ARKIV FOR MATEMATIK Band 8 nr 17

1.68 11 2 Communicated 11 September 1968 by L. GArpiNG and L. HORMANDER

Necessary and sufficient conditions for the hyperbolicity
of polynomials with hyperbolic principal part

By S. Leir SvEnsson

0. Iniroduction

Let P(&)=u<m & be a complex polynomial of degree m in the complex
variables & =(&,,...,§4+1), and let P, (&) =2 y=nC, " be its principal part. Let (z,,...,
%4,,) be real variables, and put D, =a/idz,. A distribution E(z) on R** is said to be
a fundamental solution of the differential operator P(D) if P(D) E(x)=04(x), the Dirac
distribution. The operator P(D) is said to be hyperbolic if it has a fundamental solu-
tion E with support in a proper cone K having its vertex at the origin (Gérding [5]).
Let N€R*! be such that the halfspace <z, N> =z N, +2,Ny+... +Za+1Nas1>0
contains K =K —{0}. Then

P,(N)+0, P(+#tN) 0 if Z€R™! 7€R, |t|>7, (0.1)

for some 7. Conversely, this condition implies that P(D) has a fundamental solution
with support in some K such that <z, N> >0 on K (Garding [5], [4]).

When (0.1) holds, we say that P is hyperbolic with respect to N and denote by
Hyp N the corresponding class of polynomials.

It follows that P, is in Hyp ¥ if P is, and that a homogeneous hyperbolic poly-
nomial has only real characteristics. We shall, conversely, consider the problem of
characterizing the lower order terms one may add to a homogeneous hyperbolic
polynomial without loss of the hyperbolicity. In the case d=1, this problem has
been solved completely by A. Lax [8]. A generalization of A. Lax’s condition was
given by Hérmander in [6]. His generalized condition is necessary but not sufficient
when 4 >1.

A sufficient condition by Garding [4] for a polynomial P to belong to Hyp N,
if its prinecipal part P, does, is that the roots o of P(o{tN +i£)) =0 tend to zero, uni-
formly in £€ R**!, when t—> + oo. Gérding conjectured that this condition would be
necessary too. (See footnote, page 50 in Garding [4].)

In section 1 of this paper we shall prove Garding’s conjecture. We use a sufficient
condition by Hérmander [6], which can be shown to be equivalent to that of Gérding,
namely that P is weaker than P,, i.e. that for some constant C' we have

|P(&)| < OP, (&), € R**.,
Here, when @ is a polynomial, we put
A= Clre@t, o= (/08 ..., 8/0kan).
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8. L. SVENSsON, Conditions for the hyperbolicity of polynomials

Our proof consists of essentially two steps. First, by use of the Puiseux series ex-
pansion and the Newton algorithm, we prove that if PEHyp N and if r—>5(r) is a
real curve, meromorphic in a neighborhood of r=0, then we have

P(y(r)) = O(1)P,(n(r)) when r—0. (0.2)

Then Seidenberg’s lemma enables us to prove that if P is weaker than P, along any
curve 7(r), meromorphic in a neighborhood of =0 in the sense of (0.2), then P is
weaker than P, ’

Several, mutually equivalent, sufficient conditions for hyperbolicity were given
by McCarthy and Pederson in [8]. In section 2 we give a brief discussion of these
conditions which are, in fact, equivalent to those of Gérding and Hérmander.

In section 3 we consider Hérmander’s generalization of A. Lax’s condition.

Section 4—which was added on November 7th, 1968—consists of an application
to hyperbolic systems of the results of section 1.

I am deeply grateful to J. Friberg and L. Gdrding for valuable advice and kind
interest in my work. The subject of this paper was suggested to me by J. Friberg.
The starting point of the investigation was an idea of his that in the case d=2 one
would get enough information to solve the problem by use of the Puiseux series
expansion. An idea by L. Garding inspired me to the proof of Lemma 1.2. T also
want to thank L. Hérmander who has read the manuscript and suggested valuable
improvements. '

1. The necessity of Garding’s condition

Our main tool in this section is the Puiseux series expansion of the zeros of poly-
nomials Yy j<nC,(r)T’, where the c; are Puiseux series of the real variable r. We shall
also make use of the Newton algorithm to compute the first non-vanishing term in
such expansions. For an account of these matters we refer to e.g. Friberg [2]. When
we use the notation 17, where p is a positive integer, we shall always mean the value
taken by the branch of the function r—r1/? with 0 <argr'? <2x/p. By the lower
Newton polygon of a polynomial > ,a1,T'r* in T whose coefficients are of the type
described above, we shall mean the set of all (A, u) for which there is a ' <g such
that (4, u’) belongs to the convex hull (in R?) of {(4, u)|a1.+0}.

