lemma
6.11. Let ¢ be the constant introduced in the proof of that lemma. Thus we have
Q&) £ 0 for all « if d(&,b7%(0)) >¢ and Im {" € N — int W*. Further-
more, let 0 3= y € Oy ({z’ € RV ; |2'| < 1}) and set y (&) = x(& — 6'). If ' €C*
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we define (') by setting x,(8') = x,(Re l’). When 6 €T = {& € R";
d(&, 0 10)) >t + 2} and B = (§,0), [ﬁ| =1 we define

v

E(v):Ev’(oc,ﬂ,O’;v):@n) " f (&R E)D(&)/Q ds,veo;;"(R").

LemMa 6.13. Let E be defined as above. Then E € B, and supp B C A =
= RY X W. Furthermore, if ¢ € CY(R”) then |¢B|,, is bounded uniformly with
respect to 0.

"

Proof. By changing the integration contour in the & wvariables, we obtain

immediately that supp £ C A.
Let K be a compact set and assume that 8 = (1,0,...,0). If » € CP(K)
then

= @0 [ 3 2R — yEnds -

— e fae S [ @i o — gend +

e [0S @ s O y@) [ [ on,088@, OIG ~ gz,

where £ = (&,...,&) and ;=R ¢ if Imz <0 and y5=R—1i if
Im 7; > 0. Furthermore, £; denotes the support of 9y,/2f, between y; and R.

We get the estimate
0| < f iz f B(es B dE, +
7

0 [sup oty oy ae < 0, [ e
]
where O, is independent of 6’, for flf;(& + in)| dE < eAln! fl@(&)\ dE

We also need the equivalence between two norms that we are going to use.
The following lemma, which is inspired by Beurling [1], proves this.

Levma 6.14. Let K’ € R" be a compact set and let v € C(R™) be 1 on K'.

If . isthe function defincd above then there is a constant C such that

sup [a(€', )% < O sup sup % * (z@NE, %

Rn’ Rn’ €T

for all uw€ 02K’ X R”) and k€ K(R™).
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Proof. Let g be an element in the unit ball of the dual space of O3 (R™) equipped

with the norm |- |5 and set v(2') = (u(z’,), g>. If we prove that
(6.4) sup [9(€')| < Csup sup [(§ * (xD)(E], v € OF(K),
rY RY O€T

the statement will follow as ¢ varies.
Assume that (6.4) is false. Then there is a sequence v; € C7°(K’) such that

sup [7;(&')| =1
RV

and
(@ * (2,9))(E)] < 1/j for all & €R” and 6 €T.

Take & € R” such that [9,(§)| =1 andset (&) = o;(& + &). Then we have
that

w,(&)] < [wy(0)] = 1 for all & € R”

J

lf!?)(f' — )y’ + & — 0"y (n')dy' | < 1Jj for all & € R* and 6 €T.

We can now choose a subsequence i, of @; such that w; converge uniformly
to k onevery compact set. Then h isanalytic, |A(&')] < |h(0)] = 1 forall & € R".
Furthermore, by Lemma A2 in Hérmander [6] we can choose a sequence 0; €T
such that & — 0; is bounded. Finally, choose a subsequence of E O;k which
converges to —0;. Then

f PE — )’ — 0h(y')dy' = 0 for all & € R”

This implies that y-F (%, k) =0, so zh=0, for T (y,.h) is analytic.
However, % is also analytic and y,. =0, so k=0, which contradicts that
{h(0)] = 1. This proves the lemma.

Note that we have only used that 7 is defined by some polynomial b = 0,
with given degree. Thus, the constant C' in the lemma depends only on the degree
of the polynomial defining 7' and not on the polynomial itself.

If & € X(R") then there are constants C and N such that k(& -+ 5) <
< (1 + O |E)"k(n) for all & n € R™. For given ¢ and N we shall here use the
notation X(R", C, N) for all k € K(R") such that k(& 4 ) < (1 + C |£))"k(n)
for all £, 4 € R". We shall now use Lemma 6.13 and Lemma 6.14 to prove

Lemma 6.15. Let K € R" be a compact set, Cy, N € Ry and let @, be as before.
Then there is a constant C such that
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1Qu(D)uliin < ClQu(D)ulli:
for all w € CP(K) and k€ °K(RY,C,, N).

