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1. Introduction 

Le t  P(D) be a par t ia l  differential  opera tor  in R n wi th  constant  coefficients 
and  /" a closed convex cone in R ' .  Thus  we assume tha t  x, y E / ~  and  s , t  > O  
implies t h a t  sx ~ ty E F. The problem discussed here is to decide when P(D) 
has a fundamenta l  solution wi th  suppor t  in F. 

When F is a p roper  cone, t ha t  is, when /~ contains no s t ra igh t  line, this con.  
di t ion means precisely t h a t  P(D) is hyperbol ic  wi th  respect  to  the suppor t ing  
planes of F which meet  F only  at  the  origin (Gs [4], see also H S r m a n d e r  
[5, Theorem 5.6.2]). In  the o ther  ex t r eme  case where /"  is a ha l f  space suff icient  
condit ions were given long ago b y  Pe t rowsky  (see Gelfand - -  Shilov [2]), and a 
complete  answer to  the  quest ion was ob ta ined  b y  H S rm an d e r  [6]: 

In  general the  intersect ion F gl ( , _ / ' )  -~ W is a linear subspace and  x E F 
implies x ~- y E / 7  for eve ry  y E W. This shows t h a t  _/1 is the  inverse image 
in R n of the  image V of  2" in Rn/W under  the  quot ien t  map.  I t  is clear t h a t  
V is a p roper  cone. We shall use the  nota t ions  n ' = d i m W ,  n" ---- n - -  n '  and  
coordinates x ~ (x', x") such t h a t  W is def ined b y  x" = O. Also for n '  > 0 
and  n" > 1 sufficient conditions for the  existence of  a fundamenta l  solut ion of  
P(D) with  suppor t  in F,  analogous to those of P e t ro w sk y  for n " ~ -  1, have  
been  given by  Gindikin [3]. We shall ex t end  these in the  direct ion suggested b y  
the  technique  used by  HSrmande r  [6]. However ,  when n " >  1 there  are poly- 
nomials such t h a t  P(~' ,  D") is not  hyperbol ic  for any  ~'. This  in t roduces  a new 
diff icul ty  and in consequence of  this the  resul t  is far  f rom complete.  

I n  Section 2 we invest igate  the  general  necessary conditions. The methods  
used are ve r y  close to those of H 6 r m a n d e r  [6]. In  the hyperbol ic  case the  principal  
pa r t  plays a v e r y  impor t an t  role. (See L. Svensson [9].) Here  the  principal  pa r t  
does not  give so much  informat ion  abou t  = the  polynomial ,  and  we have  not  been 
able to  f ind  a n y  subst i tute .  However ,  in Sect ion 3 we s t u d y  some s tabi l i ty  proper-  
ties of  the necessary conditions which allow us to car ry  them over  to  various poly- 
nomials re la ted to  the behavior  of P s t  inf ini ty.  
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In  Section 4 we reduce the existence theorems to a priori estimates. To be able 
to prove these estimates,  we are forced to assume t h a t  P(~',  D") in some way  can 
be wr i t t en  as a product  of hyperbolic polynomials.  I n  Section 5 we give general 
mfficient conditions of t h a t  type  and  in Section 6 we investigate polynomials  t h a t  
are par t ia l ly  homogeneous. 

When  deg P = 2, we solve our problem completely. (Section 7.) We have 
also tr ied to f ind  new methods  to prov e the existence of fundamenta l  solutions. 
I n  Section 8 we present  a constructive me thod  in the case Of two variables. 

The subject of this p~per was suggested to me by I~rofessor Lars  t t6 rmander ,  
whose constant  criticism and encouragement  have been invaluable.  I am also very  
grateful  to him for m a n y  valuable suggestions. 

2. General  neces sary  cond i t ions  

Le t  P(D) be a part ial  differential operator  in R" with constant  coefficients 
and  let V be a proper, closed and  convex cone in R"". Set / ~ =  R~'• V, x : 
(x' ,x") 6 R "  • R"" and  Ix[ : maxl_<j_<,[xi]. F o r  every real number  A we 
define the set V* as follows 

V* = {v" e R~ <v", z"> ~ A, Ix"[ = 1, x" e V}. 

THEORE~r 2.1. Assume that P(D) has a fundamental solution with support in 1". 
Then the following condition is satisfied. 

(2.1) There is a constant C such that the following is true: Let ~'----> ~"(~') be 
any analytic function such that P($' ,  ~"(~')) = 0, I m  ~"(~') 6 -- V* and 
[(~', ~"(~'))] < M for all ~' 6 Y2(~ 0, _R) : {~' 6 C ' ;  I~' --  $~1 < R} where 
}~ s R" and R >  O. Then m i n ( R , A ) ~ C l o g ( 2 + M ) .  

We need some lemmas for the proof. 

LEMMA 2.2. I f  P(D) has a fundamental solution with support in F, then for 
every compact neighbourhood K of zero there are constants C and # such that 

(2.2) ]u(0){ ~ C ~ sup [D~P(D)u[, u E Cg(K). 
[at -<~ -1' 

Proof. I f  P(D)E = 8, supp E C / ~  then  u(0) = E(P(D)u). Since the support  

of E is a subset of - - / ' ,  and  /7 is regular in the sense of Whi tney ,  we conclude 
t h a t  (2.2) holds for a rb i t ra ry  K.  (See Schwartz [8, p. 98].) 

LEMMA 2.3. Let P(D) satisfy condition (2,2) and let g 6 C~(K) be equal to 1 
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in  a neighbourhood of zero. Set K '  = (--I")  f'l supp (dz). Then there exist constants 
C and #, such that for all u e C~(R ~) with P(D)u  = 0 

(2.3) lu(0)t < C ~ sup ID~ul . 
lal ~ # K' 

Proof. We apply (2.2) to the function v = Zu, noting that  P(D)v = 

~ ~:o (P~(D)u)D~z/a!. 

LE:~MA 2.4. Let ZN(t) ~- 1~ when ltl < 1/2N and zN(t) = 0 otherwise, t E R. 
I f  q N is the convolution of N factors ZN we have 

(i) supp ~N C (__ -2,1 1),. >_0, f ~Ndt = 1, 
(ii) dk~lv(t)/dt k is a measure with total mass < (2N) a when 0 < k < 57. 

Proof. See the proof Of Lemma 2.2 in HSrmander [6]. 

In the following lemma we use the notation 

~)N(~ , )  : j~ -n"  N ( ~ I l R )  . . " ~oN(~n, I R ) .  

L~MMA 2.5. Let ~o E R ", and let F 
p 

disc s = Y2(~0, R ). Set 

Then 

(2.4) 

be a function that is analytic in the poly- 

ix'lkiu~(x')I < (4N/R)  k sup IF(C)l, 0 < k < N. 

Proof. See the proof of Lemma 2.3 in HSrmander [6]. 

Proof of Theorem 2.1. Consider 

I t  is clear that  P(D)u  N = 0 and that  uP(0) = 1. Let K '  be the set in Lemma 2.3. 
We have to estimate u p and its derivatives in K'.  By  hypothesis <x", Im $"(~')> 

t 0 for x E K '  and $' E tg(~ 0,/~), and furthermore there is a constant 6 > 0, 
such that  Ix' l >  6 or <x",Im~"(~')> ~ A 6  for all ~ ' e z g ( ~ , / t ) .  Set K 1 =  
{ x e K ' ; I x ' l >  6} and g 2 = { x e K ' ; ( x ' , I m ~ " ( $ ' ) > ~ 6 A  for all ~ ' e g ( ~ '  0,R)}. 
Using Lemma 2.5 with k = iV we obtain 

[uN(x) I ~ (4-1~/6R) N, X E K r 
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Differentiation of u ~ gives factors, which are coordinates of ~' or $"(~'). 
these are bounded by M we obtain 

Similarly we obtain 

Since 

sup ID=u~l ~ C(1 + M)~(4N/aR) ~. 
lal -< ~* Kt 

sup [Dau~l ~ C(1 @M)*~e -aA. 
lal-<~ K, 

I f  we use this in Lemma 2.3 and observe that  u~r = 1 it follows that  

(2.5) 1 __< C(1 + M)."((4N/bR) ~v + e-aA). 

We choose the integer 32 so that  (~/~)/(8e) < N < (dR)/(4e) which is possible 
if R > (Se)/d. Then we obtain that  

1 < C(1 + M)'e  -q~i~(R'~), where ~1 = min (1, d/(8e)), 

and this completes the proof. 

The conditions in Theorem 2.1 are hard to apply since they involve rather  
general polydiscs in P-l(0). However, when the function $' -~ $"(~') is algebraic 
of bounded degree and 1" is semialgebraic, it is possible to sharpen these conditions. 
(A semiMgebraic set is a set that  can be defined by finitely many real polynomial 
equations and inequalities.) 

TI~EOR:EM 2.6. Let qo be an integer and assume that P(D) has a fundamental 
solution with support in the semialgebraic, closed and convex cone I ~. Then there 
are constants A o and R o such that i f  the function C"" ~ ~' --~ ~"(()  E C n" is analytic 

f 

and algebraic of order ~q0  i n  Q(~;, /?0) (t0 e R ' )  and i f  P(~', ~"(~')) = 0 in 
! r 

~(~o, Ro), then there is at least one point ~, C 0($o, -Ro) such that Im $"(~') ~ -- V~o. 

We need some preliminaries before the proof. The function 
Theorem 2.6 shall satisfy the following conditions: 

(2.6) 

~' --> g"(~') in 

~"(~') is analytic in D(~;,R). There are polynomials pj =p i ($ ' ,  T), 
j = n ' q -  1 , : . . , n  with ,degpj <q0,  such that  p j (~ ' ,$ i ($ ' ) )= 0 
in D(~;, R) and aj(()Aj(r 4 :0  in D(~0,/~ ). Here aj and Aj denote 
respectively the coefficient of the term of highest degree and the dis- 
criminant of pj as a polynomial in T. 

Let U, be the set of all ($~,R,A) C R "+2 with If'0[ < t , R < t ,  such that  
there exists a function $"(~'), satisfying (2.6) with [~"($')] < t, Im ~"(~') E -- V] 

t 

and P($', ~"($ ' ) ) : -0  for all $' in ~(~0, R), 

LEM~A 2.7. The function 
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! 

f ( t ) : s u p { s ; ~ ( ~ o , R , A ) ~ U , , O < s < A , O < s < R }  

is algebraic for large t. 

Proof. I f  the condit ion (~, R, A) E U, can be buil t  up from equations and  
inequalities involving polynomials in real variables, then  the  lemma follows from 
the Tarski -- Seidenberg theorem. However,  the condition (~, R, A) E U, can 
be expressed in the following way: 

I~'ol < t, R < t. I n  addit ion there are polynomials pj with degp /_<  q0 
and  la j (~ ' )Aj(~ ' ) l  2 4= 0 when I~' -- $'01 < R, such tha t  for some ~j0 
wi th  ]P~(~0, ~j0)I ~ = 0, j = n '  ~- 1 . . . . .  n, we have I m  �9 = 
I m ( v , , + l , . . . , ~ ) E - -  V*, IP(~',~)I 2 ~ 0  and I~1 G t  for all ~' wi th  
I$' --  ~'01 --< R, if ~i is the value for 0 = ~' of the unique continuous 
solution ~ of pi(O, ( r ) =  0 defined on the line segment between ~ 

! 

and ~', such t h a t  a ~ Tjo for 0 = ~0, 

By  L e m m a  A.9 in HSrmander  [6] this condition can be expressed in the required 
algebraic form. 

Proof  of Theorem 2.6. Theorem 2.1 shows t h a t  f( t)  ~ C log (2 + t). Since f 
is increasing and algebraic for large t, lim~_~o~f(t) exists. L3t A o > lim~_~ f(t)  
and set R o = Ao/~, where y is the constant  we get in L e m m a  A2 in [6] for v = n' 
and M ~ deg (-[-[:,+l(ajAi)), whenever Pi are irreducible polynomials of degree 

! 

q0. This proves the theorem, for a polydisc 9(~0, R) wi th  this radius con- 
tains one with  radius A o and real centre where a i and A i do not  vanish. 

COROLLARY 2.8. I f  P(D)  has a fundamental  solution with support in the closed, 
convex and semialgebraic cone I ~, then P satisfies the following condition: 

(2.7) There are constants A o and R o such that i f  ~'o E R ~', ~", ~" E C n~, ~" # 0 
and f2(~' 0, R0) ~ ~' -~  ~(~') E C is an analytic function satisfying the 
equation P(~',  ~" ~ ~(~')~") ~ 0 when ~' C ~(~'o, Re), then there is 
at least one point  ~' E ~2(~ o, Re) such that Im  (~" ~- ~(~')~") ~ --  V*. 

- -  n X Remark2.9 .  A s s u m e t h a t  P ( D ) E  = 5, supp E ~ / "  = {x C R ~ xn,+l > ~,+21 jI}. 
I f  ~(~,,+2 . . . . .  ~,) E %' (R "+1) is the Fourier  t ransform of E with  respect to 
x ~ , + 2 , . . . ,  x~, we obtain t ha t  P ( D 1 , . . .  , Dn,+v ~,,+2, �9 �9 �9 , $n)/~(~,,+2 . . . . .  ~n)-- 

~ ( x l , . . . , x ~ , + l )  and /~ is an analyt ic  function of ~ , + 2 , . . . ,  ~ with values 
in ~'(R~'+~). Now it follows from TrOves [10] (see also Appendix) t h a t  the operator 
P ( D 1 , - . . ,  D~,+v ~ , , + 2 , - - . ,  $,) has constant  strength.  I t  is not  clear if  this fol- 
lows from the conditions in Theorem 2.1. 