Lemma 1.1. Let P, € Hyp N be homogeneous of degree m and let 7(r)= Zy5s,7, 7",
where the 1,€ R**?, be meromorphic in a neighborhood of r=0. Then we can write

Pon(r) +c)=Pu(M) [ (2= 3 ciy),
- >4

where Jjsic, ;v are meromorphic in a neighborhood of r=0and ¢, ;ER, j = j;, 1 <i<m.

Proof. Since, by the hyperbolicity, P, (N)=+0, we can write
m
Pyn) +7) = P (W) [T (= 5,()).

The zeros t, can be represented by Puiseux series expansions

W= 3 pr l<i<m,
p2pi

in a neighborhood of r=0. Hence with this representation the 7, are meromorphic
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functions of 74/*, for some positive integer », in a neighborhood of rV/*=0. Since
P,€Hyp N and is homogeneous, it follows that 7,(r), 1 <t<m, are real for real .
Let 1 <s<m and assume that y; ,,7*"" is the first term in 7,(r) which takes non-real
values in every real neighborhood of r=0. Then we can choose arg r =gz in such a
way that arg y; ,, 7" =arg y; 5 +9P7/n +=kn for any integer k. Since we have

Tr)= 2 ym’,r”’" + y;.par”ﬂl"(l +0(1)) when r—0,

PiSP <Dy

it follows that if we choose argr as above and |r| sufficiently small, we have
Im 7,(r) =0 which is a contradiction. Hence all the terms y,,7”/* must be real, and
this gives eventually that y,,=0 if » is not a divisor of p and that y,,;=¢; ;€ R,
njZp;.

Theorem 1.1. Let P = Jocicm P€ Hyp N, where Py (£)=Diq-rC & and let
NT)=Dyzp 7", Where 1,€Ryyy, be meromorphic in a meighborhood of r=0. Then
the lower Newton polygon of P, (n(r)+tN) contains the lower Newton polygons of
TPy r(p(r)+7N), 0<k<m.

Proof. Let Pp_y (n(r)+ tN) = 24 u@kin T, 0< k< m.

Since P,(N)=+0, it follows that the point (m, 0) belongs to the lower Newton
polygon of P,(n(r)+1N). For every integer j, let n; be the uniquely determined
integer for which

Qoiu = 0 if y24 <n]~'—}uj,
a0y =0 for some (4, ) with p=n;—4j. (1.1)
Now, in view of Lemma 1.1, the non-vertical line segments of the boundary of the
lower Newton polygon of P,(n(r)+TN) have slopes given by integers. Hence the

lines y =n;—2j constitute in an obvious way the lower Newton polygon of P(nr)+
TN). It is further clear that what we shall prove is that

Oap=0 if u<n,—(A+k)j forsomej, 0<k<m. (1.2)

We assume that (1.2) is false. Then, since (m, 0) belongs to the Newton polygon
of P,(n(r)+tN), it is clear that there is a smallest integer p such that

@y £0 for some (k, A4, p) with p<n,—(@A+k)p.

Since this means that @i, +0 for some (k, 4, p) with ' =u+pk<n,—Aip, we can
choose a real ¢=+0 so that

2 Cfag,+£0 for some (A, u') with u <n,—1p. (1.3)

prpk=p
With this ¢ we write
Q(z, r)=c™r?"P(c™'r P (y(r) + TN)). (1.4)
For reasons of homogeneity we get

Q(T, T) = ckrpkpm—k(n('r) + 11\7)

O<kgsm
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$. L. SVENSsON, Conditions for the hyperbolicity of polynomials
m

(O,n P)

(Oe.d
(M, 0 A

(Pe.np-1~2p (p-1)

Fig. 1. The Newton polygon belonging to P, (1(r) + TN).