Proof. Let u € Of(K) and y € CP(R"), where y = 1 in a neighbourhood of K.
Furthermore, let ¢ € C¢(R") be 1 in a neighbourhood U of zero, such that
(CU)+ K)Nsuppy = @. If E = E(x, B, 6') is the distribution in Lemma
6.13, Bl =1, and S3¢g =@, (D)u in A_, then

P(pB) * 9) = vy, (D)QP Dy in A_.
Thus
pADVQDYulline < Tw((PE) * 9)ln i < I, g, 9B ] .1 1911, < O liglly, 1o
which implies that
(DO DYl < C 1@ (D)ulis
Note that C is independent of 6 € 7. However, with Q(‘f’ = Q¥¢, D),

sup I * (£,RP)E, W5 < € lp 2ADNRPDYullis, < 0, [QD)uli,

In view of Lemma 6.14, this implies that

sup [|QP(E, D"Ya(E', )Tz < C 1Q,(D)ulit
rRY
ie.,

sup [|QP(', D")a(&’, ')IlﬁSC’j‘IIQ s DYA(E, IAE".
v

By using the technique in the proof of Theorem 3.10 in Hérmander [6] we obtain
from this that

Hfo)(D)qu'k <C HQa(D)uHﬁ_k

Hence
1901 5Dl = F 1(Qu(D) + 2Q¥(D) — QP(D ))uHA‘
< Qu(DYullis + 1QO(DYulli, 4 1QP(D)uilis,
< C(RD)ullis + 1Qo(D)ullis
This proves the lemma, for &« = (x’,0) and g = (§’,0), |8] =1 are arbitrary.

Proof of Theorem 6.9. By Lemma 6.11 we have

ALY p, = O 210, DTa(E, M, < CZNQDulls
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where £, /(") = k(y', &"). However, there are constants C, and N such that
k. € X(RY, C,, N) for all 5. Thus Lemma 6.15 implies that for all 7’

1€, Mg, < C QDM =0 [ 10, Dite' s, a5

By using the technique in the proof of Theorem 3.10 in [6] we obtain from this
that

[l < ClIQuDul{5: v € CF (K).

We shall now investigate in detail the necessary conditions for polynomials P
satisfying the following condition:

(6.5) P(E) = 3 \oim ,(E)E™,  where b(&') = ag, , .. o (£) s real and
stronger than a, for all «. Furthermore, assume that Q(£”) is strictly
hyperbolic with respect to every vector in the interior of the proper,
closed and convex cone V* for all @ € 2, and that N” = (1,0,...,0) €
int V*,

Note that we can make b real by multiplying the polynomial by the complex
conjugate of b. Observe also that, since X is compact, there is a smallest, proper,
closed and convex cone V* 3 N” satisfying the condition in (6.5).

THEOREM 6.16. Let P be a polynomial satisfying (6.5). Then the following con-
ditions are equivalent:

() P(D) is an evolution operator with respect to every half space containing
R X (V\.{0}) in dts interior.

() Im P(&) is dominated by P().

(iti) P satisfies the mecessary conditions of Theorem 2.6 with respect to [ =
= R" X W for every cone W such that int W DV \ {0}.

We are going to prove the theorem after some lemmas.

LeMma 6.17. Let a and b be polynomials such that a(&;)/b(&) — 0, j — oo,
for all sequences & € R™ such that d(&;, b2(0)) — o, j — ©. Then a is dominated
by b.

Proof. Set e(t) = sup {{a(8)/b(&)]; d(&, b=21(0)) =t > 0}. It follows from the
assumption that &(t)—0 as {— c. From Lemma A2 in [6] we obtain that
there is a constant y > 0 such that for every £ € R* thereisa 0 € R*, (0] < 1,
such that the distance from & 4+ t6@ to the zeros of ab is at least f. Now we have
that
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a(é, ) = C1a(§ 410, 1) = Oy la(E + 10)] = Cye(t) b€ + 10)] =
< Coelt)h(E + 10, 1) = Cge(t)b(£, 1),
where the second estimate follows from Lemma 4.1.1 in [5]. Thus

sup a(§, 8)/b(E, t) < Oy e(t) 0, t— oo,
R"

which proves the lemma.

LumMwMA 6.18. Let P satisfy (6.5) and assume that P is an evolution operator with
respect to the half space {x € R" ; x, ., > 0}. Then P satisfies the following condition:

(6.6) There are constants Ry, t, such that if &, € R”, d(&, b=1(0)) >t, and
D&, Ry)D L' — (') €C is an analytic function satisfying the equation
P, & + 7l )N"y =0 in Q(&, R,), then there is a point in Q(&,, R,)
such that Im 7({’) = 0. Here N" = (1,0,...,0) and & is orthogonal
to N”.

Proof. Set R, = A;, where A4, is the constant we obtain from Theorem 1.1
in [6]. If = is the function in (6.6) then we can extend it to an analytic function
(L', £") such that P(', & + (&, ")N"y =0 for {' € Q = Q(&, R,) and ¢” near
& (t, large). However, the function z(¢’, {") is homogeneous of degree 1 with
respect to ", so we can extend T by homogeneity and if ¢ is large we see that
7(§', 1§ + 2") 1is defined and analytic for all (' € 2 and all 2" = (0,2,,4,...,2,)
with [2"| < R,. Now we obtain from the assumptions that for every large
t there are {, € 2 and z, with |z/| < R, such that Im 7((, #& + z/) > 0. This
implies that Im 7(g,,&" 4-2//t) >0 and as t— oo we obtain that there is
a point (' € £ such that Im 7({, &) > 0. In the same way we obtain that
there is a point (' € 2 where Im 7({’, —&") > 0. Thus, there is also a point
'€ Q where Im 7({', &)= 0.