Remark 2.10. In  the proof of Theorem 2.1 (and Theorem 2.6) we have only 
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used the  existence of a local f u n d a m e n t a l  solution, i.e., a d is t r ibut ion  E such 
t h a t  P(D)E  = ~ in a ne ighbourhood  of zero and  supp  E ~ 1". 

We f inish this  sect ion b y  p rov ing  a t heo rem which shows t h a t  there  is no re- 
s t r ic t ion in assuming t h a t  F has  inter ior  points .  Thus,  we shall  assume this l a te r  on. 

THEOI~E~ 2.11. The operator P(D) has a fundamental solution with support in 
the hyperplane <x, N> ----- 0 i f  and only i f  P(~ ~ tN) ~ P(~) for all t E R, ~ E C ~. 

Proof. We can assume t h a t  N--~  (0 . . . . .  0, 1) and  P(D) = ~,~ a1(D')D..i 
Le t  E be the  f u n d a m e n t a l  solution. Loca l ly  we can wri te  E ~-- ~,o E2(x') | D~, ~(x,). 
F r o m  P(D)E  = 6 we ob ta in  t h a t  

ai(D,)Ek={(~o(X') for i ~ - O  

+~=~ for i > O. 

Hence,  ao(D')E o = 8(x') and,  i f  m > 1, am(D')E ~ = O, a,,(D')E~_ 1 ~- a,~_I(D')E, ~- 
j - i - 1  , ~- 0 . . . . .  B y  induct ion  it  follows t h a t  aa  (D)E~_i = 0. Thus  0 = 

(a,,(D'))~+lao(D')E o = (am(D'))~+l~(x'), which implies t h a t  a~ = 0 for m > 1. 

3. Stability of the necessary conditions 

We shall here p rove  a t h e o r e m  which gives some in fo rmat ion  abou t  P a t  
inf ini ty.  

THEOREm 3.1. Let P(D) satisfy (2.1) with respect to 1" ~ R ~" • V. Assume 
that ~j E R ~, s 1 , t i e  R, a i E C,, where sj and tj -+ ~ ,  j - +  ~ and that there is 
a constant N such that 1~1] ~ t~, tj ~ s~, sj < t~ for all j .  Furthermore, assume 
that 

Qi( ) = + s / ' ,  + t/") j + 

I f  ~' E R ~" and Qo(~', ~") # 0 for some ~" E R ~", then Qo@, ~") ~ 0 for all ~" E C ~" 
with I m  ~" E - -  in t  V*. 

Proof. L e t  ~' E R n' be such t h a t  deg~, Q0(~0,' ~") > 1 and  assume t h a t  ~" E {3n', 
I m $ " E - - i n t  V* and  Q0(~, $") - -  0. 

L e t  v E C  and  t ake  N " E  R ~" such t h a t  d e g ~ Q 0 ( ~ , ~ " ~  ~:N") > 1 and  let  
bi(~' ) be the  coefficient  of  the  t e r m  of  highest  degree wi th  respect  to  �9 of  the  
po lynomia l  Qy(~', ~" -~ zN"). Now,  consider Qj(~', ~" ~- zN") as a po lynomia l  of  
(~', ~) and  wri te  it  as a p roduc t  of  i rreducible factors .  Set d i : the  p roduc t  of  
the  d iscr iminants  of  these  factors ,  considered as po lynomia l s  of  T. We  have  t h a t  
A 1 : Ay(~' ) : bi(~')di(~' ) ~ 0 is a po lynomia l  of  $' and  if  ~ : ~(~') is a contin-  
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uous solution of the equat ion Qj(~', ~" + ~N") = 0, then  z(~') is analyt ic  when 
Aj(~') 4=- o. 

Let  B c r  be a ball wi th  centre ~ e I l"' and  radius r > 0. Then by  L e m m a  
A2 in [6] there is a b a l l  B o c B  with  centre ~ ' e  R "  and  radius y r >  0, such 
t h a t  Ao(~' ) 4= 0 in B o. Fur thermore ,  for every j there is a ball Bj C B 0 with  
centre ~ E R ~' and  radius y2r > 0 such t h a t  Aj(~')4= 0 in 17i. This implies 

t h a t  there is a ball /~ c B 0 with real  centre and  radius y2r/2 = ylr  > 0 and  

a subsequence Aik of A i such t h a t  Aik(~' ) 4= 0 in /3 for all k. In  order not  to 

complicate the  notat ions we assume t h a t  this is t rue for the whole sequence, i.e., 

Aj(~') ~ 0  in /~ for all j > 0 .  
Now, consider the solutions of the equat ion Q0(~:, ~" -t- "oN") = 0, $' E/~. 

These are analyt ic  in ~t and  if  the radius r > 0 above is small enough, there is 
a constant  e > 0 such t h a t  some of the solutions, say %, satisfies the condit ion 

I m  (~" + Zo($')N ~) e --  V* for all ~' e B. I f  ~0($') has the mult ipl ic i ty  /, when 

$' E/~ and  if U c 13 is a small neighbourhood of zero then  Rouch6's  theorem 

shows t h a t  the equat ion Qj(~', ~ " +  T N " ) =  0, ~ ' E / ~  has exact ly  /z solutions 
in z0(~') + U for large j .  Le t  Tj be one of these. Then Tj --> z0 uniformly on 

/3 when j --> oo. 

if j 

and 

This implies t ha t  

I m  (~" + zj(~')N") E --  V~2 for all 

is large. Thus, for large j 

P(~ + sj~', ~: + tj(( + ~ / ( ) N " ) )  = o, 

~'eB 

for all ~ ' e / ~  

I m  (~: + tj(U + ,j(U)N")) e --  V*~/2 for all ~' 6 / ] .  
ff 

I t  follows t h a t  (2.1) is not  valid since then  we would have 

rain (tje/2, sj~lr) < C log (2 + [$j[ + Cl(sj + tj)) = 

= 0(min (log tj, log sj)), j ---> 0% 

which implies t h a t  

rain (s, r) = O. 

This completes the proof. 

COROLLARY 3.2. Let P(D) have a fundamental solution with support in 1" = 
= l t"  X V and let p be the principal part of P.  Then for every ~' e t l  n" we have 
that p(~', D") is either hyperbolic with respect to V or zero. 
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4. Reduction of existence theorems to a priori estimates 

In  this section we shall assume t ha t  P satisfies the  necessary conditions of 
N Theorem 2.1. Le t  k E ~)/(R n) so t h a t  for  some constants  C and  

k(~ § V) --< k(O(1 + C l~I) ~. 

(See p. 34 in [5].) I f  1 < p  ~ oo we shall use the  no rm 

( f IluH~,~ = (2~y" l k ( ~ ) a ( ~ ) l P d ~  , u e S ( R ~  

As beibre,  let  /~ ~ R n" • V be a convex cone wi th  inter ior  points.  (Cf. Theorem 
2.11.) Then  we are in teres ted  in the  quot ien t  norms def ined b y  

l]ullpr.~k=inf{llvllp, k; v = u  on / '_  = - - / ' ,  v e~ (R" )} ,  u e ~ ( R " ) .  

Tm~o]cEM 4.1. Let P be a polynomial  and a an element of c)s such that 
for every compact set K there is a constant C for which 

U F ]l ]]1.1 <_ C ][P(n)u]l[-1/,, for  all u C C : ( K ) .  

Let 1 < pj . . . . .  < ~ and  kj e Oi(R"), j = 1, 2, Then for every f E B~,kj(R"~176 ~), 

j = 1, 2 . . . .  , with s u p p f c  F there is a solution u to P (D)u  ~ f such that 
E B l~ / ~ ' ~  . . . .  s u p p u C / ~  and  u ~j,~ki~.,/, j--~ 1,2,  

The  proof  is r a the r  long so we f irs t  p rove  the  following local version. 

T~Eo~E~ 4.2. Let a e =X(R'), ~ c c R" and let P be a polynomial  for which 
there is a constant C such that 

U E ]] Ii~,~ ~ C I]P(D)u]]~-~/, for M1 u e C : ( - - / 2 ) .  

Then there is a u C B| with s u p p u c I  ~ such that P (D)u  = ~ in ~ .  

Proof. The equa t ion  P(D)u  = (~ in Q means  t h a t  ~(P(D)v) -~ v(O) for  all 
v e C ~ ( - - 9 ) .  We have  t ha t  

Iv(0)] < HvHr-~ < C I]P(D)vH~-~/,, v e C:(--Y2).  

Then  the  l inear form 

P ( D ) v - +  v(O) on P(D)C~( - - t2 )  

can be ex tended  by  the  H a h n - B a n a c h  theorem to a l inear form g on C~(R~) 
such t h a t  

I?~(W)] ~ CllWl]FI,-1/a 

Thus u is a d is t r ibut ion wi th  suppor t  in /~, such t h a t  P(D)u  ~- 5 on .Q nap 
u C Bo~,.. 



O ~  ~ U ~ D A M E ~ T A L  S O L U T I O N S  S U P P O R T E D  B Y  A C O N V E ~  C O N E  

Using local fundamenta l  solutions of the  type  in t roduced  in Theorem 4.2 we 
can prove  the  following approx imat ion  theorem.  

T~EOREM 4.3. Let [22 C [22 be bounded open sets in R ~ and let P satisfy the 
conditions of Theorem 4.2 for every [2 c c R ~. Set _ F ~  int  T' and denote 
by N 1 the set of solutions u C C+(12i) of the equation P (D )u  = O, such that 
supp u c D 1 [3 F. Furthermore, let N i have the topology induced by C~ I f  

# E ~g'(R"), F ~ 13 supp/~ ~ ~ ,  1. ~ [3 supp P ( - - D ) #  c ~  [22 ~ 1"~ Cl supp # c ~  [22, 

then the restriction to I-21 of the elements in N 2 form a dense subset N': of N~. 

Proof. I f  we prove  t h a t  eve ry  v C c~)'(~(~1) which is or thogonal  to N~ is also 
or thogonal  to  N 2, the  s t a t emen t  will follow from the  H a h n - B a n a c h  theorem.  

Le t  [2a C D~ be open bounded  sets such t h a t  [22 C C [2a and  G [24 -t- [2a c 
0 /~a. Fu r the rmore ,  let  E be a local fundamenta l  solution in [2a, i.e. P ( D ) E  ~-- 
in [2a ,  s u p p E C F .  Set u = ~ 0 * E  where ~0 E C~(1. [3 (0122) [3123). Then  
P(D) u  ~--0 in s and s u p p u c  F. Thus  

0 = v(~v �9 E)  = qp �9 E * ~(0) ~ (E �9 v)(~v), q~ E CF(F  N (C[22) Ct [23)" 

Le t  Z C C~~ be i in a ne ighbourhood  of ~2 and  set # ~ Z(]~.  v). Then  

F ~ gl supp # C ~ ,  F ~ Cl supp P(- -D)#  C C ~2" 

Thus by  hypothes is  

/~~ I3 supp # C C [22. 

Hence  we can choose ~o E C~([21) such t h a t  ~0 ~ 1 in a ne ighbourhood of 

F ~  I f  we set #2 = ~v# ~ yJ(/~*v) and  v 1~-  P ( - - D ) #  2 we obtain  
t h a t  #1 E ~8'([21), v - -  v 2 E ~'([21) and  _P~ [3 supp (v --  v2) = O, which implies 
( v - - v 2 ) ( u )  = 0 and v2(u ) = # 2 ( P ( D ) u )  ~-- 0 for all u E N  1. Thus  v(u)--~ 0. 

LEMMA 4.4. There is a set [2 C R ~ such that i f  D r ~ v[2 then the pair  of sets 
D r and [2+: satisfies the hypotheses in Theorem 4.3 for all v > 1. 

Proof. Le t  p be the  principal  pa r t  of P and  let  c o >  0. Set N 0 =  (0, No), 
,, . .  ,, . r  N 2 ~  (Ni, coN1), . , N , =  (N',,~oN~), where N o , . . , N ~ E i n t V *  and  p , 

0 for  j--~ 1, 2 . . . .  , n. Fu r the rmore ,  we choose the  vectors  Nj so t h a t  
eve ry  ~ E R n can be wr i t t en  as a l inear combinat ion  of  --No,  N 1 , . . . ,  N ,  wi th  
non-negat ive  coefficients.  (Observe t h a t  this condit ion is independent  of  co > 0.) 
Set 

Q - - ~ { x E R " ;  <x, N j > < ] ,  j : l , 2 , . . . ,  n, <x, N 0 > > - - I  } 

and D~ = v[2. We shall p rove  t h a t  these sets will do if  co > 0 is large enough. 
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I t  is clear t h a t  s is a bounded  ne ighbourhood  of  zero. W e  now wan t  to show 
t h a t  

# e ~3'(R~), f ~ N supp  # c D~+2, F~  13 supp  P(--D)/~ c c ~9~ ==> 

fo 13 supp  # C C ~ .  

Set Uj(s) : {x 6 R ~ ; x" 6 in t  V, <x, Ni> > s}, j = 1, 2, . . . , n. Then  the  
s t a t e m e n t  above  is a consequence of the  following: 

# 6 % " ( R ~ ) ,  # : 0  in Uj(s), P ( - - D ) / ~ - O  in Uj(t)=>#---- 0 in Ui(t ) 

(j  = 1 , 2 , . . . ,  n). 

