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1. Introduction

It is an open question whether all hyperfinite factors are *-isomorphic to factors
obtained as the infinite tensor product of finite type I factors. In order to study
this problem it is necessary to have criteria which tell us when a hyperfinite factor
is *-isomorphic to such a product factor. The present paper is devoted to a result
of this kind, the criterion being that all, or equivalently, just one normal state is
in a sense asymptotically a product state. This result is an intrinsic characterization
of product factors in that it is independent of any weakly dense UHF-algebra and
also of any tensor product factorization of the underlying Hilbert space.

We first recall some terminology. A UHF-algebra is a C*-algebra 9 with
identity I in which there is an increasing sequence of I,-factors M, containing
I such that n;— o0 and Y2, M, is uniformly dense in A, see [2]. A factor
R is said to be hyperfinite if there is a UHF-algebra which is weakly dense in .
More specially R is said to be an ITPFI-factor (infinite tensor product of finite
type I factors) if there exists an infinite sequence of I,-factors M, with n; > 2
for an infinite number of 4’s, and a product state w = Q2 ;w; of the C*-algebraic
tensor product Y =®Z, M,,, such that R equals the weak closure of = (), where
m, is the representation of U induced by . It was shown by Murray and von
Neumann, see [1, Théoréme 3, p. 280], that all hyperfinite II,-factors are *-isomor-
phic, and hence *-isomorphic to ITPFI-factors. It is not known whether all hyper-
finite factors of types II, or III are *-isomorphic to ITPFI-factors. We refer
the reader to the book of Dixmier [1] for the theory of von Neumann algebras and
to the paper of Guichardet [3] for that of infinite tensor products.

The author is indebted to J. Tomiyama for pointing out a gap in an early version
of the paper. In this version there was also a rather long proof of the implication
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(iii) — (i) in the theorem. I am grateful to G. Elliott, O. A. Nielsen, and J. Woods
for communicating to me the short proof of this implication, which they have
kindly let me publish here. G. Elliott has also pointed outv that the theorem can
be generalized from hyperfinite factors to factors generated by a commuting (not
necessarily countable) family of finite type I subfactors.

2. Produet faetors

Definition. Let R be a factor and o a normal state of R. We say o is
asymptotically a product state if given ¢ > 0 and a type I,factor M c R then
we can find a type In-factor N = N(e,M) such that M c Nc ® and such that

lo — 0| N ® o| N < &,

where N°= N'N R, and we identify R and N ® N°. R is said to be a pro-
duct factor if every normal state of R is asymptotically a product state.

We have here implicitly assumed that both M and N contain the identity I
of . This will always be done when we write A B for two C*-algebras %
and B with identities.

Remark. The property of being a product factor is a *-isomorphic invariant.
Indeed, if ® is a product factor and « is a *-isomorphism of % onto a factor
M then the dual map of & carries the normal states of M onto those of R, hence
they are all asymptotically product states.

THEOREM. Let R be a hyperfinite factor. Then the following three conditions are
equivalent:

1) R is a product factor.
(il) There is a normal state on R which is asymptotically o product state.
(iii) R 4s *-tsomorphic to an ITPFI-factor.

We first prove two lemmas both of which are probably well known.

LeMMA 1. Let R be a countably decomposable infinite factor or the hyperfinite
II,-factor. If N is a type I.-factor contained in R then R =R Q N.

Proof. If R is the hyperfinite II;-factor then R @ N is also hyperfinite and
of type II;, hence R~ R Q@ N by the isomorphism theorem for such factors
[1, Théoréme 3, p. 280]. Assume R is an infinite factor. Let {e;:¢,j=1,...,n}
be a complete set of matrix units in  N. Then the projection e, is infinite, hence
equivalent to the identity, since % is countably decomposable. Thus R = e;;Re;;.
Clearly R =< e;Re;; @ N. Hence R~ R Q N.