Now we can prove that condition (i) of Theorem 6.16 implies (ii).

Levma 6.19.‘Let P be an evolution operator satisfying (6.5). Then Im P(§)
ts dominated by P(£). ‘

Proof. Let P(&) = P (&) + 1Py(§) = D yjom Cu(§)E™ + zZIa[*m (E)E™, where
¢, and d_ are real. We obtain from Lemma 6. 17 that d, is dominated by b =
= Q. ..., 0 = Camo,..., o for all «. We shall here use the notatlon ~ (see page

35 in [5]) with respect to the &' variables only. Set

BE) = 3 @6 + 3 G

[s9
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and

o~

ky(8) = z (@,P)(&).

In order to prove that P, is dominated by P it is sufficient to prove that there
is a constant €' such that

b(E)Po(&) = OPE) by(E) + b(E) ka(8)
for all £ € R* and & € R¥ with || = 1. However, this will follow if we prove
that there are constants C; and {, such that

[BE) Po(&)] = Co(P(E) ka(€) + BE) k(&)

for all & € R” with d(¢&, b(0)) >, and all & with [&"| = 1. We are going
to prove this by contradiction. Thus, suppose that this is false. Then there exists
a sequencz £ € R" such that

(6.7) B(ED Po(&)] = #(P(E) (&) + BE) k),
|§:[ =1,
d(&,, b1(0)) > ».
We can assume that P(&, £)/b(£) — Q&) and & — & as vy —oo. If we divide
(6.7) by b(£)) k(&) and let y— oo, then we obtain that @(£;) = 0. Now, con-
sider the equation P(& + &', & - tN") =0 for [{'| < R, where R, is the
constant we obtain from Lemma 6.18. If » is large then this equation has an ana-
lytic solution 7,, such that sup . cg [7,({')] =0 as » —oco. From Lemma 6.18 we

obtain that for every » there is a point (), |£/| < R,, such that Im 7,(¢]) = 0.
Thus,

PE +0,8)+ 7)) A8) =0

and
Im P& + ¢, &) + 7,(6) Im 4,(2)) = 0,
where
A0 = 3 P8 )E + 8 )
This implies that
A(L) Im P& + g, &) = P + 5, &) Im 4,(8).

However, A/(Z))[b(£) — (0Q/3¢,.1)(&) =0 as »—> oo, which implies that
JA,(E)] = eolb(E)], ¢ >0, if » 'is large. Furthermore, |[Im A,(Z)| < C k(&)
and |Py(&) — Im P(&, + L), &) < Cyky(£,). Thus, for some constant C we
have
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BE) Py&)] < CGE) kuls) + PE) k()
if » is large. This contradicts (6.7) and thus the lemma is proved.
Lemma 6.20. Let f = (fyi1, ..., fa): €% — € be analytic in a ball with radius

R and centre & and assume that there is a constant C, > 0 such that 0 <
Hm f(E) = CyIm f, 4(8") for all (" € B. Then there is a constant C, such that

(&) — fE) = pCeImf, (&)
for all ' €C” with |’ —&| < uR, 0<pu<1)2.

Proof. Set g,(z) = C1f, (8 + 2{') and g¢,(2) = fi(&’ + z{Yfor 2z €C, |I'| =R
and j>n"+ 2. For [2) =< u =1/2 we obtain that

@) = i [ Im g e — 2 0| =

27

< [ Tmgi@)/(1 — w? d0 = 2Tm gu0)/(1 — ) j=1,2

Thus |g,(4) — g;(0)] = 2u Im g,(0)/(1 — w)*, which implies that |f(&’ + ¢') — f(&)]
= uCy Im f, (&) for |U'| < uR.

LEMMA 6.21. Let P satisfy (6.5) and the following condition:

For every v > 0 there are & € R” and analytic functions f® : Q(&, ») —
— € such that b(L') = 0, P(L', f®(C')) = 0 and Im f®(Z') € — int W*
for all ' € (&, »).

Then P also satisfies the following condition:

There is a vector 0 &= N" € W* such that for every R > 0 there are £ € R*
and an analytic function T({') such that P(C', & 4 7()N") =0 and
Im z(Z') < 0 for all ' € Q&, R).

Proof. We can assume that P(&), £")[b(§) — Q&) €2 as »-— oo and that
[/ =1 where (, =& + dn = f®()). Further, we can assume that ¢ — {;
and 7. /|y, | — —N" as v— oo. Then Q({;) = 0 and since Im {; € —W* we
conclude that ¢ = & € R™.

Now, let B > 0 and consider the equation P({’, {" + tN")=0 for { €
QE&,R) and |" — & <e If 6> 0 issmall and » islarge then this equation
has a unique analytic solution 7,({) such that 7%, () = 0. To see this we
observe that Q(&") is strictly hyperbolic with respect to N”. If ) € Q(&), R) then
P EVB(L) —QE) as v—> o0, and Q& + 7N") =0 has 7= 0 asa simple
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zero, so the implicit function theorem can be applied. Furthermore, this theorem
implies that 07,/9(; is bounded for every j if » is large.