Hence we have, by a simple computation,

Qr,r)=2 ?r( 3 cFau). (1.5)
Aw B+pk=p'
In view of (1.4), the hyperbolicity of P gives that the imaginary parts of the zeros
v of Q(7, r) are O(r®) when r—0. In order to get a contradiction, we shall study the
Newton polygon of Q(z, 7).
By the definition of p we have that @1,=0 if u<n, ;—-@A+k)(p—1), ie. if
p+pk<n, ,—A(p-—1)+k. Hence we have

u+p§k:=,,'ckaklﬂ =0 i u<m,—Ap-1), (1.6)
Hg Fagu=an,y i p=n,,—Ap—1). (L.7)
=u

Let A=1, be the smallest integer such that ag, =0 for g =n, , —A(p—1). By (1.5)
it is clear that (1.3), (1.6), and (1.7) give direct information about the lower
Newton polygon of Q(z, 7). We put A, ={(4, p)|u<n,, —Ap—1)}, 4:={(4, p)|A<
Aps pp=my_y —A(p—1)}, and A, ={(4, p)|A <2y, ny_y —Ap—1) <u<n,—Ap}. It is clear,
by the definition of 4, and n, that the point (A,, n,_, —4,(p —1)) is the intersection
between the lines p=n,_, —A(p —1) and u=n,—Ap. Hence it follows that

{4, w) | u<mn,~Ap} S 4,V A,U 4,. (See Fig. 1.)

Now it is clear by (1.6) that no points of the Newton polygon of @(z, r) lie in 4,. By
(1.7) and the definition of 4, no such points belong to 4, either. But by (1.3) at least
one point of the lower Newton polygon of Q(z, r) is in {(4, u)|s <n,—Ap} and thus
in Aj,. Therefore there must be a line segment of the boundary of the lower Newton
polygon of Q(z, r) starting in a point in A; and ending in (4, n,_; —A,(p—1)). It is
then clear that this line segment will have slope —¢q, where p—1<g<p. But this
means that there is a root z(r) of @(z, r)=0 such that 7(r) =br%(1 +o(1)) when r—0
for some b+0. We have r % Im 1(r) =Im 7 ?z(r) =Im (br?"?)(1 +0o(1)) when r—0
through real values. Since p—1<g<p, it follows that Im b ?—and consequently
r~" Im 7(r)—is not bounded in any neighborhood of r=0. Hence we have reached a
contradiction, and the theorem is proved.

148



ARKIV FOR MATEMATIK. Bd 8 nr 17

Fig. 2. The Newton polygon belonging to T4+ 4(1 +72)} 73 + (4 + 3¢2) 72 — 2r%(1 + 72)} 7. The Newton
polygon belonging to the lower order term of degree 3 must lie in the shaded region if we shall
not loose the hyperbolicity.

Ezaomple. Consider the polynomial
P((&y, &, &) = (S -8~ ) (E1-E-28) + £

(Due to P. D. Lax; see Courant and A. Lax [1].)

We put 5(r) ={(1 +7%)%, 1, r). Then we have P(n{r)+7(1, 0, 0)) =7*+4(1 +r2)ted 4
(44 3r2) 12— 2r2(1 + %) 7 +-r. We see that the lower order term contributes the point
(0, 1). By the figure and Theorem 1.1 we see that P is not hyperbolic with respect
to (1,0, 0) although its principal part is.

Theorem 1.2. Let PE€Hyp N, let P,, be the principal part of P, and let n(r) = 2,5y, 77"
where n, € R**, be meromorphic in a neighborhood of r=10. Then we have

P(n(r))=0Q1) P, (n(r)) when r—0. (1.8)

Proof. Let u, be the least integer such that (4, u,) belongs to the Newton polygon
of P,(n(r)+7N) for some A. (The existence of y, is clear, since P,(N) =0 and since 7
is meromorphic.) It is obvious that (1y, #,) is & vertex of the lower Newton polygon
of P, (n{r)+tN) for some A,. Put

@, N>= 3 lea/é?E,,N=(N1,...,Nm).