Lemma 2. Let R be a hyperfinite factor and N a type In-factor contained in
R. Let N°= N NR. Then N° is a hyperfinite factor isomorphic to R, and
{NUN} =%

Proof. By Lemma 1 there is a *-isomorphism « of ® onto R @ N. Let
M =uxYI @ N), where we write I @ N for the set of operators I @ x,x € N.
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Then M is a type I,-factor contained in %, so there is a unitary operator # in
R such that uNu? = M [4, Lemma 3.3]. Let f(z) = a(uzul) for x € R. Then
g is a *-isomorphism of R onto R N such that BN)=ua(M)=1Q N.
Thus gN) =T Q Ny =IQ NN R QN) = (B(?) @) N(RQ N)=
RN QIR where 9C is the underlying Hilbert space, and B(?() all bounded
operators on 9C. Therefore N°~ R. Finally we have

{NUNY = H{BN)UBWNI)) ={IQNMURQDY) = (RQON)=R.

Proof of theorem. We show (i) — (ii) — (iii) — (i). Clearly (i) — (ii). We first
show (ii) — (iii).

Let 2 be a UHF-algebra which is weakly dense in R, say U is the norm
closure of |J2; M, of an increasing sequence of type I,-factors M, . Let «
be a normal state of R which is asymptotically a product state. Let {e;}~; be a
uniformly dense sequence of operators in the unit ball of {J2, M,,. We shall by
induction construct a sequence {N;} of type Im-factors contained in $ such
that

NchN,c.... (1)
lo— 0N, @ w|Ngll <27%, k=1,2,.... (2)
UZ.N; is strongly dense in R . (3)

(Here and later we identify N ® N° and {N U N°}" in order to make notation
more explicit). Since ® is a normal state the representation it induces is normal,
hence a *-isomorphism of R onto a factor. We may thus assume o is a vector
state w,, where £ is a cyclic unit vector in the underlying Hilbert space 9(. Since
U is separable and £ cyclic, 9C is separable. Let {&};~; be a dense sequence of
vectors in 9¢ with & = &. Since e, belongs to some M, there is from the assump-
tion that o is asymptotically a product state a I, -factor N;C R such that
e, €N, and

1
o — oIV, @ 0| N < 5 -

Suppose we have chosen N, DN, ,D2...DN, and found af,...,af in N,
with Ha}‘” < 1 such that

]](a;‘—ej)é',}]<2“k, j.r=1,...,k, (4)
and such that (2) holds. We shall construct N, ; D N, and af*', ..., af¥] in N,

such that (2) and (4) hold with % replaced by -k + 1.

By Lemma 2 Nj is a hyperfinite factor and {&, U N;}" = R. Let- N; be the
weak closure of |J;2; P;, where {P;} is an increasing sequence of I, p,-Tactors.
Then we can, using the Kaplansky density theorem [1, Théoréme 3, p. 43], find
an integer n, operators af™', ..., et} in the unit ball of {Ni U P,}" such that
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(@™ — eEll <271, j,r=1,...,k+1.

Now {N,UP,}" is a finite type I-factor (which is *-isomorphic to Ni ® P,).
Since o is asymptotically a product state there is a type I, ,-factor N, , con-
taining {N, U P,}" such that

flo — @ Ny @ | Nyl < 271,

Therefore, by induction (2) and (4) hold for all 4. Since the argument also defines
the sequence {N;} we have also shown (1).

We next show that (3) holds. Let a € R. Say [a <1. Let w,..., v €9,
and let % > 0. Then we can find & oo Ejt in the sequence {&} such that
6, —wll <n/4, r=1,...,1. Let k be a positive integer such that 27k < p/4
and such that & > max{j,:r=1,...,1}. Since {e;} is a dense sequence in the
unit ball in A, it is strongly dense in the unit ball in R by the Kaplansky density
theorem [1, Théoréme 3, p. 43). Therefore there exists e €{e;} such that

@ — e)pdl < /4, r=1,...,1. By (4) we can find N,, k;, >k, and b €N,
with [ <1 such that [[(b — e)&| <<n/4, s=1,...,k. In particular this
holds for s =j4,, r=1,...,1. Therefore we have

10 — @)yl < Wb — eyl + e — eyl <0 — edlllpe — &) + 1[0 — e)é; )l + n/4
<2/t + 4+ n/t=1n.