F r o m  Theo rem 5.3.3 in H h r m a n d e r  [5] we now get t h a t  i t  is suff ic ient  to  p rove  
t h a t  eve ry  charac ter i s t ic  p lane  t h a t  in tersects  Ui(t ) also mee t s  Uj(s). A p lane  
t h a t  does not  m e e t  Ui(s ) has  a no rm a l  t h a t  lies in the  dual  cone U~ of  Ui(O ). 
However ,  U* is the  convex  hull of  {hNj ; h > 0} tJ F* ,  since this  is closed. 
Thus  we have  to  p rove  t h a t  i f  N =  (O,N")CF* t hen  p ( h N j - k N )  4:0 for all 
h > 0. (Note t h a t  a p lane  wi th  no rm a l  in F*  is def ined  b y  an  equa t ion  in the  x" 
var iables ,  so it mee t s  Uj(s) if  and  only  if  i t  mee t s  Ui(t). ) H o w e v e r  

(4.1) p ( h N j ~ - N )  =hmp(N~,coNj '+h-~N ") =#0 f o r  large o~ and  h >  0. 

To see this  we f i rs t  observe  t h a t  h-iN" 6 V*, Nj' 6 V* and  p(N~, D") is hyper -  
bolic wi th  respec t  to  V b y  R e m a r k  2.10 and  Theo rem 3.1. I t  follows f rom Theo-  
r em 1.3 in [9] t h a t  also p(N~, --iD") is hyperbol ic  wi th  respect  to  V, which b y  
Theo rem 5.5.4 in [5] implies (4.1). 

Proof of Theorem 4.1. L e t  ~O be the  sets def ined  in L e m m a  4.4 and  let  
~% 6 C~~ be 1 in a ne ighbourhood  of  ~9~_ r Then  it  will be suff icient  to  p rove  
t h a t  there  exis t  % 6 [-]~o Blo~ such t h a t  pj, akj 

II~,~(u~+, - u~)ll~j,o~ _< 2 -~, ~ _< ~, j _< ~, 

P(D)u~+ x = f  in f2+ 2 and  suppu~+ 1 c F. 

I n  fact ,  for  such u~ we ob ta in  t h a t  u - - >  u in B~aki as v - +  oo, where  P(D)u ~ f 
and  supp  u C / ' .  

Set  u 1 =- E �9 (~3f), where  E is a local f u n d a m e n t a l  solut ion in a large neigh- 
bourhood  of zero. Then  ui 6 rl~ Bpi, ak i, P(D)ul = f in /2 2 and  supp  u 1 C /7. 

W h e n  u~ . . . .  , u~ are chosen, we w a n t  to  cons t ruc t  u~+x. Then  there  is a dis- 

t r i bu t ion  Vo 6 ['1~ Bpi,,k j such t h a t  P(D)v o ~ q~+af ~ f in ~ + 2 ,  s u p p v  0 c F. 

I f  v = v 0 - -  %, t h e n  P(D)v =- P(D)v o -- P(D)u~ = 0 in D~+I- Choose ~ 6 C~(F) 
so t h a t  supp  to c --~62 1 and  H~,(to * v - -  v)[[vj, akj ~< 2-~-~ for # _< v, j < v. I t  

follows f rom T h e o r e m  4.3 t h a t  there  is a C ~ funct ion  w such t h a t  P(D)w ---- 0 
in f2+: ,  s u p p w c F  and  I I ~ , ( w - t o * v ) ] l e i , , k  i_<2 -~-1 for  # < ~ ,  j < v .  Set 
u~+ l : v  o - w .  Then  
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II~,(U.+l - u.)ll,j..kj -< 2-". /~ _< ~, j < ~, 

and  

supp %+~ C F. 

This proves the  theorem. 

P(D)%+~ = f  in ~9+ 2 

11 

5. Sufficient conditions 

I f  the operator P(~',  D") is hyperbolic with respect to V for sufficiently many  
~' E r  then  we can prove the existence of a fundamenta l  solution with  support  
in F = R =" • V. The following definit ion helps us to describe sets which suffice. 

Definition 5.1. Le t  0 <  ~ <  1 and  let B C C  " be a ball wi th  radius R and 
centre ~.  We say  t h a t  a subset S of B is of type N~ if for an arbi t rary,  
logari thmicMly plurisubh~rmonic funct ion g > 0 the following inequal i ty  is t rue 

g((o) <-- (sup g)~-~(sup g)~ 
B S 

(Cf. L e m m a  3.2 in [6].) 

THEOREM 5.2. Let P be a polynomial in n = n' ~- n" variables and let N = 
= (O,N#), where N " E  V * =  V*. Furthermore, let a($') ~ 0 be the coefficient 
of the term of highest degree of P($ + "vN) as a polynomial in T. Then the operator 

loc  ~ a n "  P(D) has a fundamental solution E E B~o,a with s u p p E  ~ / ' =  x V i f  P 
satisfies the following condition: 

(5.1) There are constants R > O, A and 8, 0 < (5 < 1, such that in every 
t 

ball B with radius R and real centre ~0, there is a subset S~o, of type 
N~ for which it is true that ~' E S~o,, I m p " E - -  V~ ~ P ( $ )  ~:0 .  

I t  is sufficient to prove the theorem ibr A = --1. (Cf. page 349 in [6].) For  
1 < p  < ~ ,  kE~)~(R ~') we set 

Hul{pv-~ = inf{llvllp, k; v = u on V_ = - V ,  v eS(R~")}, u e3 (R~ ' ) ,  

where 
\l/p 

LEMMA 5.3. Let Q be a polynomial in n" variables with Q(~") # 0 when 
I m  ~" E -- V*I and let ]c E ~?~(R~'). Then there is a constant C depending only on 
A, n" and deg Q such that 

V _  Ilullp,~k < CllQ(D")ull~-k for all u E C~(Rn~). 
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Pro@ Set 

= o f ) 

Then s u p p E  ~ V, Q(D")E = ~ and 

,E(~,, _< C f *~(e")]/0(~") de", 

where C only depends on A, n" and deg Q, tha t  is IIEIl~.g~ < C. I f  g = Q(D")u 
on V_, then E . g = u  on V_ so tha t  

Ilu]l~-~ _< liE * gig, ~ --< C Ilgllv, 

which shows tha t  

v_ < C  " IIullp, ~ _ IIQ(D )ullv.~ for all u ~ C~(R~"). 

LE~MA 5.4: I f  h(~',x") is analytic in ~' and k C%~(R ~') then ]lh(~', ")llev,-~ 
is logarithmically plurisubharmonic. 

Proof. Ilh($', ")llp~ is the norm of an analytic function with values in a Banaeh 
space, hence it is logarithmically plurisubharmonic. 

LEMMA 5.5. If  the polynomial P satisfies condition (5.1) with A = --1 and 
K c C R ~, then there is a constant C such that 

sup II~(U, .)lIpv-~ < C sup [[P(~', D")~(U, ")llp~-~ 
R n  t R n '  

for all u e C: (K) ,  k e r Here ~(~', .) is the Fourier transform of u with 
respect to x'. 

Proof. For ~ 'E St,, we have 

ia(U)I II~(~', ")I[pv,-~ ~ C lIP(U, D")~(U, ")[[p,v-k < C G 

where G supRn, [IP(~ ', D")~(~', v_ = ")[Ip, k. The first estimate follows from Lemma 
5.3 and the second from the fact tha t  the function 

~'-~ HP(r D")~(r .)[/,~-~ 

is logarithmically plurisubharmonic and of exponential type. The properties of 
the set S~0. now show tha t  

,, _ _  " ' l r [V-  "11--~/'~,~ < la(~;)[  Ilu(~0, ")]LF,r~ < C ( s u p  ra(~')l  I1~(~', ,,~p,k, - _ 
]~'-$o'] _<R 

_ .~ ' lV-~ l -~Ga 0 < 6 < 1, < C ( s u p  la(~')]  I1'~(~', ~,,~.k~ , 
I I n t  
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which implies t h a t  

la(~')I I1~(~', .)11~-~ _ CO, ~' r R ' .  

However ,  by  L e m m a  A 1 in [6] there  is a 0 E A  such t h a t  

a(~') <_ 6' a(~' + zo) < C' [a(~' + z0)I, z e C, [zl = 1. 

Thus 

Since Ilu(~' + zo, .)11~ is subharmonie  as a funct ion of  z we now obtain  the  re- 
quired est imate.  

LEM~rA 5.6. Let P be a polynomial and b C ~(R"") .  I f  for every compact set K, 
there is a constant C 1 such that 

(5.2) sup/1~(~' ,  v_ )II~,~, ")tip, bk ~ C1 s u p  I lP (~ t ,  D")~(~', �9 v_ 
i~.n" Rrt" 

for all u e C~(K), k C ~)s 

then for every k C 7s n) there is a constant C such that 

(5.3) r_ Ilull~, ~ <_ c llP(D)ul]~- k for all u e C~o(g). 

Proof. See the  proof  of  Theorem 3.10 in HSrmande r  [6]. 

Proof of Theorem 5.2. The theorem follows immedia te ly  f rom L e m m a  5.5, L e m m a  
5.6 and Theorem 4.1. 

6. Partially homogeneous operators 

Let  P be homogeneous in the ~" variables,  t h a t  is 

P(~) ~ a ' " = ~(~ )~ �9 
lal == 

I f  P(D) has a fundamenta l  solution with suppor t  in A = {x ~ Rn;xn,+l  > 
c ~ , + 2  IxjI}, c > 0, t hen  b y  Remark  2.9 we know th a t  the  opera tor  P(D 1 . . . . .  
D~,+> ~,,+2, �9 �9 �9 , ~ )  has constant  s t rength.  This implies t h a t  b(~') = a(~,0 ..... 0)(~') 
is s t ronger t h a n  % for all ~, i.e. there  is a constant  C such t h a t  

~(~ ' )  < C b(~') for  all ~ and all ~ 'C R ~'. (6.U 

Set 

= • = {Q ; Q(~") = limj.+~ (P(~j, ~")/b(~j)) for some sequence ~j E R "' 
such t ha t  d (~ ,  b-l(0)) --~ m a s  j -~  m}, 
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where d(~j, b-a(O)) is the distance in C" f rom ~ to  the zeros of  b. We assume 
here t h a t  b is not  a constant ,  for this would imply t h a t  P is a polynomial  in ~" 
which is a tr ivial  case. The set 2; is a compact  subset of the set of  all polynomials  
of  degree m. Fur the rmore ,  we have 

THEORElV[ 6.1. I f  the polynomial P(~) : ~1~[:0~ ' "~ a~(~ )~ satisfies (2.1) and ao~ 
is weaker than b for every a, then Q(D") is hyperbolic with respect to V for every 
Q in X~,. 

Proof. (Cf. the proof of Theorem 2.2 in HSrmander [7].) If P(~, ~")/b(~]) -+ Q(~"} 
p 

as j-+ oo, then we can assume that every coordinate of ~i has fixed sign. In 

order not to complicate the notations we assume that all these coordinates are non- 

negative. It follows from the Tarski-Seidenberg theorem that if Q(~")= Zq~ "~ 

then 

a ! ! . , (6.2) in f{v  I ;27 ] ~(V )/b(~7 ) - -  q~L ~ <= 1/t, d(v', b-l(0)) ~ t, V~ ~ O , . .  ~], ~ 0} 

is an algebraic funct ion of t for large t. B y  repea ted  use of the same theorem we 
get t h a t  the  in f imum of  non-negat ive  ~2, when the  in f imum in (6.2) is a t ta ined ,  
is an algebraic funct ion  of  t for large t, and so on. For  large t we have  the  Pu i seux  
series expansion 

k~ 

v ' ( t )  = 0 9 
--oo 

and P(~'(t),~")/b(~'(t))-+Q(~") as t - +  ~ .  Le t  s ~ O and consider 

P(#'(t) ~- t~  ', ~")/b(~'(t)) = ~ . (~  a~)(#'(t))t~!zl~'~/fi!)~"~/b(~'(t)). 
a t~ 

Since a s is weaker  t han  b and d(v'(t), b-l(0)) ~ t it follows f rom Theorem 3.3.2 
and  L e m m a  4.1.1 in [5] t ha t  a~)(#'(t))/b(~l'(t)) : O(t-I~l), t - +  ~ ,  if fi 4: 0. Thus ,  
if  0 ~ s ~  1 we have 

P(~l'(t) -~- t~  ', ~")/b(~'(t)) : 

= P(~'(t) + t~  ', t~")/t"b(~'(t)) --+ Q@'), t -+ ~ .  

Now the  theorem follows f rom Theorem 3.1. 

We are going to study two special cases of partially homogeneous operators. 

First we will consider the case n" = 2 and later on operators, such that Q(D") 
is strictly hyperbolic for all Q c Xp. Thus, let n" = 2 and P(~) = ~r~1=~ a~(~')~"% 

First we reformulate the necessary conditions. 

T~EORE~ 6.2. Let P ( r  Z a ( ~  )r where b : a(m,o ) is stronger than 
aa for all ~. Assume that P satisfies the necessary conditions of Theorem 2.6 with 
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respect to R "  • W and let V = {x" ~ R ~ ; x++~ ~ Co ~ be a cone ~ W such 
that every Q ~ Z is hyperbolic with respect to V. Then for every c ~ c o there are 
constants R o and t such that i f  P(~' ,  ~(~'), 1 ) =  0 in a ball B with real centre ~' 
and radius R o, where ~ is analytic, then we have I m  ~(~') = 0 for some ~' ~ B.  
Furthermore, l~(O')l ~ c  i f  d(O',b-~(O))~_t and O ' e B .  