From Lemma 6.20 we obtain that [f®(Z') — /| < C(RB») 1| if ¢ € Q& R).
It (' €QE,R)  we have 0= P(L, fO)) = P, fO) + il | N —
— 4|y | N") = 0, so that (L, &) + ily)] N") = —ily| if » is large. From
this we obtain that |z,({’, 5”) Faly" | K CLF) +iln) | N — & < O(fN
— &4+ Ny <L, for all E.Q({fv R) if » is large. Now, the
lemma follows if we take » large and set 7({') = 7,(¢', &) and & = &,

Proof of Theorem 6.16. It is trivial that (iii) implies (i) and Lemma 6.21 proves
that if (iii) is false then (i) is also false. Thus (i) and (iii) are equivalent. From Lem-
ma 6.10 we obtain that (Re P}{D) is an evolution opsrator and then it follows
from Theorem 4.1 in [6] that (i) follows from (ii). Finally Lemma 6.19 proves that
(i) implies (ii).

Example 6.22. Let P(&) = z;‘ a;(,)§;, where a;, j=2,...,n, are real and
deg a, > dega;, j > 3. Then P satisfies condition (§) with respect to V =
={z" €R";2, >0, &, =...=ux, =0} so P(D) has a fundamental solution in
A=R >< W if int WD V\ {0}. (Cf. Theorem 2.11.) Furthermore, if ¢(§) =
= D3¢(£) is real and deg ¢; << dega, then P -+ ig satisfies the necessary
condltlons of Theorem 2.6 with respect to W if and only if ¢ is dominated by P.

Remark 6.23. Set Q_(&) = (P(&, & — iN") + P&, & — iN"))/2 where & =
= (&', 0). In the proofs of Theorem 6.8 — Lemma 6.15 we have only used that
there is a constant ¢ such that @&, (") =0 for all & with d(&,b%0)) >¢
and all C” with Im (" € — W*. Thus Theorem 6.8 is true also for P(&) =
= Zn 11 G(E)E; + ao(§’), where a; is real for every j and a,,, is stronger than
Qg s o vn s By

We have not been able to prove the existence of fundamental solutions with
support in 4 = R” X W for all polynomials satisfying the conditions of Theorem
6.16. However, the next theorem shows the existence of local fundamental solutions.
(Cf. Remark 2.10.)

THEOREM 6.24. Let P = P, - iP, satisfy the conditions of Theorem 6.16 and
let. W be a closed, convex cone such that int W DV \ {0}. Then there is a distri-
button E € Bs such that suppEC A = R” X W and P(D)E = 6 in a neigh-
bourhood of zero.

Proof. Sat @ .(£§) = P,(§/e), ¢ > 0. Inspection of the proofs of Theorem 6.8 —
Lemma 6.15 shows that Theorem 6.8 is true for ¢, with a constant that is inde-
pendent of ¢, 0 <<e <1. (Cf. Remark 6.23.) Thus, if K c R" is compact then
there is a constant C such that
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Hqu = 0Q.(D )qu 1@,

forall 4w € CP(K) andall &, 0 << ¢ =< 1. If we replace u by u(ex) where u €CF (eK)
then it follows that

fullin < O |Py(D)ulls, v € CF(eK),
where k(&) = (5, [PM(€)fe*)=12 Thus,
lullih = O |P\(Dyulis, = O |PDuliz, + O |PyDulliz, =
= C Py, + Csup ([Py(8)] £,(9) luli
If &> 0 is small enough then C sup ([Py(&}] £.(£)) = 1/2, so that
uliiy < 20 [P(D)uli, = Oy IP(D)uling, w € CF(eK).

Now the theorem follows from Theorem 4.2.

Remark 6.25. The polynomial P(&) = &&, + & — i satisfies the Petrowsky
condition with respect to N = (0,0, —1), ie. P(§+ itN) 40 for ¢ > 0. How-
ever, Petrowsky’s fundamental solution £ defined by

v

E@) = (2n)7? ffd(f)/P(E)dE, u € O2(R®),

does not belong to BY g

Proof. If E € B 5 then D,E € B ,. This implies that for every ¢ € CF(R?)
there is a constant C’é such that

f B(E — A)iaf(Bhy + A — z')d).J =0, for all £€R".
Let £> 0. Then we obtain that

lf%(& D) - )RRy - §) - I+ 16 — i)da\ <0, forall £€R’, tER.
However, for fixed £ € R® we have that

1BE — Ns + D20 4 1) + A + te8 — )] < Oxf(E2(1 + [A)Y).

When ¢-— oo we now obtain that
\f%(f — /(A + ez)dl! = 0, for all &€ R®.

If ¢lx) = Pi{xy) da{Ts, z5) and ¢,(0) = 0 then
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i f $i(&, — W3 + k| < C,, for all & €R.
However, if %1(51) £ 0 then the left side tends to infinity as ¢ — 0.