Iy d+

By Taylor’s formula and the chain rule we have
Punn)+TN)=_ 3 <0, NP, (nir)d'/jl.
0 m

Thus, by the definition of (4, yo), we have with some by+0,
@, NY" P, (5(r)) =r"(By+ o(1)) when 7-0. (1.9)

We write P = Docrcm Py, Where P(£) = q-rC&" Let 0<k<m and assume that
for some by %0 and some integer u; we have

P, _(n(r)) = r*e(b;+0(1)) when r—0. (1.10)

It is clear then that (0, u;) belongs to the Newton polygon of P,,_(n{(r) +7N) so that,
by Theorem 1.1, ;. =>u,. Hence we have, by (1.9) and (1.10),

P,,_(n(r)) =0(1)<8, NY* P, (n(r)) when r—0. (1.11)
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$. L. SVENSsON, Conditions for the hyperbolicity of polynomials

If P, i(n(r)) is identically zero, (1.11) is trivial. Since, by definition, Pn(n(r))=
(T2 |0"P(m(r)| D), it is obvious that (3, NY*P,(n(r)) =0(1)P,(n(r)) when r—0.
Hence we have

P, (n(r))=0Q)P,(n(r)) when r—0,0<k<m.
By the triangle inequality we get (1.8), and the proof is complete.

Remark. It may seem that we have used only a small part of Theorem 1.1 in the
proof. We have only used what we know about the Newton polygons of P,,_,(x(r) +7N)
in relation to the line u =n, of the proof of Theorem 1.1. But it is clear that in order
to get any information about this we must first examine the relations between the
Newton polygons of P,_ (#(r) +7N) and the lines y=n;—24j, for j<O0.

Lemma 1.2, Let @, and Q, be complex polynomials in d + 1 variables, @, not identically
zero. Assume that for any curve n(r)=2,5,7,1", where 1, € R meromorphic in a
netghborhood of r=0, we have

@:(n(r)) = O(L)Qu(n(r)) when r—0. (1.12)
Then we have with a constant C
1@1(8)] <C|Qu(&)], EER™. (1.13)

Proof. Denote by B the set {£€R***|Q,(£)+0}. Since @, is not identically zero,
it follows that B is a dense subset of R**1, Assume that ‘

sup|Q: (£)/Qa (O] = + = (L.14)

Consider the system

1@ O —5]|Q(O)F=0, [Q(&>0 (1.15)

We observe that |Q,(£)[2~s|Q,(£)[* and |Qy(&)[* are real polynomials in £€ R**Y,
S€ER. Seidenberg’s theorem (see e.g. Gorin [3]) asserts then for every j,1<j<d+1,
the existence of a condition H,, consisting of a finite number of systems of
polynomial equations A ;(&,, ..., &, 8)=0, 1<k<kj, and polynomial inequalities
b (&, oer €5, 8)>0, kj <k <K,, such that for every (&, ..., £, s) € R'** the following
conditions are equivalent:

I. There exist real £y, ..., £a+1 50 that (&, 8), £=(&y, ..., £a+1), is a solution of the
system (1.15).

II. The condition H; is satisfied by (£, ..., &, 8); i.e. (§y, ..., &, 5) satisfies at least
one of the systems in the condition.