Proof. Assume t h a t  d(~:, b-~(0)) -+ ~ and  P ( ~ ,  ~")/b(~:) --+ Q(~") E Z as 
v - +  zc. I f  P(~: + $', ~,(~'), 1) = 0 for ]~'] ~ R 0, then  we obtain from Rouchd's  
theorem (cf. the proof of Theorem 3.1) t h a t  there is a subsequence of %(~'), which 
converges to 2 as ~ -+  0o, uniformly for I~'] ~ no, where Q(2, l) = 0, so t h a t  
12[ ~ c 0. This proves the last s ta tement .  Write  P as a product  

P(~)  = b(~') I ~  (;,,,+~ - ~(;')~~ 
1 

From Theorem 2.6 we now obtain that there are constants A and Ro such 

that for every ~,,+2 E R there is a point ~' with I~' -- ~'i ~ Ro such that 

Im ~,+2T(~') ~_ A. If we let ~++2--> + oe we see that there is a point ~' with 

I~'-- ~'I ~Ro such that Im~(~') ~ 0. 

THEOREM 6.3. Let P(D)  satisfy the conclusions of Theorem 6.2 and set W 
---- {x" C R 2", x,,+x ~_ c 4 ix,,+21}, where c is the constant in Theorem 6.2. Then the 

nlor with support in A R "  • W. operator P(D)  has a fundamental  solution E E - +, b 

The proof is similar to the proof of Theorem 1.1 in HSrmander  [6]. Write  
P($' ,  $,,+1,1) as a product  of irreducible factors and let A be the product  of their  dis- 
criminants,  when they  are regarded as polynomials of $++v Set R ~ ( b ( ~ ' ) A ( ~ ' ) )  M 

where M is a large integer and set for v C C~(R ~) 

N~(v, ~') : max IR(C')bC)I [ l ~  (D++I --  Ti(C')D~'+2)v(C,^ ' ")l[pS,~ 
1 

where the ma x i mum is t aken  over all labellings of the zeros ~i" (k E ~)s 

LnMMA 6.4. The funct ion N~(v, ~') is logarithmically plurisubharmonic. 

Proof. See the proof  of  L e m m a  3.6 in H6rmander  [6]. 

LEMM~_ 6.5. Let v C C~~ n) with v(x) = 0 for Ix' I ~ H.  Then 

N ( V ,  ~') ~ e I-/lIm ~'1 SUp ~ 7 ( v ,  ~ ' ) ,  ~ --- O, 1 . . . . .  m .  
a n '  

Proof. See the proof of L e m m a  3.7 in HSrmander  [6]. 
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L~MMA 6.6. Let P(D) be as in Theorem 6.2. Then for every compact set K there 
is a constant C such that 

supN, (v ,~ ' )  <CsupN~+l(v ,~ ' ) ,  vEC~(K), v =  O, 1 , . . . ,  m - -  1. 
i~.rd Rn ~ 

Proof. By L e m m a  A1 in H6rmander  [6] we first  choose a finite set A c R"' 
for polynomials of degree < d e g P .  Le t  B = R  0-~ 3. For  every ~ 'C R n" and 
B > 0  we can f ind  a 0 E A  such t h a t  the distance from ~'~-zO to the zeros 
of R is at  least B when [ z I = B .  Let  

0 • = { ~ ' @ z O ; I z l  = B ,  I m z ~ 0 }  

and denote by  zg~, j = 0, l ,  2, the points at  a distance < R o -~ j from O • In  
what  follows we shall work in the sets /2+; the same arguments  can be applied 
in the sets Y2j . 

F rom L e m m a  5.3 above and  L e m m a  3.2 in HSrmander  [6] we obtain the fol- 
lowing estimates 

sup IR(~')b(~')[ II ]z~ (O-%1_  "vJ(~')Dn'+ 2)~)(~', ")Hp, w-k <~ 
D+ 1 

(sup Nv(V , ~t))X--d( SUp [R(g')b(g')l ][ ~ (D,,+I --  ~j(~')Dn,+2)v(~ , ^  ' ")llp,~)~ ~ ~< 

Im rv+ 1 ($') =0 

v + l  

__< (sup N(V, ~,))l-a( SUp ]R(~')b(~')] ]1 ~-~ (D,r -- 5(~')Dn'+2)v(g,~ ' ")[11,,~)~ a 

Im vv+ 1 (~')=0 

< (SUp Nv(V, ~'))l-~(sup N.+x(V , ~'))~ < C (sup N(v ,  ~'))l-~(sup N~+l(V , ~'))~. 

Here 0 < 6 < 1; the first  inequal i ty  follows from L e m m a  3.2 in HSrmander  [6], 
the  second is a consequence of L e m m a  5.3, and  the four th  follows from L e m m a  6.5. 
I f  we now take  the max imum of the left side over all labellings of the  zeros we 
obtain t h a t  

sup N~(v, ~') < C (sup ~V(v, ~'))~-~(sup N~+~(v, ~'))~. 
DO+ R n' Rn t 

The same est imate holds for /2 o and  since the funct ion N~(v, ~') is plurisub- 
harmonic,  we can use the max imum principle for the funct ion N~(v, ~ ' +  zO). 
We obtain t ha t  

sup N~(v, ~') < C (sup/V~(v, ~'))~-~(sup ~+~(v, ~'))~, 
Rr~P Rn '  Rn '  

i.e., 
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sup N,(v, ~') < C sup N +~(v, ~'). 

L]~M~ 6.7. Let P(D) be as in Theorem 6.2. Then for every compact set K there 
is a constant C such that 

sup _R(~')g(~') I1~(~ ', .)H~.W~ ~ C sup ]7(~') IIP(~', D")~(~', .) H~,W~, if v ~. C~(K). 
R n '  B n '  

Proof. Repea ted  use of L e m m a  6.6 gives t ha t  

sup IR(~')b(~')i Ii~(~', ")Jl~,~ = sup No(V, ~') < 
R n  t R n '  

< C sup N,,(v, ~') = C sup IR(~')I liP@, D");;(~', .)][p wZ < 
l l n '  l t n '  

_~ C sup _R (~') HP(~ ', D")~(~', .)[I,,WT~ = C G. 
R n  # 

By L e m m a  6.5 we have 

IR(~')b(C')I II~(~', ")lip,w% _~ CG for j im ~'l --~ const. 

Let  A be the  set we get  f rom L e m m a  A1 in HSrmander  [6] when we apply  it to 
polynomials of degree _~ deg (Rb). For  every  ~' there  is a 0 C A such tha t  

/~(~')g(~') <_ C ~(~' -~ zO)g($' + zO) <_ C' ]R(~' ~- zO)b($' @ zO) l 

for Izl = 1. This gives t ha t  

~(~')b(~') II~(~' @ zO, .)Hv,Wz < C G, lz[ = 1, 

which implies t ha t  

where 

~(~,)g(~,)  ,A , jjv(~, ")11~,r < c G, 

C is independent  of ~'. 

Proof of Theorem 6.3. L e m m a  6.7 and L e m m a  5.6 show tha t  for every  compact  
set K and every  k E ~ ( R  n) there  is a constant  C such tha t  

A_ [lullp,~gk ~ C IlPKn)ull~.~k, u C C~(K), 

so the theorem follows f rom Theorem 4.1. 

We have not  been able to prove any  analogues of Theorems 6.2 and 6.3 for 
a rb i t ra ry  n", so we mus t  pu t  some ext ra  conditions on the  polynomials when 
n" > 3. Therefore, we shall now s tudy  polynomials satisfying the  following con- 
dition: 
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(S) P(~)--~ ~.1~1-~ a~(~') ~'~ has real coefficients, 
b--~ a(~.0 ..... 0) is stronger t h a n  a~ for all er and  Q(D") is strictly 
hyperbolic with respect to V for every Q E 2:. 

Le t  W be a convex cone such tha t  int  W D V ~ {0} and  set A --~ R"' • W. Then 
we can prove 

THEOR]~M 6.8. I f  P satisfies condition (S) then the operator P(D) has a fun- 
damental solution E E B 1~ oo, Y, with support in A. 

For  technical reasons we will consider Qo(E)--P(~ ' ,  ~ " - - i N " )  where N"E 
int  W*. 

TH:EOR]~ 6.9. Let K C R ~ be a compact set and k E ~)<(R"). 
polynomial introduced above, then there is a constant C such that 

IlulI~,~ok ~-- C tiQo(D)uI[~,-k, u E C~(K). 

I f  Qo is the 

Proof of Theorem 6.8. Set k(~) ~- 1/Q0(~ ). Then it follows from Theorem 6.9 
and  Theorem 4.1 t h a t  Qo(D) has a fundamenta l  solution E 0 E Bl~ with support  

hi~ with sup- in A. This implies t h a t  P(D) has a fundamenta l  solution E E ~| 
port  in A. (Cf. page 349 in HSrmander  [6].) 

L~MMA 6.10. Assume that Q(D") is strictly hyperbolic with respect to V for 
every Q in X. Then there is a neighbourhood of Z, in the set of all real polynomials 
of degree m, such that all polynomials in this neighbourhood are strictly hyperbolic 
with respect to the cone W i f  in t  W ~  V ~ { 0 } .  

Proof. We have to prove t h a t  there is a neighbourhood of 27, in the set of all 
real homogeneous polynomials of degree m, such t h a t  every polynomial  Q in 
this neighbourhood satisfies the following conditions: 

Q(N") # 0  for all N " E W * ~ { 0 } .  

The equat ion Q(E" + -oN") = 0, where N" E W*, 
JN"] ~-- 1, ~" E R'", ]~"] = 1 and  N" _1_ ~", has only real simple zeros. 

However,  this is obvious for every polynomial  in 27 satisfies these conditions 
and  27 is compact.  (Cf. Defini t ion 5.5.1 in HSrmander  [5].) 

Le t  P sat isfy condit ion (S) and  set Q~(~) = I(P(E' ,  ~" - iN") + P(~)(~', ~" -- iN")) 
where N" E in t  W* and  a - -~ (a ' ,  0). The f irst  step in the proof  of Theorem 
6.9 is the  following lemma. 
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LEMMA 6.11. There is a constant C such that 

�9 I ~ _  # I1~(~', )11~, ~0,~ ~< c ~ IIQ~<(8, D"),7(~', .)ll,,~~ 
~=(~', o) 

for all ~' ~ R ~', u~C~~ ~) and k~%(R~'). 

To prove this we need a lemma due to L. HSrmander .  

LEMMA 6.12. Let s C C" be a convex set and let Q1 . . . . .  Qm 

of degree < 2 5 ,  such that Qj(~) =4= o, j : 1 , . . . ,  m, when ~ ~ ~ .  
funct ions gl . . . .  , g,,, that are analytic in ~ ,  such that 

and 

1 = Z'Qj(~)gj(~),  ~ C ~, 

m 

lm(~)l < C l ~  tQx(~)l, ~ex~. 
1 

Here C is a constant that depends only on m and 25. 

be polynomials  
Then there are 

Proof. The variat ion of the a rgument  of Q1 is a t  most  ~(N 1) when ~ E 12, 
for i f  $1, $2ea9  then  Qj(t~lJr- ( 1 - t ) ~ 2 ) = a I I ( t - & ) ,  where & ~[O, 1]. Since 
.(2 is s imply connected we can choose an analyt ic  branch of 01IN in ~ .  We obta in  wj 
t h a t  the  var iat ion of the a rgument  of O1./N is < az(N ~ 1)/N < ~. Thus there  -t/# 

are constants  aj C (3,. tajl ~- 1, such t h a t  Iarg (ajQ)/N)] < u(N ~ 1)/2N < ~/2  
when ~ E ~9. This implies t h a t  there is a constant  c > 0 such t h a t  

c QIlN I ; I < l~e (a~Qjn,) < tQSI, ~ e ~. 

Set q :  ~ ,~IlN "~ aj~gj . Then 

(6.3) c Z IQjl 1IN < Re  q ~_ lqi ~ X IQjl 'IN and q=N (E ajQ) N) = Qjhj. 
1 1 

Thus 

1 : ~ Qj(~)gj(~), ~ E D where gj(~) = hj(~)fl(~) -m~. 

The funct ion hj is a sum of terms of the  form II(akQ~lN), where the p roduc ts  
consist of N m -  N factors. Thus,  according to (6.3) 

lhji ~ C'xlq[ Nm-N, 

m 

Igj(~)l ~ C~lq(,~)l -~  ~ Cl(~, IQjl), 
1 

which shows t h a t  

where the constant  C depends only on N and  m. 
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Proof of Lemma 6.11. We are going to apply  L e m m a  6.12 to the  polynomials  Qa" 
Since (a(fl(~')/b@)) -+ 0 if  I~[ 4= 0 and d(~', b-~(O)) -+ oo, we obtain from L e m m a  
6.10 t h a t  there exists a constant  t > 0 such tha t  Qa(~', ~") g= 0 if  Im  ~" E N" --  
- -  int  W* and d@, b-~(O)) >_ t. L e m m a  6.12 shows t h a t  if  d(~', b'~(O)) > t then  
there are analyt ic  functions ga, ~', such t h a t  

1 = SQa(~' ,  ~")go,.~,($"), I m  U' ~ - - W * ,  

and 

lga,~'(~")l <-- C/X ]Qa(~', r ~ C~/Oo(~', ~"), I m  ~" E - -W*.  