We could use the same technique as in this remark to prove that in general
it is not possible to extend Lemma 6.13 to H(x, £, 0’} with |8 > 1.

7. Second order operators
First we shall investigate the necessary conditions further.

TrEOREM 7.1. Let P be a polynomial with deg P = 2 satisfying the necessary
conditions of Theorem 2.6. Then P(D) is hyperbolic with respect to some cone con-
tained tn 1" or, after multiplication by a constant, a complex translation and a linear
transformation of the variables preserving the edge of I', P(£) can be written in one
of the following forms:

(i) P(&) = §&,, + Bi(&) + iBy(&'), where B, and B, are real quadratic
forms and B, is negative semidefinite.

(ii) P&) = (& + 1£)8p 1 + a6, + b, a,b €C.

(iii)  P(&) is independent of &".

(iv) PE)=§&& 1+ aé, o+ B(E®) +c where a€R, c€C and B s
a real polynomial of & = (&,,...,&,) with deg B < 2.

With our standard notations a linear transformation leaves the edge of I
invariant if the equation z” = 0 is invariant or equivalently if the equation ¢ = ¢
in the dual variables of the Fourier transform is invariant.

Proof. Let p be the principal part of P and set Q(£) = lim,_ t#P(t&’, £*¢")
where u = deg, P(t&', $3¢"). Theorem 3.1 shows that p(&, D") and @', D")
are hyperbolic with respect to V (or zero).

If p =6, then Q(D) is hyperbolic with respect to some cone contained in I
From this we get that P(D), too, is hyperbolic with respect to some cone contained
in I'. In fact, every supporting plane of I' which only meets the edge is non-
characteristic, and from Hérmander [6] we obtain that, for every half space con-
taining I', P(D) has a fundamental solution with support in that half space. Then
it follows that P(D) is hyperbolic with respect to some cone contained in I
{Theorem 5.4.1 and Theorem 5.6.1 in [5].)

If pu=4 then @ is of the form Q&) = >, a;(£")&, where a;(&') are linear
forms. After multiplication by a constant and a transformation of the variables
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we can write a,.,(§') = & 4 & or a, (&) = &. In both cases we obtain from
the properties of ¢ that the linear forms a; are proportional. Thus, after a trans-
formation of the variables we can write Q(£) = (£, + ¢£,)€,,.; or Q&) = &&, 1.

U Q) = (6 + if)ivp  then  P(E) = (& + if)ysr + Swor 6 + BE),
Consider ' in balls with centre (£, 0), ¢ large, and let §— 4 er somes
g>n"+ 1. Then we obtain from Theorem 2.6 that ¢ €R,j>n"+ 1. In the
same way we see that ¢; €¢R. Thus, after a translation of the variables we can
write P(§) = (£ + &6,y + BE), 50 that p(&) = (& + i&)Evsr + Bi(€), where
B, is a quadratic form. From Theorem 3.1 we now obtain that Im (& — ¢&,) B;(&")
<0 for all & € R”. This implies that & Im B,(&') — & Re By(§) =0, i.e.
By(&) = (& + 1}52)(2'{' d;&;), with d; real. After a linear transformation we can
write p(&§) = (& 4 15)€,,, so that P(&) = (§ 4+ i&)é. 0 + z’{'fjéj + 5. We
immediately obtain that f, = 0 for j > 3, so after a final translation of the
variables we can write P(§) = (& + 1&,)&,,., + af; + b.

If Q&) = &, ., then the principal part p is of the form p(&) = &¢&,.,, +
B,(¢'), where B, is a quadratic form. From Theorem 3.1 we get that Im & B,(¢") <
0 for all & € R™, which implies that Im B, = 0. Thus, after a transformation
of the variables we can write p(£) = £,£,,; + By(£%), where B,(&°) is a real
quadratic form of & = (&,,...,&,). Now we have that

P(g) = E&,.,, + zlajsj + By(&") 4+ 2 ¢i& -+ co.
. n’+

After a translation and a transformation of the variables we can write
n k n’
PE) = &pin + 2 0 + D08 + 3 ¢ + ¢,
_ones 2 k1

where b; € R. From Theorem 2.6 we now obtain that a; € R and ¢; € R. Af ira
transformation of the variables gives that P can be written in the form

P(‘S) = Elén’-{»l + a En’+2 + B(&D) + c,

where ¢ € R, ¢ € C and B is a real polynomial of degree < 2.

If u =3 then P(§) is of the form P(§) = ¢ D%, a;§; -+ B(§') where a; € R.
After a multiplication by a constant and an admissible linear transformation of
the variables, we can write P in the form P(§) = &, ., + B(¢'), where B({') =
= (A&, &> 4+ i, &). Here ¢ €RY and A = A, + id, with A4;, 4, real
and symmetric. Let L be the linear hull of the images of 4, and A4, If 6" ¢ L
then there is a vector & € Z° such that {6, &> > 0. Set ' =1t | 2,1 € R.
Then B((') = (42", 2’>+ ¢ O, &> -1 0, 2">. If |2l <R and t— o then
Im B({') — 0, which contradicts the necessary conditions of Theorem 2.6. Thus
there are &, 7, € R® such that 6'/2 = A, - A,&,. After a translation and
a transformation of the variables, we can write P{£) =&, ; + By{&') + iB,y{(&),
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where B; and B, are real quadratic forms. Finally, we obtain from the necessary
conditions that B, is negative semidefinite.
Finally, if u <2 then P is independent of &".