Assume that for some 5, 1 <j <d+1, we have found Puiseux series y,(3), ... ¥;_4(5),
convergent and real for all large real s, such that the system (1.15) has real solutions
E=(p1(8), -y ¥5-1(8) &5y -y E4pq) for some arbitrarily large s. If j=1, we mean by
this that the system (1.15) has real solutions & for some arbitrarily large real s. Hence,
in view of (1.14), the assumption is correct when j=1. We study the Puiseux series
expansions of the roots &; of the equations Ay, ;(¥,(s), ..., »7-1(8), &, 8) =0, 1 <k<k;,
for large real s. Everyone of these expansions is a meromorphic function of sir
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in a neighborhood of ¢'/? = co, for some positive integer p. In particular it is either
real or non-real for all sufficiently large real s. Let #4(s), ..., #,(s) be the different real
expansions, continuous and arranged so that &,(s) <y(s) <...<¥,(s) for s;<s. We
may assume s, 80-large that these are the only possible real roots of the equations
Py s {v1(8), ooy v-1(8), &, 8) =0 if 53<<s. We put §y= — o and 9,,; = + co. We observe
that if the condition H; is satisfied by some (y,(s), ..., ¥;-1(5), §;, 8) with s>s, and
Ph-1(8) <&;<Pi(s), for some I, 1 <I<J +1, then it is satisfied by all such (y4(s), ...,
vs-1(8), &5, ). If the condition H, is satisfied by some {y,(s), ..., ;_1(8), &, 8) with s > s,
and §;,=9, for some [, 1 <I<J, then it is satisfied by all such (y(s), ..., ¥1-1(s), &;, $).
(Cf. the proof of Lemma 2.1 in the appendix of Hormander [6].) Further it is clear
that if 1 <I<J 41, we can always find a Puiseux series ¢; so that 4;_1(s) <¢y(s) <B:(s)
for s>s,. (Take e.g. (Pi_1+%)/2 if 1 <I<J, §,—1 and §,+1.)

Now it follows from the assumption that the condition H; is satisfied by some
(7108)s «-vs 75-1(8), &, 8) with s>s, and real &, Hence it follows from the discussion
above that there exists a Puiseux series y;, convergent and real for s>s,, so that
(#1(8), -..> ¥4(8), 8) satisfies the condition H; for s>s,. This means that the system
(1.15) has real solutions (yy(s), ..., ¥;(8), &s+1, ---, Ear1) for s>8,. Since the assumption
is correct if j=1, we can thus in a finite number of steps prove the existence of a
function y(s) = (#4(8), ..., ¥a+1(s)), meromorphic of s*/¢ in a neighborhood of §"/%= oo
for some positive integer ¢, and real for all large real s, so that & =y(s) solves the system
(1.15) for all sufficiently large s. We put s=r"2¢ and 5(r) =y(r *?). Then 7 becomes
meromorphic in a neighborhood of 7 =0, real for real r, and

(@) /| Qaln(r)) | = 7| °

in a deleted neighborhood of r=0. But this contradicts (1.12). Hence we must have
with a constant C

10:(6)] < C|Qu®)], E€B.

But, since B is a dense subset of R***, it follows by continuity that this inequality
is valid for all £€ R**. The proof is complete.

Theorem 1.3. Let P be a polynomial with principal part P,€Hyp N. Each of the
following conditions is necessary and sufficient for P to belong to Hyp N.
I. (Garding [4])
The roots o of the equation P(o(xN +i£))=0 tend to zero, uniformly in £€R**,
when T— + oo,
II. (Hormander [6] Theorem 5.5.7)
P is weaker than P,,.

Proof. The necessity of II is immediate from Theorem 1.2 and Lemma 1.2.

To see that II implies I, we write P= Do ycm Py Where Py (&)= Z[a|=k . &% and
observe that by the proof of Theorem 5.5.7 in Hormander [6] it follows that II implies
that there exists a number C so that

II' [¢*Pn_x ((zN+ &)/P, (1N + &)|<C if z>1 and £ER*, 0<k<m.
(Cf. Theorem 1.1.) We consider the polynomial in g
2 " F (" Pu_y (itN — §) /Py (izN — §)). (1.16)

o<k m
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8. L. SVENSSON, Conditions for the hyperbolicity of polynomials

The coefficient of the leading term in (1.16) is 1. Hence, in view of IT, the zeros of
(1.16) are bounded for 7 >1, £€ R**!. But since, for 7>1, and £€ R**,

P(o(eN +i£) =T "Pp (TN ~&) 3. (=70 H(z* Py (el — )Py (7 = £),

sksm

it follows that
I' the roots o of P(c(zN +i£)) are O(r-1), uniformly in £€ R**!, when 7— + co.

That I' implies I is trivial.

Assume now that P fulfills condition I. Take 7, so that the least upper bound of
the absolute values of the roots o of P(o(zN +i&)) is <1 for 7>1,, £ER**!. Then
P(i(tN +i€)) =P(iTN — &) =0 for 7 >1,, £€ R**'. Since it is sufficient for hyperbolicity,
that the imaginary parts of the characteristics are bounded from above (see e.g.
Hormander [6]), it follows that PE€Hyp N. The proof is complete.