(Cf. the  proof of Theorem 5.5.7 in [5].) Set 

f" " " " 

Then we see immedia te ly  t h a t  Ea, ~, e Boo, ~0, wi th  [lEa, ~,l],, ~o bounded by  a con- 
s tan t  t h a t  does not  depend on ~'. By  changing the integrat ion contour we obta in  
t h a t  supp Ea, ~, ~ W. Moreover, 

~ ( ~ ' , x " ) =  ~, Ea,~,*(Qa(~',D")~@,')), u E C : ( R " ) .  
a=(a' ,  o) 

I f  ha. ~, e S and  ha, r = Qa(~', D")a(~', x") on W_ then  h~,(x") = 
X(Ea, ~, .ha,~,)(x" ) = a(~', x") on W_. This implies t ha t  

ll~(~', ~ -  _ 'h �9 )1[~,~0~ _< IIh/ll,  ~;k < 211Ea,~, * ha, ~;111, ~ok <: C X  h a,~'[I,,k" 
T h u s  

a=(a', 0) 

for all ~' E t l  ~' wi th  d@, b-l(0)) > t. When ~' C t l  ~' is arbi t rary,  then  by  Lem- 
ma A2 in HSrmander  [6] there is a point  0' = 0'@) C R ~' wi th  [0'[ =< t/7 and 
d(~' + 0', b-l(0)) > t. This implies t h a t  

IJ~(~', ~ -  ' ")[[~, ~. �9 )1/2, ~o<~,+o,, .)~ -< 6' z ][Qa(~' + 0 ,  D")~(~' ,  ~ -  

Thus 

~ a 2  03 

u E C~~ ~) and  k E ~2((Rn'), for all ~ 'E  R '+, 

Now we want  to f ind a bound for the r ight -hand side of the estfmate in L e m m a  
6.11. Le t  t be the constant  in t roduced in the proof  of t h a t  lemma. Thus we have 
Qa(~', ~") :V 0 for all ~ if d(~', b-1(0)) ~ t and  I m  ~" C _N" --  int  W*. Fur ther -  
more, let 0 ~ z E C ~ ( { x ' C R n ' ;  Ix'I < 1}) and  set Zo'(~ ')= Z (~ ' - -0 ' ) .  I f  r  
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we define )/~,(~') by  setting Zo'($') = Xo,( I~e ~'). When  0' 6. T = {~' 6. R~'; 
d ( ~ ' , b - l ( 0 ) ) > t +  2} and f i =  (fi',0), Ifil = 1 we define 

~(v) = ~(~, ~, o'; v) = ( ~ ) - "  f xo,(~')Q~)(~)~(~)/Q~(~)d~, v 6. C ~ ( R " ) .  
J 

LEMMA 6.13. Let E be defined as above. Then E 6. B 1~ and supp E C A = 
It  ~' X W. Furthermore, i f  q~ 6. C~~ ") then Ilq)EIl.,l is bounded uniformly with 

respect to 0'. 

Proof. By changing the integration contour in the 
immediately that  supp E C A. 

Let K be a compact set and assume that  f l =  (1,0 . . . .  ,0). 
then 

~" variables, we obtain 

I f  v 6. C~(K)  

f ~  '~ /~(v) = (2~)-" '  zo,(~ )v(~)/(~l-  ~j(~~ = 

rj 

+ 
J ~j 

where ~ o =  ( $ e , . . . , ~ , )  and y j ~ ' R + i  if I m v j < 0  and y j ~  R - - i  if 

Im D > 0. Furthermore, ~j denotes the support of 0Zo,/0~ 1 between Y1 and R. 
We get the estimate 

I (v/1 _< f ,o f + 
r1 

f f + C . s u p  I~(~1, ~~ d~ ~ < 6'1 I~(~)1 d~, 

where C 1 is independent of 0', for f l~(~ + i~)l d~ _< e ~'~/ l~(~) l  d~. 

We also need the equivalence between two norms that  we are going to use. 
The following lemma, which is inspired by  Beurling [1], proves this. 

LEMMA 6.14. Let K '  C R "  be  a compact set and let ~v C C~(R"') be 1 on K' .  
I f  Xo, is the funct ion defined above then there is a constant C such that 

supl i~(~ ' ,  ~ ~ ' �9 )lh,z _< c sup  sup  [l(v5 �9 (xo,u))(~, ")lh,~ 
R n  z l t n  r o' E T 

for all u e C~(K'  X l t")  and lce ~)~(R""). 
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Proof. Let  g be an element  in the uni t  ball of  the  dual space of C~~ " )  equipped 
wi th  the norm II " [ll.w~ and set v(x') = (u(x',  "), g>. I f  we prove tha t  

(6.4) sup I~(~')t _<< C sup sup l(v~ �9 (Zr v �9 C~(K'),  
R n~ R n~ O' ~ T 

the  s t a t ement  will follow as g varies. 
Assume tha t  (6.4) is false. Then there is a sequence v i �9 C~(K') such t ha t  

s u p  Iv~(~')l = 1 
R n  ~ 

and 

[(~ �9 (;Co.~j))(~')[ __< 1/j for all ~' �9 R": and 0' �9 T. 

Take  ~ �9 R "  such tha t  1~i(~)[ = 1 and set ~vi(~' ) = ~i(~' 3- ~) .  Then we have  
t h a t  

I~/(~')[ < l~vi(O)[ = 1 for all ~ ' � 9  R ~' 

and 

] f ~(~' - -  ~l')Z(~' 3- ~i --  O');vi(~')d~' <-- 1/j for all ~ ' � 9  R '+ and 0 ' � 9  T. 

We  can now choose a subsequenee ~oik of wi such tha t  ~vik converge uni formly  

to  h on every  compact  set. Then h is analytic,  ]h(~')] < [h(0)[ --~ 1 for all ~' �9 R ' .  
Fur thermore ,  b y  L e m m a  A2 in HSrmander  [6] we can choose a sequence 0~ �9 T 
such tha t  ~ ; -  O; is bounded.  Finally,  choose a subsequenee of  ~ ; k -  O;k which 
converges to  - -0 '  0. Then 

f w(~' ~')Z(~' Oo)hOl')d~l ' ~ 0 for all ~' �9 R"' 

This  implies tha t  ~ �9 ~Y-~(Zoo,h ) ~ O, so Xoo,h - -  O, for ~- l ( ;G,h ) is analytic.  
However ,  h is also analyt ic  and ;~o0, ~ 0, so h-----0, which contradicts  t ha t  
lh(0)l = 1. This proves the  lemma. 

Note  tha t  we have only used tha t  T is defined b y  some polynomial  b 4= O, 
wi th  given degree. Thus, the  constant  C in the lemma depends only on the degree 
of  the  polynomial  defining T and not  on the polynomial  itself. 

I f  k � 9  then there are constants  U and N such tha t  k(~ 3 -~ )  
(1 3-Cl~[)N/c(~) for all ~ , ~ � 9  R n. For  given C and N we shall here use the  

nota t ion  ~X(R n, C, N)  for all k �9 Oi(R ~) such tha t  k(~ 3- ~) < (1 3- C l~})Nk(~) 
for all ~, ~ / �9  R". We  shall now use L e m m a  6.13 and L e m m a  6.14 to prove  

LEMMA 6.15. Let K G R n be a compact set, C o, N C R+ and let Q~ be as before. 
Then there is a constant C such that 
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liQ~(D)ull~,-k <_ CllQo(D)ull~_k 

for all u C C~(K) and k E ~ ( R ' ,  C O ,N) .  

Proof. Let  u C C~(K) and ~v E C~(R ' ) ,  where ~ = 1 in a neighbourhood of  K.  
Fur thermore ,  let  ~ E C~(R") be 1 in a ne ighbourhood U of zero, such tha t  
( ( C U ) ~ K ) f l s u p p ~ v - ~  O. I f  E = E ( ~ ,  fi, 0') is the  dis t r ibut ion in L e m m a  
6.13, Ifl] = 1, and S Dg = Q~(D)u in A_, then  

~v((~vE) �9 g) = ~vZo,(D')Q~)(D)u in A_.  

Thus 

II~y.o,(n')Q~)(D)ull~:-k < ]]~v((~E) �9 g)lll,~ _< Ilwlll, ~ llqEll~,x HgIi~, ~ ~< C [iglll,~, 

which implies t ha t  

D'  (~) D u z_ livzo,( )Q~ ( ) ill, ~ <_ c liQ~(D)ulI~,-~. 
Note  tha t  C is independent  of 0 ' ~  T. However ,  with  Q ~ ) =  Q~)(~', D"),  

sup  I1(~ * (~o,Q~)~))(~',  ")11~,~% _< c~ llv Zo,(n')Q~)(D)ull~,-~ <-- C2 llQ~(n)ull~-~. 

In  view of L e m m a  6.14, this implies tha t  

sup  [IQ~)(~ ', n")t~($',-)i11,~% < C IiQ=(n)ull~,% 
1~. n~ 

i . e . ,  

/ .  

I1 (8) , * -  ] , sup Q~ (2, D")~(~', .)Ill, k <  C IIQ~(~, D")R(~', ")l[~%d~'. 
R n  p J 

B y  using the  technique in the  proof  of Theorem 3.10 in t tS rmander  [6] we obta in  
from this tha t  

Hence  

[lQ~)(D)ullzl._k <_ C [IQ~(D)u[l~,-k. 

IIQ~+~(D)ull~-k = 1 II(Qo(D) -4- 2Q~)(D) -- Qo@(D))uII1.A-k <--- 

<_ lIQo(n)uli~-k d- IlQ~)(n)ulllA_k d- ilQ~')(D)UlilA,-k ~< 

<~ C(llQ~(n)ull~-~ § [IQ0(D)ull~-k). 

This proves the  lemma, for ~ = (~', 0) and fi = (fi', 0), lfil = 1 are arbi t rary.  

Proof of Theorem 6.9. B y  L e m m a  6.11 we have 

~Y' t 
, , ")Ill, k,, < ~ z  fIQAD)ulr~-~,, li~(~', ) i l l ,  ok" _< c liQ~(~, n")4(~', ~ -  
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where k , / (~" )=  k(~', ~"). However ,  there  are constants  C o and  N such t h a t  
kr, E ~( (R ~', C 0, N) for all V'. Thus  L e m m a  6.15 implies t h a t  for all V' 

~ = 
)11 , Q0 + _ 

By using the  technique  in the  p roof  of Theorem 3.10 in [6] we obta in  f rom this 
t h a t  

Iju]l~:5, k < C IjQo(D)u[]~-k, u E C: (K) .  

We shall now invest igate  in detail  the  necessary  condit ions for polynomials  P 
sat isfying the  following condition: 

( 6 . 5 )  - -  ' a~(~ )~ , where b@) ~- a(m ' 0 . . . . .  0) (~') is real  and  
s t ronger  t han  a~ for all ~. Fu r the rmore ,  assume t h a t  Q(~") is s t r ic t ly  
hyperbol ic  wi th  respect  to eve ry  vec tor  in the  inter ior  of  the  proper ,  
closed and  convex cone V* for all Q E 27, and  t h a t  N" --~ (1, 0, . . . , 0) E 
int  V*. 

Note  t h a t  we can make  b real by  mul t ip ly ing  the  polynomial  b y  the  complex 
conjugate  of  b. Observe also tha t ,  since 2: is compact ,  there  is a smallest, proper ,  
closed and  convex cone V* D/V" sat isfying the  condit ion in (6.5). 

T~]~o~]~M 6.16. Let P be a polynomial satisfying (6.5). Then the following con- 
ditions are equivalent: 

(i) P(D) is an evolution operator with respect to every half space containing 
R n' • (V ~ {O}) in its interior. 

(ii) I m  P(~) is dominated by P(~). 
(iii) P satisfies the necessary conditions of Theorem 2.6 with respect to I"-~ 

R n" • W for every cone W such that int  W D  V ~ ( 0 } .  

We are going to  prove  the  theorem af ter  some lemmas.  

LENMA 6.17. Let a and b be polynomials such that a(~j)/b(~j)-+O, j--> oo, 
for all sequences ~j E R n such that d(~j, b-l(0)) --> ~ ,  j -+ oo. Then a is dominated 
by b. 

Proof. Set e(t) = sup {la(~)/b(~)l ; d(~, b=l(0)) ~ t > 0}. I t  follows f rom the  
assumpt ion  t h a t  e(t)-+ 0 as t--> oo. F r o m  L e m m a  A2 in [6] we obta in  t h a t  
there  is a cons tant  7 >  0 such t h a t  for eve ry  ~E  R n there  i s a  0 E Rn,.TJOI < 1, 
such t h a t  the  distance from ~ ~- tO t o  the  zeros of  ab is a t  least t. Now we have  
t ha t  
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~(~, t) ~= C~(~ § tO, t) ~= C~ la(~ § tO)l ~= C~e(t) Ib(~ ~- tO) l ~= 

C~s(t)b(~ + tO, t) ~ Cas(t)b(~, t), 

where the  second es t imate  follows f rom L e m m a  4.1.1 in [5]. Thus  

sup ~(~, t)/b(~, t) ~= C a s(t) -~  0, t --> ~ ,  
B ~ 

which proves the  lemma.  

LEMMA 6.18. Let P satisfy (6.5) and assume that P is an evolution operator with 
respect to the half space {x E R n ; x~,+~ ~ 0}. Then P satisfies the following condition: 

(6.6) There are constants _Ro, t o such that i f  ~'o E R ~', d($'o, b-l(O)) ~ to and 
t9(~ o, R0) D $' --~ ~(~') E C is an analytic function satisfying the equation 

! f 

P(~' ,  ~" + "c(~')N") ~-- O in Y2(~0, R0), then there is a point  in ~(~o, Ro) 
such that Im  z(~')----0. Here N" = (1, 0 . . . . .  0) and ~" is orthogonal 
to N". 