TueorREM 7.2. Let I'= R” XV where V is a proper, closed and convex cone
in R” and let Vi={a"€R"; 2,,, >0, 2y, y=...=2,=0}. If P is one
of the polynomials in (i)—(iv) of Theorem 7.1, then P satisfies the mecessary con-
ditions of Theorem 2.6 with respect to I' if and only if

(i) VoV if By =0,
VeV or —VycCV if By,=0.
(@) VeV oor —V,CV.
(i) V 4s arbitrary.
(iv) VoV or =V, V if a=0.
Vocint V or —Vycint V if a =+ 0.

Proof. It follows from the properties of Q(&) = lim, ¢~#P(&, 3&"), u =
deg, P(t&’, t3¢"), that V must contain V, or —V, (except in the case (iii)). Then
the only case that is not quite clear is (iv) with a 3 0.

Assume that P(§) = &6, + &0+ B(E) and that »”" =2. Set W =
(2" €R®; @3>0, @,y > — 2y}, ¢>0. Then W*={&€R; &,,, >
Swia = €&y} Let B and A be given. If 7,,., is real and

, Eiluwir + My s + B(L0) = 0.
then
6P w1 = —Ea( g2 + Tm B(E9) — 7, Re B(Z).

Assume that |B({%] < C for all 0 with |C°[ < R and take 7, ., << — (24 + O).
Thus, if we let 6, be large we see that (1,., 7vy0) € —WH for all ¢’ with
[’ — (6, 0)] < R. This proves that the necessary conditions of Theorem 2.6
are not true with respect to W. Because of symmetry we then see that ¥V, must
be contained in int V or —int V.

TurorEM 7.3. If P is a polynomial with deg P = 2, that satisfies the neces-
sary conditions of Theorem 2.6, then the operator P(D) has a fundamental solution
E € BY 5 with support in T

Proof. If P is hyperbolic then the theorem follows immediately.

If P is of the form (i), (ii), (iii) or (iv) with @ = 0 in Theorem 7.1, then P(D)
is an evolution operator with respect to the half space z,,; >0 in R**'. From
[6] we obtain that there is a fundamental solution K, € BY® 5(R**"), with support
in the half space w,,,>0. Set £ =FE ®,,, ®...® 6, Then E has the
required properties.
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It remains to consider the case P(£) = &¢&,.,+ &, + B(. However,
since B is real, it follows from Remark 6.23 that P(D) has a fundamental solution
with the required properties.

8. The two dimensional case

Let P(D) = >t a(D))Di, a, =0, be an evolution operato r with respect to
the half space x, > 0. Furthermore, let A({;) be the discrim nant of P con-
sidered as a polynomial of {, and assume that a.(&)A(5) =0 when [§] >
or Im ¢, =0,

Let ©(ly),..., (&) denote the solutions of the equation P(,, 7) =0,
which are analytic in a neighbourhood of the curves in Fig. 1. If we choose suitable
6" and 6~ then it follows from the Puiseux expansion that Im 7;({;) > 1 for
large (; €y;, where y; is chosen as one of the four possible curves in Fig. 1. (See
Lemma 4.3 in [6].) For small {; €9; we can obtain this by a complex translation
in the , variable. Thus we can assume that Im 7;({;) > 1 for all {; €y, j =
=1,2,...,m.

It is now possible to define a fundamental solution E of P(D). Let 0;({y) =
1/0P(Ly, Cs)/0Cs for .= 7;(81) and set

(8.1 E’(u) = (27Z)_2§:: f’ﬁ(Cl, &2)0j(81)/ (&2 — 7;(81))dEndEs, u € OF(R3).

7i*R
ng=Im gy
.e+
r
re
61 =Re g,
8° ,
J o

Fig. 1
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The integrals of (8.1) are convergent for if {; €y; then

[4(Z, 52)@;‘(:1)/(52 - 1j(C1))[ < On( 4 14] + Ing)‘N

where N is arbitrary. The support of E lies in the half plane {x; x, > 0}. To see
this we change the integration contour:

B = ay2S [ il b — et/ — in: — m)dbdss
' Vj><R
If ux)=0 for z, <0 we let 7,— co. Then we obtain that E’(u) = 0 for
all » € Oy (R?) with u(x) = 0 for z, < 0. Thus supp F C {x; z, > 0}. To show
that E is a fundamental solution, we observe that ‘

E(P(Dyu) —
= (zﬂ)_zﬁ fP(Cl; E2)U(C1, &2)05(C1)/ (82 — 7(1))dEidEs =
) R
= (@m)2S f U, E)o5E)an(e) TT (62 — m(C)AEdEs =
1 k#j
¥R
= (22 S f W2, E)oi(C)am(E) TT €2 — m(G))dEudls =
1 k+j
yXR
— (2n)2 f UCy E)ALLE, = (20) f a(&)dE = u(0),
rXR R®

where y is the path in Fig. 2.