Thus U2 N;: is strongly dense in R, and we have shown that (1), (2), (3) allhold
as asserted.

Let ¥ denote the uniform closure of Y2, N;. Then % is a UHF-algebra
which is strongly dense in R. Let N,={iI} and put M,:=N,N N,_;,
k=1,2,.... Then we can identify B with &2, M. Let o = w| M By
(2) we have that if 1 <k <1 then

oy ® ... Qu, QollVy; —o; Q... R w; & wlVj

=0 ® ... Qw, ® (0N}, — 011 Q... Qv Q ol N

< lw| Ny, — 01 Q... QR o] Nj|

L w| Ny, — W1 &® CU]NZ+1” -+ “wk+1 &® (w[N7c+1 — Wpya Q... 0w @ w|NYI

<2714 lolN ) — 0 a @ 0. Q 0 @ w| Nyl

<okl po-k=2 ot 9kl — 270-R) < 9k
Therefore the normal states o; @ ... ® w, @ w|Nj; form a Cauchy sequence, and
accordingly converge uniformly to a normal state ®:2, w;, which is clearly a product
state on B. If = denotes the representation of B induced by &2 ,w; then =

extends naturally to a *-isomorphism of $ onto the ITPFI-factor #(B)". Hence
we have shown that (ii) — (iii).



HYPERFINITE PRODUCT FACTORS 169

Finally we show (iii) — (i). Assume there is a UHF-algebra 9 which is the
infinite tensor product of type I.-factors M., so W = @, M,,. Suppose there
is a product state ®72,w; of A, where w; is a state of Ma,. Let ;= o om;
be the Gelfand-Segal decomposition of w; and w0z that of & w;. Say & and
& are cyclic vectors in the Hilbert spaces 9¢; and 9¢ respectively. Then & = ® &,
7= Q ‘m, and Y = Q 9, see [3, Prop. 2.9]. Since the property of being a pro-
duct factor is an isomorphism invariant we may assume R = z(A)".

Suppose that a type I,-factor M contained in R, that a normal state o
on R, and that &> 0 are given. Then M @ R acts on P Q@ Y¢, and by Lemma
1 there is a *-isomorphism « of ® onto M ® R. As in the proof of Lemma 2
it follows from [4, Lemma 3.3] that there is an inner automorphism of M @ R
carrying o{M) onto M @ I. Composing this automorphism with « we may
assume x(M) = M ® I. Now since M isa I,-factor and 9C is infinite dimensional
there is a unit vector y in 9 @ 9 such that woax? =0, on M @ R, see [1,
Corollaire 10, p. 302]. From [3, Ch. 1] or [5, Lemma 3.1] there are an integer N > 2
and a vector 7 In HQ® VW, ®...Q Hy_, such that

Iy — 7 ® (@ &)l <</6;
moreover, 7 can be taken to be a unit vector. Let
N=oMQRM, Q... M,, I,

where we identify M, with m;(M,,), and I stands for the identity on 25y 9.
Then N is a finite type I factor, and M c N c R. It remains to show that
lo — o|N @ w|N9 <& or equivalently, that [w, —o,[x(N) Q o, ()] <e.
Let (=71® (®Zn&). Then o /M @ R = w:|(N) @ w [x(N), and so

o, — @, 6(N) @ o, |«(N)]|

<o, — @l + o x(N) @ w u(N) — o, |x(N) @ o (N
+ o, [6(N) & o [x(N) — o, (V) Q@ o, [x(N)]

< &3 - [l [6(N) — @, | N)]| + lleog [6(N)* — o, [(N )|
<3+ ¢/8+¢83=c¢.

Thus o is asymptotically a product state, hence R is a product factor. The proof
is complete.
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