Proof. Set R o = A 1, where A 1 is the cons tant  we obta in  f rom Theorem 1.1 
in [6]. I f  T is the  funct ion  in (6.6) t hen  we can ex t en d  it  to  an analy t ic  funct ion 
~(~', ~") such t h a t  P(~' ,  ~" ~- T(~', ~")N") ---- O for ~' E D ~ Y2(~'o, R0) and  ~" near  
}" (t o large). However ,  the  funct ion  ~(~', ~") is homogeneous  of  degree 1 wi th  
respect  to  $", so we can ex t end  ~ by  homogene i ty  and  if  t is large we see t h a t  
T(~', t}" ~- z") is def ined and  analyt ic  for  all ~' E t2 and  all z" ~ (0, z~,+2, �9 �9 �9 z~) 
wi th  lz"l ~ /~o .  Now we obta in  f rom the  assumptions t h a t  for  eve ry  large 
t there  are ~ : e ~ 9  and z[ wi th  lzi'l _<R0 such t h a t  I m ~ ( ~ : , t ~ " ~ z ; ) > 0 .  This 
implies t h a t  I m  ~ ( ~ , ~ " +  z : ' / t )>  0 and as t--~ ~ we obta in  t h a t  there  is 
a point  ~ 'C ~ such t h a t  I m  ~ ( $ ' , $ " ) >  0. I n  the same way  we obta in  t h a t  
there  is a point  ~ 'E  z9 where Im  ~(~ ' , - -~")  > O. Thus,  there  is also a point  
~ ' ~ t 9  where Im~(~ ' ,~ " )  ~ 0. 

Now we can p rove  t h a t  condit ion (i) of  Theorem 6.16 implies (ii). 

LE•MA 6.19. Let P be an evolution operator satisfying (6.5). Then I m  P(~) 
is dominated by P(~). 

Proof. Le t  P($) P1($) + iP~($) = ~1~1=,, ' "~' d ' "~ --~ c~($)$ + i ~ ] ~ l = , ,  ~(~)~ ' where 
c a and d~ are real. We obta in  f rom L e m m a  6.17 t h a t  d~ is domina ted  b y  b = 
= a(m,0 . . . . .  o) ~ C(m, 0 . . . . .  0) for  all ~. We shall here use the  no ta t ion  ~ (see page 
35 in [5]) with respect  to the  ~' variables  only. Set 

rV 
' a ' 
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and  
ttp t ~ J  

k~(~) = ~: (0~P)(~). 
1 

In  order  to  prove  t h a t  P2 is domina ted  by  P it  is sufficient  to  p rove  t h a t  there  
is a constant  C such t ha t  

g(~')P~(~) __< c(P(~)  k~(~') + g(~') ~(~))  

for  all ~' E t l  ~' and  ~" E R ~" wi th  ]~"l - 1. However ,  this will follow if we prove  
t h a t  there  are constants  Co and  t o such t h a t  

lb(~') P2(~)I =~ Co(P(~) lq(~') + b'(~') I%(~)) 

for  all ~' E R "  wi th  d(~', b-a(O)) > t o and  all ~" with 1~"] = l.  We are going 
to  p rove  this by  contradic t ion.  Thus,  suppose t h a t  this is false. Then  there  exists 
a sequence $~ ~ R n such t h a t  

b ! v ~ ! (6.7) [ (~,) P2(~,)I > v(/3(6:,) k,(~) - /  b(~) ke(~,) ), 

d(~: ,  b - l ( 0 ) )  ~ V. 

e t tt t t! tt We can assume t h a t  (~, ~ )/b(~,) -+ Q(~") and ~ ~ ~o as v -+  oo. I f  we divide 
(6.7) by  b(~) ~(~) and  let  v - +  0% then  we obta in  t h a t  Q(~o) 0. Now, con- 

e ! tt = sider the  equa t ion  (~, + ~', ~ + ~N") 0 for  l~'[ ~ Ro, where R 0 is the  
cons tan t  we obta in  f rom L e m m a  6.18. I f  v is large then  this equa t ion  has an ana- 
lyt ic  solut ion z~, such t h a t  suplr I <m Iz~(~')I -+  0 as v -+oo. F r o m  L e m m a  6.18 we 
obta in  t h a t  for  eve ry  v there  is a point  ~,  1~:[ ~ R0, such t h a t  Im  z($:)  = 0. 
Thus,  

and 

where 

p t ! tt t t 
I m  (~, + ~,  ~ )  + z ( $ , ) I m A  ( ~ ) =  0, 

A,(~ ) : (aJP/a~,+~)(~: + ( ,  ~,)(~(~ )) / j . .  
I 

This implies t ha t  

' p . . . . .  ) ' ~(~,). A~(~) I m  (~ + ~,, ~, = P ( ~  + ~,  ~') Im  A ' 

A ' b ' " However ,  , (~) /  (~,) --~ (OQ/O~,,+l)(~o) =4:0 as v --* o% which implies t h a t  

A ' _ ' ,(~,)1 < r 1(~;) I ,(~)1 > colb(~)l, Co > 0, if  v i s  large. Fu r the rmore ,  [Im A ' _ k ' 
and  tP2(~) - -  I m P ( ~ :  + $~, $;')] < 02k2(~). Thus,  for some cons tant  C we 
have 
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lb(~,) P~(~)I < ~((~.) ~(~.) +/~(~)  ~(~.)) 

if  v is large. This contradicts  (6.7) and thus  the lemma is proved. 

LEM~A 6.20. Let f = ( f n , + l  . . . .  , f , )  : C" -~  C" be analytic in a ball with radius 
R and centre ~' and assume that there is a constant C~ > 0 such that 0 
t Imf(~ ' ) l  ~ Ca Imf, ,+a(~')  for all ~' e B.  Then there is a constant C: such that 

If(U) -- f(~')l ~ ~C~ Imf.,+~(~') 

for  all ~' ~ C" with [ ~ ' - - ~ ' l ~ / ~ R ,  0 < # : <  1/2. 

Proof. Set g~(z) : -  C1L,+I(~' ~- z~ t) and g2(z) = f~(~' + z~') for z fi C, I~'l ~ R 
and  j > n'  + 2. For  }z] ~ # <: 1/2 we obtain t h a t  

2 x  

Ig;( ,l = i/= f < 
0 

2~  

=< 1/~ f I m g x ( e ' ~  2 I m g ~ ( 0 ) / ( i - - # ) ~ ,  j =  1,2. 

0 

Thus Ig~(#) -- gj(0)l ~ 2/~ I m  g~(0)/(1 --  #)2, which implies t h a t  ]f(U + ~') --f(~ ')]  
/~C 2 Imf , ,+ l (~ '  ) for I~'1 ~: #R. 

LE~MA 6.21. Let P satisfy (6.5) and the following condition: 

For every v > 0 there are ~: e R"' and analytic functions f(0 : f2(~:, v) -~ 
---> C ~" such that b(~') # O, P($',f(~)(~')) = 0 and Imf(")(~ ') e --  int  W* 
for all ~' e ~ ( ~ ,  v). 

Then P also satisfies the following condition: 

There is a vector 0 4= N" ~ W* such that for every R > 0 there are ~ C R" 
and an analytic funct ion T(~') such that P($' ,  ~" + "~(~')N")= 0 and 
Im  ~(~') < 0 for all ~' ~ ~2(~', R). 

Proof. We can assume t h a t  P(~:, ~") /b (~: )~  Q(~") e ,V, as v--> ~ and tha t  
l ~ . r ,  , t  , ,  �9 t t  t l  , 
1~ I = 1 where ~ = ~, + ~% = f ( ' ) ( ~ ) .  Fur ther ,  we can assume t h a t  ~, --> ~o 

" " - -N"  = " -- W* and  % / I % [ - +  as v - +  ~ .  Then Q(~o) 0 and since Im  ~o E we 
conclude t h a t  ~o = ~ C R"". 

Now, let /~ > 0 and  consider the equat ion P(~',  ~" + "~N") = 0 for ~' C 
f2(~:,R) and ]~"--~ol  < e .  I f  e > 0  is small and v is large then  this equat ion 
has a unique analyt ic  solution ~(~) such tha t  ~,(~, ~ ' ) =  0. To see this we 
observe t ha t  Q(~") is s tr ict ly hyperbolic wi th  respect to N". I f  ~ C ~2(~, R) then  
P ' " b ' = = (~,  ~ )/ (~)  --~ Q(~") as v --> ~ ,  and Q(~o + "oN") 0 has ~ 0 as a simple 
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zero, so the  implicit  funct ion theorem can be applied. Fur thermore ,  this theorem 
implies t h a t  0 ~ / ~  i is bounded for every j if  v is large. 

F rom L e m m a  6.20 we obtain t h a t  [f(~)($') -- $~'1 ~ C(R/v) l~:1 if  $' E tg(~:, R). 
I f  $' e (~, R) we have O = P(~' ,  f(")(~')) P($' ,  f(")(~') -k i ~],l" N" --  

- -  il~" f N") = O, so t h a t  ~,(~', f(")(~') -k i[~'l N") ---- -- i]~'[ if v is large. F rom 
this we obtain t ha t  I~,($', ~') q- i[~",I ] _~ Clf(")(f) -k il~'] N" --  ~'i ~ C(]f(")(~ ') --  

t t  ~ t t  g ~(~ y 
--  ~,[-}- [~/, -k I~,[N"])--< } l~ . [  for all ~ ' e  (~,,R) if  v is large. Now, the  
lemma follows if  we take  v large and  set z(~') = ~($' ,  ~') and ~ = ~. 

Proof of Theorem 6.16. I t  is tr ivial  t h a t  (iii) implies (i) and L e m m a  6.21 proves 
t h a t  if  (iii) is false then  (i) is also false. Thus (i) and (iii) are equivalent.  F rom Lem- 
ma 6.10 we obtain t h a t  (l~e P)(D) is an evolut ion operator  and  then  it follows 
from Theorem 4.1 in [6] t h a t  (i) follows from (ii). F inal ly  L e m m a  6.19 proves t ha t  
(i) implies (ii). 

Example 6.22. Le t  P ( ~ ) =  ~ aj.(~)~/, where aj, j = 2 . . . . .  n, are real and  
dega2 > degai ,  j > 3. Then P satisfies condition (S) with respect to V = 
= { x " C R  ~';x2 ~ 0 ,  x a =  : . . = x n = 0 }  so P(D) has a fundamenta l  solution in 
A =  R •  if  int  W ~  V ~ { 0 } .  (Cf. Theorem 2.11.) Fur thermore ,  if  q(~)---- 
= ~ cj($1)~j is real and  deg cj ~ deg a2 then  P q- iq satisfies the necessary 
conditions of Theorem 2:6 with respect to W if and only if  q is dominated  by  P.  

Remark 6.23. Set Q~(~) = (P(~', ~" - iN,) ~- P(~(~', ~" -- iN"))~2 where ~ : 
--~ (~', 0). In  the proofs of Theorem 6.8 -- L e m m a  6.15 we have only used t h a t  
there is a constant  t such t h a t  Q~(~', ~ " ) 4 : 0  for all ~' wi th  d@, b - l ( 0 ) ) >  t 
and  all ~" wi th  Im  ~" C --  W*. Thus Theorem 6.8 is t rue also for P(~) ~-- 
~-~ '+1  ai(~')~j q-a0(~'), where a i is real for every j and  a~,+l is stronger t han  

a n , + 2  ~ �9 . . , a n .  

We have not  been able to prove the  existence of fundamenta l  solutions wi th  
support  in A ---- R ~" • W for all polynomials satisfying the conditions of Theorem 
6.16. However,  the n e x t  theorem shows the existence of local fundamenta l  solutions. 
(Cf. Remark  2.10.) 

TI~EOl~E~ 6.24. Let P = P1 ~- iP~ satisfy the conditions of Theorem 6.16 and 
let W be a closed, convex cone such that int  W D V ~ ,  {0}. Then there is a distri- 
bution E C~. ~,n~OCp~ such that s u p p E C A =  R n" • W and P(D)E ~ ~ in a neigh- 
bourhood of zero. 

Proof. S?t Q~(~) -~ PI(~/e), s > o. Inspect ion of the proofs of Theorem 6.8 -- 
L e m m a  6.15 shows t h a t  Theorem 6.8 is t rue for Q~ with a constant  t h a t  is inde- 
pendent  of e, 0 ~ e < 1. (Cf. Remark  6.23.) Thus, if  K C R n is compact  then  
there is a constant  C such t h a t  
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Iiull ~-1,1 = < C[[Q~(D)ul[~-I/5~ 
for all u E C~(K) and all s, 0 < e =< 1. I f  we replace u by u(ex) where u EC~(sK) 
then  it follows tha t  

[[ull,~,-~ =< c IlP~(D)ulIzl-k , u e C:(sK), 

where k~(~) : ( ~  ]P~)($)I2e-21~I) -1/2. Thus, 

U A lI 111,-1 < C llPl(D)ul[~-k < r l[P(D)u[l~,-k -~ C IiP2(D)u]l~ <~ 

<~ C I]P(D)ull~,~ ~- C sup ([Pz(~)I k~(~)) z- 

I f  s > 0 is small enough then C s u p  ([P~(~)[k~(~)) ~ 1/2, so t ha t  

Now the theorem follows from Theorem 4.2. 

Remark 6.25. The polynomial  P($) 2 = $152 -~ $3 i satisfies the  Pe t rowsky  
condit ion with respect  to N = (0, O, --1),  i.e. P($ ~- itN) ~ 0 for t >_ 0~ How-  
ever, Pe t rowsky ' s  fundamenta l  solution E defined b y  

f E(u) = (2:r) -3 4(~)/P(~)d~, u e C~~ 

~ l o e  does not  belong to ~ , v .  

Proof. I f  E C BI~162 then D2E ~ r~~ This implies tha t  for every  r C C~~ a) oo, ~ ~ b o ,  1" 

there  is a constant  C~ such tha t  

1fr ~ ) ~ 2 / ( 2 ~ , 2 - ~ - h  a - -  i)d21 <= C~ for all ~C R 3. 