Fig. 2
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We also want to show that E € B 5 and then we need the following lemma,
which is related to the proof that E is a fundamental solution.

Lemma 8.1. Let (L, &) be a polynomial in &, with coefficients analylic in
a neighbourhood of the set between the curves y; defined above and assume that the
coefficients are bounded by some power of (2 + |C,]). Furthermore, let @ = RP + Q,
where deg. Q, << deg. P. Then for every u € OP(R®) we have that

Z fQ Cl 52 Cl, 52)91 Cl)/ 2 — T Cl))dCldfz ==

7
m

= 21 Q{81 7(81))( 1, £2)ei(E1)/ (&2 — 7(6r))dErdEz +-
xR

+ f R(Cy, £)(Cy, En)dEydE,.

Proof.  Q(C1, £2)0i(01)[ (&2 — 7i(81)) = RBj(L1, &) + Q(Cu, 7i(81))oj(Er) /(62 — T(l1))»
where R; is a polynomial in &. We obtain that
fQ (&1, &2)i(L, &2)0i(L1) (62 — j(L1))dlrdE: =
= 2 f i(81, &2)0(L1, §2)dadEe +

yxR

+ 51: fQO(Cl: 7($1))i(Lr, E2)0i(81)/(E2 — T3(81))dLadés.

¥jXR

However, R —>T R, for if a,({,)A(L) +0 we have
5. Q{0 E)p(@/(E — 5(E) = Qb B)IP(G, &) =
— B(, &) + 3, QU H(Ee®)](E — nt).
To show that E € B 5 it is sufficient to prove that P®(D)E € B, for all «:

Lemuma 8.2. Let E be a distribution and P a polynomial. Then Ee€eBYs if
and only if PY(D)E € B, for every .

Proof. Let ¢ € C? and assume that P®YD)E € B, for all «. Then
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P(""(E)(@’)(é) = FPYD)pB)(E) = > (F(P*(D)E)Dp/B!)(£))

is bounded. This shows that

is bounded, i.e. ¢E € B, 3. The converse follows from Theorem 2.3.4 in Hor-
mander [5].

Thus we want to estimate

v

(8.2) E(PY(Dyu) =

_ <2ﬂ)—2§ f POy, )y, E)os( 1)) (E — T(E)dCudEs —
XR

= (27)~2 f a@ (E)A(Cr, Ex)fam(E1)dE1dE +

yXR

+@nrS f POE, m(0))a(Er, E)oy(E0)/(Ee — T(C0)ATdEs:

7j xR

The first integral on the right side of (8.2) occurs if & = (x;, 0) and then it can
be estimated by const - || cosh (a|x]) - ull; ;. When [{,] is bounded, the remaining
integrals can be estimated in the same way. To be able to estimate these integrals
for large |{,], we must group the zeros into classes. From Lemma 4.3 in [6] we
know that for large |[{;] we can write 7;({,) = cjél"f + lower order terms, where
k; is a non-negative integer. We will now say that 7; and 7; are equivalent if
ki = ki and ¢ = ¢;. Thus, there is a constant d > 0 such that if = and v
are not equivalent then

i(0) — 7(8)] = 4d(|G )5 4 |08 + 1) when (i €y

If 6% and 6- (see Fig. 1) are chosen in a suitable way, then we obtain from Lem-
ma 4.3 in [6] that

(i) (¢; real.)

There is a constant ¢ > 0 such that

Im 7i(81) > 30(]4‘1[’5"1’ + 1), & €y; and

[7:(51) — (&) < ¢t i€y, w and 7; equivalent.
() (Ime > 0.)

If the constant d above is chosen small enough then

Im 7(&) > 8d |14, (1 €9; and

l7:(81) — w(&1)] = o(|&ul%), 1€y, w and 7; equivalent.
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Set r; = 2¢ |11 if ¢; is real and 7; = 2d |{&1|% if ¢; is not real. From (i)
and (ii) we see that if {; €y; is fixed, then we can find a circle ¢; = 05({1) in
the ¢ plane with radius 7; such that Im 6 > const. > 0 for all § €0; and o;
has winding number 0 with respect to the zeros that are not equivalent to 7;
and such that a circle with radius 7;/2 concentric to o¢; has winding number 1
with respect to the zeros that are equivalent to 7;. From the mean value theorem
we now obtain that there exists a constant ¢ > 0 such that the distance in C?
from (1, 8) € y; X 05(&1) to the zeros of P is > ¢ > 0. We can now rewrite the
remaining part of (8.2) in the following way

) f PO, o(0)ilC, E)o(En)f(E — w(E))ATudes —

i xR
|&|=C
— @)t f e, &) f POEy, 0)/P (2, 0)(E2 — 0)d0)ALidEx
YXR (Cl)
|51I>C

where the last sum is taken over the equivalence classes. However,

i fP(a) Cl’ Cls )(Cz - O)dﬂ‘ < C.

We have now proved the following estimate

E(P(Dyu)| < 0? flﬁ(fip £9)1dC,dE, < C'llu - cosh (ajz|)ll,,

¥R

for all u € CP(R?) and arbitrary «. This shows that PY(D)E € B, for all «,
which by Lemma 8.2 implies that # € B%" 5. Thus we have proved:

TaEOREM 8.3. Let P(D) be an evolution operator in R* with respect to the half-
plane H = {x ; x, > 0}. Then the distribution E defined by (8.1) is a fundamental
solution to P(D) with supp EC H and E € BY .

Remark 8.4. The estimates

\E(PO(D)u)| < C Jlu cosh (alz])],,,

show that F = E/cosh (a|z]) lies in B, 3 CS.
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Appendix

Since the proof of Lemma 6 in Tréves [10] is not quite clear, we will here give
a partially different proof of Theorems 1 and 1’ in [10]. The new ideas of this proof
are due to L. Hormander. Another correction has been proposed by F. Tréves.

TeEOREM Al. (Tréves.) Let P(v, D) be a differential operator with coefficients
that are C® functions of v € U, where U is convex. Furthermore, let P(v, D) be of
analytic type (see below)in U and o C R™ a neighbourhood of zero and let k € K(R™).
If there is a distribution E(v) which is a C® function of v with values in B (w),
such that Py, D)E(») = 6 for all v € U, then P(v, D) has constant strength ‘when
v€EU.

According to Definition 1 in [10] we say that P(», D) is of analytic type if every
linear combination of coefficients of P(», D) which has a zero of infinite order in
U is identically zero in U.

Proof. It follows from seection 1 in [10] that we can assume that U is a neigh-
bourhood of zero in R and that it is sufficient to prove that P, is weaker than
P, for all k. Here

Py = [(d[dt)"P(t, D)},

Let A be a commutative ring with unit element 1 and let ‘% be a unitary
A-module. Consider two sequences X; € A, Y; € B such that X,=1 and

m

Z(m) X;Y, ;=0, m >1. By recursion we obtain that Y, isa polynomial of
o \J

Xi,...,Xm We have the recursion formula
(A1) Yu=F.(X1,..., X :—z< )XF,,,_]X],...,X,,,_,-)YO,
1
where m >1 and Fy=1 1If Fo(X1,...,X,) =2 X{1... X% we imme-

diately see that Zjo; = m.
Now, consider the differential operator P(t, D), ¢t € U. We have deg. P(t, £)
< const., t €U, and

(A2) P, D)E(t) = 6, t€U,

where E(t) is an infinitely differentiable function of ¢ € U with values in BY° ,(w).
It follows from (A2) that PyE, = 6 and

(A3) i( )PE,,L_JWO m>1,

where P; = [(d/dt)'P(t, D), and E; = [(d/dtyE(t)],_,- If we multiply (A3)
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by Pg and set X, =1, X; = P;7'P; and Y;= Pj"'E; then we obtain from
(A1) the Faa di Bruno formula:

(Ad4) PrtE, — F. (P, P,P,, ..., Pr-'P,)s, m > 1.

(Cf. Tréves [10] page 477.) By assumption we have that Py*'E, € B kP m+1
so that

(A5) P (Pi(&), ..., Py (Q)Pa(8)] < CPRH (&)[k(E) < CLPRENL + [E)V

for all m =1 and all £ € R". Since P;, j=1,2,..., have bounded degrees

there is a smallest y > 0 such that P;(£)/P(&)(1 + &)/ is bounded for every j.
Set d(&) = 1/(Py(£)(1 + |£])") and multiply (A5) by (d(£))". By means of the
homogeneity conditions of F, we obtain that

|En(PyEVE) , - - ., PETHEPLE)AE)™)] < Ol + 8™
Now, assume that y > 0 and let m, be so large that ym, > M. Then
F(Py(&d@) , ..., PFHEOPLE)AE)™) — 0 as [§[— co.
Furthermore, there is a sequence & such that |£|—> oo and
(PUENE) 5 - - - PO EIPLENEEN) = (@1 -1 m) F(0,...,0) as j— co.

(Cf. Lemma A2 in [6].) Since the degree of P, is bounded we have that ¢; = 0
for j > m, if m, is large enough. Thus,

(A6) Folgrs. o sqm, 0,...,0)=0 for m > ms.

Set Q(t) =14 > g#’/jl. Then @Q()(1/Q(t)) =1 mnear zero. In the same
way as we obtained (A4) we now get that

(@)™ (@) )mo = Fru(@1s - - - s Gmpy O, - ., 0), m > my,
so that (A6) implies that [(d/dt)™(1/Q(t))],_o = 0 for all m > m, Thus 1/Q(t)
is a polynomial, which implies that ¢, = ... =g, = 0. This is a contradiction

so that y must be zero which proves that P; is weaker than P, for all j.
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