Let  s > 0. Then we obta in  tha t  

f @ ( ~  ~)(~2 --~- t)/(X~(~2 -~- -~- ~3 -~- te2 i)d~ ~ for all $ E R 3, t C R. t) C~ 

However ,  for f ixed  ~ E R ~ we have tha t  

tr - -  ~)(~ + t)/(~(~2 + t) + ~ + ts ~ - -  i)I < CN/(s2(1 + I~[)N). 

When  t - *  oo we now obta in  tha t  

f $ ( ~  --  ,~)/(2~ ~- s2)d~ ~ for all ~ e R 3. C~ 

I f  r = r r x3) and r =4= 0 then 
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f ~1(~1 - -  ~1)/(]~ -~- ~2)d~l < Cr fo r  all  ~, e R 

However ,  if  r 4 = 0 then  the  left  side tends  to inf in i ty  as e --> 0. 

We could use the  same technique  as in this r emark  to prove  t h a t  in general  
it  is no t  possible to  ex t end  L e m m a  6.13 to  E ( ~ ,  fl, 0') with Ifil > 1. 

7. Second order operators 

Firs t  we shall invest igate  the  necessary conditions fur ther .  

THEOREM 7.1. Let P be a polynomial with deg P ---- 2 satisfying the necessary 
conditions of Theorem 2.6. Then P(D) is hyperbolic with respect to some cone con- 
tained in I1 or, after multiplication by a constant, a complex translation and a linear 
transformation of the variables preserving the edge of F, P(~) can be writte~ in one 
of the following forms: 

(i) P(~) ---- ~n'+l -~ BI(~') ~ iB2@), where B 1 a~d B2 are real quadratic 
forms and B 2 is negative semidefinite. 

(ii) P(~) = (~1 + i~2)~n.+1 + a~l + b, a, b E C. 
(iii) P(~) is independent of ~". 
(iv) P(~) ~ ~1~,.+1 Jr a~,,+e -~ B(~ ~ ~ c where a E R, c C C and B is 

a real polynomial of ~o =_ (~: . . . .  , ~,,) with deg B ~ 2. 

Wi th  our  s t anda rd  nota t ions  a l inear t r ans fo rmat ion  leaves the  edge of  F 
invar ian t  if  the  equa t ion  x" ---- 0 is invar ian t  or equiva len t ly  if the  equa t ion  ~' = 0 
in the  dual  variables of  the  Four ie r  t r ans form is invar iant .  

Proof. Le t  p be the  principal  pa r t  of  P and set Q(~) = lim,+~ t-t'P(t~ ', t3~ ") 
where # = deg~P(t~', t3~"). Theorem 3.1 shows t h a t  p(~', D") and  Q(~', D") 
are hyperbol ic  wi th  respect  to  V (or zero). 

I f  # =- 6, t hen  Q(D) is hyperbol ic  with respect  to some cone conta ined in _P. 
F r o m  this we get  t h a t  P(D), too, is hyperbol ic  with respect  to some cone conta ined  
in F.  In  fact ,  eve ry  suppor t ing  plane of  F which only  meets  the  edge is non-  
characteris t ic ,  and f rom I t 6 r m a n d e r  [6] we obta in  tha t ,  for eve ry  hal f  space con- 
taining / ' ,  P(D) has a fundamenta l  solution wi th  suppor t  in t h a t  ha l f  space. Th en  
i t  follows t h a t  P(D) is hyperbol ic  with respect  to  some cone conta ined in /~. 
(Theorem 5.4.1 and  Theorem 5.6.1 in [5].) 

I f  # = 4 t hen  Q is of the  fo rm Q ( ~ ) :  ~.:,+1 aj(~')~j, where aj(~') are l inear  
forms. Af ter  mul t ipl icat ion by  a constant  and a t r ans format ion  of the  variables  
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we can wri te  a,,+l(~') = ~1 - ~  i~2 or a,,+l(~' ) = ~,�9 In  bo th  cases we ob ta in  f rom 
the propert ies  of  Q t ha t  the  l inear forms aj are propor t ional .  Thus,  af ter  a t rans-  
fo rmat ion  of the  variables we can wri te  Q($) = (~1 + i~2)$a,+1 or Q($) = ~='+1.  

I f  Q(~) : (~1 + i~)~,,+~ then  P(~) : (~, + i~2)~,+, + ~:,+~ cj~j + B@ ) .  
Consider ~' in balls with centre  (t, 0), t large, and  let ~j--->-4-o~ for some 
j > n' -4- 1. Then  we obta in  f rom Theorem 2.6 t h a t  cj ~ R, j > n' + 1. In  the  
same way  we see t ha t  cj E iR.  Thus,  a f te r  a t rans la t ion  of  the  variables we can 
wri te  P(~) = (~, + i~2)~,+1 + B(~'), so t h a t  p(~) = (~  + i~:)~,,+~ + B~@), where  
B~ is a quadra t ic  form�9 F r o m  Theorem 3.1 we now obta in  t h a t  I m  ($~ --  i~)  BI(~') 
< 0 for all $' E R ". This implies t h a t  ~1 Im  B~(~')  - -  ~2 R e  B~(~')  ~ O, i.e. 

�9 n "  B~(~') = (~  + *~2)(~1 dj~j), with  d i real. Af ter  a l inear t r ans fo rmat ion  we can 
n" write  p(~) = (~  + i~z)~,++~ so t h a t  P(~) = (~  + g~2)~n'+* -+- ~..I fj~j -+- b. W e  

immedia te ly  obta in  t ha t  fj = 0 for  j > 3, so af ter  a f inal  t rans la t ion  of the  
variables  we can wri te  P(~) = (~  + i~:)~,+~ + a ~  + b. 

I f  Q(~) = ~$,,+~ then  the  principal  pa r t  p is of the  form p(~) = ~ , + ,  + 
B2(~'), where B~ is a quadra t ic  form.  F r o m  Theorem 3.1 we get  t h a t  I m  ~B~(~') < 
0 for all ~' ~ R" ,  which implies t h a t  I m  Bz =~ 0. Thus,  af ter  a t r ans fo rmat ion  
of  the  variables we can wri te  P(~) = ~ , + 1  + B3(~~ where Bz(~ ~ is a real  
quadra t ic  form of  ~ 0 =  ( ~ , . . . ,  ~,,). Now we have  t h a t  

n,  

= + + ~ + % + Co. 
n ' + l  1 

After  a t rans la t ion  and  a t r ans fo rmat ion  of the  variables we can wri te  

= + % + 2 + 2 % + 
i t ' + 2  2 k + *  

where b i E  R. F r o m  Theorem 2�9 we now obtain  t h a t  a jE  R and  c i E  R�9 A f  i r a  
t r ans fo rma t ion  of the variables  gives t h a t  P can be wr i t t en  in the  form 

P(~) = ~n,+~ + a ~.,+2 + B(~ ~ + c, 

where  a E R ,  c E C  and B is a real  polynomial  of  degree < 2 .  
I f  # =  3 t h e n  P(~) is of  the  fo rm P ( ~ ) = c ~ , + l a i ~ i + B ( ~ ' )  where a i E  R. 

After  a mul t ip l ica t ion  b y  a cons tant  and  an admissible l inear t r ans fo rma t ion  of 
the  variables ,  we can wri te  P in the  form P(~) = ~n,+l + B@ ) ,  where B(~') = 
= <A~', ~'> + i<O', ~'}. Here  O' E R n" and A = A ,  + iA2 with  A1, A 2 real 
and  symmet r ic .  L e t  L be the  l inear hull of  the  images of A x and  A 2. I f  0' ~ L 
t he n  there  is a vec to r  ~ ' E L  ~ such t h a t  <0', ~ ' } >  0. Set  ~ ' = t ~ ' + z ' ,  t E  R. 
T he n  B(~') = <Az', z ' > + i < O ' ,  t ~ ' > + i < O ' ,  z'>. I f  [z[ < R  and  t--~ ~ t h e n  
I m  B(~') --> ~ ,  which contradic ts  the  necessary  condit ions of  Theorem 2.6. T h u s  

v v t t 
the re  are ~0,~0 E R "  such t h a t  0'/2 = AI~ 0 + A2~0�9 Af ter  a t rans la t ion  a n d  
a t r ans fo rma t ion  of the  variables,  we can wri te  P(~) = ~,+.~ + B~(~') + iB2(~'), 
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where B 1 and  B 2 are real quadra t ic  forms. Final ly,  we obta in  f rom the  necessary 
conditions t h a t  B2 is negat ive  semidefinite.  

Final ly,  if # _~ 2 then  1) is independen t  of ~". 

THEOREM 7.2. Let I" ~- R ~' • V where V is a proper, closed and convex cone 
in R ~" and let V o {x"E R"";  - -  . .  = 0}. I f  1 ) i s  one Xrt,+l > O, X n , + 2  - -  . X n 

of the polynomials  in (i)--(iv) of Theorem 7.1, then P satisfies the necessary con- 
ditions of Theorem 2.6 with respect to F i f  and only i f  

(i) Vo c V i f  ~ B~ ~ O, 
V o c V  or - - V o c  V i f  B 2 ~ O .  

(ii) V o C V Or -- V o c V. 
(iii) V is arbitrary. 
(iv) Vo C V o r  ,2_ Vo C V i f  a = O. 

V o C i n t V  or V o c i n t V  i f  a ~: 0. 

Proof. I t  follows f rom the  proper t ies  of  Q(~)-~ lim,~| t - 'P( t~ ' ,  t3~"),  ~ = 

deg~ P(t~', t3~"), t h a t  V mus t  conta in  V 0 or - -  V 0 (except in the  case (iii)). Then  
the  only  case t h a t  is not  quite  clear is (iv) wi th  a # 0. 

Assume t h a t  1)(~) - ~,,,+~ + ~,+2 + B(~ ~ and  t h a t  n" = 2. Set W = 
{x"C R 2; x . ,+2>_0,  x~,+l >~--cx,,+2}, c >  0. Then  W * = { ~ " C  R : ;  ~,+1-->0,  
~,~,+2 >--c~,+1}. Le t  R and  A be given. I f  Vn'+2 is real  and 

then  
~'l~n'+l -~- i~],'+2 -~- B(~ ~ ~- 0. 

l~ll2~t~n,+l = ~'l(T]n,+2 + I m  B(~~ --~]1 Re  B(~~ 

Assume t h a t  IB($~ ~ C for  all t 0 wi th  i~0[ ~ R a n d t a k e  ~,,+2 < - -  (2A + C). 
Thus,  if  we let  01 be large we see t ha t  (~n'+l, Vn '+2)C--W* for all ~' wi th  
[~ ' - - (01 ,  0)[ < R .  This proves  t h a t  the  necessary  condit ions of  Theorem 2.6 
are not  t rue  wi th  respect  to  W. Because of s y m m e t r y  we t h en  see t h a t  V 0 mus t  
be conta ined in int  V or - -  int  V. 

TI~EOI~EM 7.3. I f  t ) is a polynomial with deg P ~- 2, that satisfies the neces- 
sary conditions of Theorem 2.6, then the operator 1)(D) has a fundamental solution 

loc E C B~ ,p  with support in F. 

Proof. I f  P is hyperbol ic  t hen  the  theorem follows immedia te ly .  
I f  1) is of the  form (i), (ii), (iii) or (iv) wi th  a = 0 in Theorem 7.1, t h en  P(D) 

is an evolut ion opera tor  wi th  respect  to the  ha l f  space xn,+l >_ 0 in R n'+l. F r o m  
[6] we obta in  t h a t  there  is a fundamen ta l  solut ion E1 E B ~~176 ~/II  "+1~ wi th  suppor t  
in the  ha l f  space xn,+l > 0 .  Set E = E  1 ~  6n,+2 Q . . . |  ~n. Then  E has the  
required  propert ies .  
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I t  remains to consider the  case P(~) ---- ~ , + ~  q- ~,+~ -}- B(~~ However,  
since B is real, i t  follows from Remark  6.23 t h a t  P(D) has a fundamenta l  solution 
wi th  the required properties. 

8. The two dimensional case 

Let  P(D) "~ J = ~,o aj(D1)D2, a,~ ~ 0, be an evolution o p e r a t o r  wi th  respect to  
the  half  space x2 > 0. Fur thermore ,  let A($~) be the discrim n a n t  of J9 con- 
sidered as a polynomial  of  g2 and  assume tha t  a~(gl)A(~ 0 # 0 when I~11 ~ r 
or I M P 1 = 0 0 .  

Le t  v l ( ~ O , . . . ,  ~(~1) denote the solutions of the equat ion P(~I, T ) ~  0, 
which are analyt ic  in a neighbourhood of the curves in Fig. 1. I f  we choose suitable 
0 + and  0- then  it follows from the Puiseux expansion t h a t  I m  Ti($1) > 1 for 
large ~1 E ~j, where Y1 is chosen as one of the four possible curves in Fig. 1. (See 
L e m m a  4.3 in [6].) For  small  ~1 E yj we can obtain this by  a complex t rans la t ion  
in the ~2 variable.  Thus we can assume t h a t  I m  Ti(~1 ) ~ 1 for all C1 E Yi, J 
~-- l ,  2 , . . . , m .  

I t  is now possible to define a fundamenta l  solution E of P(D). Let  @j(~l) 
1/OP(~x, ~2)/a~. for ~2 = Tj(~I) and  set 

(8.1) E(u) = (2~r) -2 ~ ~(~1, ~2)~1(r -- ~j(~))dr u e C2(1t2). 
1 

yjxR 

:ira ~I 

+ 

r 

o 

~1 = Re r 

Fig. 1 



34  ARNE ENQVIST 

The integrals of (8.1) are convergent for if ~1 E 7/ then 

I~(~ ,  ~:)ej(~,)/(#~ - ~j(~))l  __< 0~(1  + I~l  + I~:l) - ~  

where N is arbitrary. The support of E lies in the half plane {x ; x~ _~ 0}. To see 
this we change the integration contour: 

1 
r j x  R 

I f  u(x)=O for x ~ < 0  we let ~ - ->oo .  Then we obtain that  E ( u ) = 0  for 
all u E C ~ ( R  2) with u(x)=O for x ~ < 0 .  Thus s u p p E c { x ; x  2 > 0 } .  To show 
tha t  E is a fundamental  solution, we observe that  

v 
E ( P ( D ) u )  = 

= ( 2 Y ~ ) - - 2 ~  P ( r  }2)7~(r } 2 ) e j ( ~ 1 ) / ( ~ 2  - -  Tj(r -~- 
1 

7 j •  

---- (27~) -2 ~ f U(~I, ~2)~j(~l)am(~l) "~ (~2 --  vk(~l))d~ld~2 = 
1 k ~ j  

~,j• 

: (22~)--2 ~1 U(r }2)0i(r162 ~ (}2 - -  ~k(~l))dr ~-- 
~XR 

v x R  R 2 

where 7 is the path in Fig. 2. 

0 ~ 

:F 

Fig. 2 
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We also want  to show t h a t  E E B 1~ ~ and  then  we need the following lemma,, 
which is related to the proof t h a t  E is a fundamenta l  solution. 

LEMMA 8.1. Let Q(~I, ~2) be a polynomial in ~2 with coefficients analytic in. 
a neighbourhood of the set between the curves yj defined above and assume that the 
coefficients are bounded by some power of (2 + I~11)" Furthermore, let Q -= R P  q- Q~, 
where deg~, Q0 ~ deg$, P. Then for every u ~ C~~ 2) we have that 

~ fQ(&, ~2)~(~,, ~2)~j(~1)/(~2 - -  ~i(~l))d~]d~2 = 
~,jxR 

-t- 
1 J 

rj• 

-I- f_#7(~,, ~:~),,.7(~1, ~)dr 
? x R  

Proof. Q(g , ,  82)~j(~1)/(~'2 - z./(~,)) = Rj(r ~:2) + Q(~x, T j ( ~ , ) ) e j ( g , ) / ( &  - "~(g~)), 
where Rj is a polynomial  in ~ .  We obtain t h a t  

, f - = 
rjxR 

= :2, f ' ; ( : , ,  + 
:,.xR 

yjxR 

t towever ,  R = ~ Rj for if  a~(~l)zl(~l) 4= 0 we have 

Q(~I, ~ 2 ) 0 j ( ~ 1 1 / ( ~ 2  - -  T j ( r  = Q ( ~ I ,  ~ 2 ) / P ( ~ l ,  ~2) = 
1 

1 

To show t h a t  E E ~,]~l~ P~ it is sufficient to  prove t h a t  Pe')(D)E E B 1~ 1 for all ~: 

LEMMA 8.2. Let E be a distribution and P a polynomial. Then E E ~ , p  
and only i f  P(~)(D)E E B 1~176 for every o~. r 1 

Proof. Le t  ~ E C~ ~ and  assume t h a t  P(~)(D)E E Bl~162 1 for all ~. Then 

/f 
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A 
P(~)(~)(~E)(~) = ~(P(~')(D)cfE)(~) = ~, (~((P(~+~)(D)E)Dr 

is bounded.  This shows t h a t  
A 

P(~)(~E)(~) 

is bounded,  i.e. ~E  E B ~ , p .  The  converse follows f rom Theorem 2.3.4 in H6r -  

mander [5]. 

Thus we want to estimate 

(8.2) E(P(~)(D)u) = 

7 j x R  

(2~) -2 ~2)/Ct,n(~l)d~xd~2 -~- 

? •  

+ (2~)-2~ P(~)(~I, 3j(~1))~(~1, &)~(5)/(& - 3j(~x))d~ld&. 
1 

UxIl 

The f irs t  integral  on the right, side of  (8.2) occurs  if  ~ = (~1, 0) a n d  then  it  can  
be es t imated  by  const �9 II cosh (alxl) �9 ulll, 1. When  I~1[ is bounded,  the  remaining 
integrals  can be es t imated  in the  same way.  To be able to es t imate  these integrals  
for  large l~1[, we must  group the  zeros into classes. F r o m  L e m m a  4.3 in [6] we 
kn ow t h a t  for  large J~l] we can wri te  Tj(~I) = cj~i --]- lower order  terms,  where 
k i is a non-negat ive  integer.  We will now say t h a t  ri and  3j are equiva len t  i f  
k i = k j  and  c ~ = %  Thus,  there  is a cons tant  d >  0 such t h a t  if  3~ and  T i 
a re  no t  equivalent  t hen  

I f  0 + and  0- (see 
m a  4.3 in [6] t h a t  

(i) 

(ii) 

- -  Tj(~I)I >~ 4d(IC1[ k' -~ I~K kj q- 1) when ~1Cy,.  

Fig. 1) are chosen in a sui table way,  t hen  we obta in  f rom Lem-  

(cj real.) 
There  is a cons tant  c > 0 such t h a t  
I m  3/(~1) _> 3c(]~lfki -1 -~ 1), ~1 E y  i and 
ITI($1) - -  Tj ($1)I  ~ C  l$11kj -I, $1 6y/ ,  31 and 3 i equivalent .  
( Imc]  > 0.) 
I f  the  cons tant  d above is chosen  small enough then  
I m  3j(~1) > 3d I~l]kj, ~1 E yj and 

13i(~1) - -  ~)'(~1)] = o(l~]hJ), ~1 e 7J, 3~ and 3 i equivaJent.  
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Set  rj = 2c I~xl~J -* i f  cj is real  and  rj----2d 1~11 k1 if cj is no t  real. F r o m  (i) 
and  (ii) we see t h a t  if ~ E Y1 is f ixed,  t hen  we can f ind  a circle a i = aj($1) in 
the  ~2 plane wi th  radius ry such t h a t  I m 0 > c o n s t , >  0 for all 0 E a i  and  aj 
has winding n u m b e r  0 wi th  respect  to  the  zeros t h a t  are not  equiva len t  to  *i 
and  such t ha t  a circle wi th  radius rj/2 concentr ic  to  aj has winding n u m b e r  1 
wi th  respect  to  the  zeros t h a t  are equiva len t  to  v~. F r o m  the  mean  value  theorem 
we now obtain  t h a t  there  exists a cons tant  e > 0 such t h a t  the  distance in C 2 
f rom (~1, 0) E yj • aj(~l) to  the  zeros of  P is > e > 0. We can now rewri te  the  
remaining pa r t  of (8:2) in the  following way  

m 

1 
~,/xR 

Ir 

~xR 
ICd~c 

f p(~O(~,, O)/P(~, 0)(~2 -- O)dO)d~,d~2 
oj(r 

where the  last  sum is t aken  over  the  equivalence classes. However ,  

] f O)/P(~I, 0)(~ 2 -- O)dO < C. 

"i 

We have  now proved  the  following es t imate  

IE(P(~>(D)u)I < C 
1 

f l~($l,$2)ld$~d$~ <~ [Lu" C c o s h  (alxl)ll, 

u •  

for all u E C ~ ( R  2) and  a rb i t r a ry  ~. This shows t h a t  P(~)(D)E E B ~~ for  all a, r 

nl~ Thus  we have proved:  which by  L e m m a  8.2 implies t h a t  E E - ~ ,  p. 

Tlz~OR~M 8.3. Let P(D) be an evolution operator in R 2 with respect to the half- 
plane H ~ {x ; x 2 >_ 0}. Then the distribution E defined by (8.1) is a fundamental 

l:tloc ~ solution to P(D) with s u p p E c H  and E E - ~ , ~ .  

J~emark 8.4. The est imates  

show tha t  

IE(P(~')(D)u)I < G Ilu cosh (a]x])]l,, , 

2' = E/eosh  (alx]) lies in B~ .~  C 3.  
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Appendix 

Since the  proof  of  L e m m a  6 in TrOves [10] is no t  qui te  clear, we will here  give 
a par t ia l ly  different  p roof  of  Theorems 1 and 1' in [10]. The new ideas of  this p ro o f  
are  due to L. HSrmander .  Another  correct ion has been proposed b y  F. TrOves. 

TnEOR~,M A1. (TrOves.) Let P(v, D) be a differential operator with coefficients 
that are C ~ functions of ~, E U, where U is convex. Furthermore, let P(v, D) be of 
analytic type (see below) in U and o~ c R ~ a neighbourhood of zero and let lc 6 ~X(R"). 
I f  there is a distribution E(v) which is a C ~ function of ~ with values in B 1~ 
such that P(v, D)E(~) = ~ for all ~ E U, then P(~, D) has constant strength when 
~,E U. 

According to Defini t ion 1 in [10] we say t h a t  P(v, D) is of analytic type i f  ev e ry  
l inear combinat ion  of  coefficients of  P(v, D) which has a zero of  infini te  order  in 
U is identical ly zero in U. 

Proof. I t  follows f rom section 1 in [10] t h a t  we can assume th a t  U is a neigh- 
bourhood  of  zero in R and t h a t  it  is sufficient  to  prove  t h a t  Pk is weaker  t h a n  
P0 for all k. Here  

Pk = [(d/dt)kP( t, D)J,=0- 

Le t  ~ be a commuta t i ve  ring with uni t  e lement  1 and  let  ~?~ be a u n i t a r y  
d - m o d u l e .  Consider two sequences X 1 E ~4, Y1 6 ~ such t h a t  X o = 1 and  

~ ( m . ) x i Y , , _  i = 0, m > 1. B y  reeursion we obta in  t h a t  Y~ is a polynomia l  of 

X1 . . . . .  Xm. We have  the  recursion formula  

1 \ J /  

where  m ~ 1 and F o =  1. I f  F , , ( X I , . . . , X , , )  = Z c X ~ I . . . X ~ , ,  we imme- 
d ia te ly  see t ha t  ~J~i : m. 

Now, consider the  differential  opera tor  P(t, D), t 6 U. We have  deg~ P(t, ~) 
const. ,  t E U, and  

(A2) P(t, D)E(t) = (~, t 6 U, 

where E(t) is an infinitely, differentiable funct ion  of  t 6 U with values in ~,'~ . . . .  k(w). 
I t  follows f rom (A2) t h a t  PoE0 = ~ and 

(A3) 0, m > 1, E .~_i m = _ 

where P1 : [(d/dt)iP( t, n)],=o and  E i : [(d/dt/E(t)],= o. I f  we mul t ip ly  (A3) 
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by P~ and  set X o =  1, X i = P i o - ' P  i and Yj=_Pio+IE i then  we obta in  from 
(A1) the Fa~ di Bruno formula: 

(A4) P'~+IE~ F,~(P1, P O P 2 , . . .  ~-1 = ,Po  P~)~, m >  1. 

~loc (Cf. TrOves [10] page 477.) By  assumption we have t h a t  P"~+IE m E ~ . k / ~ + l  
so t ha t  

(A5) i F , , ( p ~ ( ~ ) , . . . ,  p~-~(~)p~(~))[ ~ Ct~o+x(~)/k(~) ~_ Cm/5~(~)(1 + [~[)M 

for all m ~ 1 and  all ~E R". Since P / ,  j =  1 ,2  . . . . .  have bounded degrees 

there is a smallest y ~ 0 such t h a t  Pi(~)/15o(~)(1 + l~l) ~j is bounded  for every  j .  
Set d(~) = 1/(P0(~)(1 + [~[)~) and mul t ip ly  (AS) by  (d(~)) ~. By  means of the 
homogenei ty  conditions of F~ we obtain t h a t  

]Fm(P~(~)d(~) "-~ m . . . . .  P0 (~)P~(~)(d(~)))l ~ C~(1 ~- i~[) ~-y~. 

Now, assume t h a t  ~ >  0 and  let m o be so large t h a t  7m o >  M. Then 

F ~ ( P ~ ( ~ ) d ( ~ ) , . . . ,  PT-~(~)P,~(~)(d(~)) ~) -~  0 as 1~[--~ ~ .  

Fur thermore ,  there is a sequence ~j such t h a t  ]~1[--~ ~ and  

(p,(~i)d(~j) m--~ ,~ , . . . ,  Po (~j)P,~(~j)(d(~j))) - - - >  ( q l , . . . ,  qrn) :~= ( 0 , . . . ,  0 )  a s  j --~ oD. 

(Cf. L e m m a  A2 in [6].) Since the degree of P~ is bounded we have t h a t  q1 = 0 
for j > m o if mo is large enough. Thus,  

(A6) -Fm(q~ . . . .  ,qm, 0 . . . . .  0) = 0 for m ~ m 0 .  

Set Q(t) = 1 -}- ~_'~~ Then Q(t)(1/Q(t)) = 1 near  zero. In  the  same 
way  as we obtained (A4) we now get t h a t  

[(d/dt)"(1/Q(t))],=o = " ~ m ( q i , " " " ,  qm o, 0 . . . .  , 0), m ~ m0, 

so t h a t  (A6) implies t h a t  [(d/dt)"(1/Q(t))1= o = 0 for all m ~ m o. Thus 1/Q(t) 
is a polynomial ,  which implies t h a t  q~ . . . . .  q~, = 0. This is a contradict ion 
so t h a t  ~ mus t  be zero which proves t h a t  Pg is weaker  t h a n  P0 for all j .  
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