Remark. T' and II” are of course also necessary and sufficient conditions for
hyperbolicity.

2. Further necessary and sufficient conditions

Let Q(r)=AT]%1(tr—1;) be a complex polynomial. We consider the Lagrange
interpolation polynomials @,(t)=@(r)/[](r —t,) where ¢ runs through a subset /
of {1,...,m}. When I=1{3i}, we write @;=@,, 1<i<m. We shall also need the
polynomials (McCarthy and Pederson [9])

L@ =20 @)

where the summation goes over all I =1, with k elements, 0 <k<m.

Let P,,€ Hyp N be homogeneous of degree m. Denote by N+ the plane perpendicular
to N. We consider for each £€N* the polynomials in 7, P5(t; &) =(9/07)' Pu(£ +TN).
These polynomials have only real roots, in view of the hyperbolicity of P,. We
define in the natural way for each £€EN*, (P)(7; &) and L(PY; 7, &), 0<k<m —j.

We shall need the simple fact (McCarthy and Pederson [9]) that if @(z) is a complex
polynomial of degree m with m real zeros, then we have

|Qz+io)P= 3 L(@;7)c™, 7€R, oER.

0gksm

This is easily proved, e.g. by induction with respect to the degree of Q.
We shall also need the following lemma which is due to McCarthy and Pederson [9].

Lemma 2.1. Let Q(r) be a polynomial of degree m with m real zeros. Then we have

(m=nl-n_ L(@7) _k=1-r)!k=r!

mlk! S Lo (Q77) T (k—1)k! y Tk
Proof. Tt suffices to assume @ real. We have
|Q(z+1i0)|*= 0<%< L, (Q; 1) 6**, tER, 6ER. (2.1)
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2 2
We apply g 66 5 to both sides of (2.1) and get
4|Q'<r+z'o) = 3 Td@) o+ 2@ L& 1. (22)
23

But @ too has only real zeros, and therefore

[Q@+io)f'= 3 L@;7)e™ (2.3)

O<hkgm—1
From (2.2) and (2.3) we get
4L(Q'; v) = Lu(@; 0" + (2k + 2) (2 + 1) Ly 1(@; 7)- (24)

Now it follows immediately from the definition of L, that
L@ 7)" =2 Izk (Qn(7))* + Qr() Qul7)).
Differentiating @r, yields
du(m)=Qu2 (r=w)"

and

Q) = Qu(r) [(%k(r —7) - %k(r -7,)".
Hence we have

L@ 1) =2 (@u®) 4( 2 (v —w) V¥ -23 (x—w) ™). (2.5)
Ix i¢lg ¢l
Since there are k+ 1 subsets of each I,,; with k elements, it follows that
Lin(@0)=1/F+1)2 3 (@n()?/(t— )% (2.6)
I ¢l

Substitution of (2.5) and (2.6) into (2.4) gives
L(@;v)= % (Qu(x))? [(igk(r —7) 7 )+ kg]k(f - 1))
From Schwarz’s inequality and (2.6) it follows that
k(e +1) Ly s1(Q; 7) kz Qun(t zgk(r—ri)‘z
<L (@5 7)
< % (Qn (0))* [(m — k)ig,, (T-m) 7+ kgk (t—7)7%)

<m(k+ 1)Ly 1(Q; 7).
Hence we have

LQ; 7)
l/mk<L,c NCE <1/kk 1).
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S. L. SVENSSON. Conditions for the hyperbolicity of polynomials

If we replace @ with @®, j=1,2, ...,r—1 and multiply the inequalities thus ob-
tained, we get the wanted inequality.

Theorem 2.1. Let P =g icm Py where P(E)= D y-rC &, be a polynomial with
principal part P,€Hyp N. Then the following conditions are equivalent.
I P is weaker than P,
I' P,_, is weaker than <9, N>* 1P, =P% ™V 1<k<m,
II (Peyser [12])

We can write
Pm—k(tN+ 5) = Z lbky(s) (Pg:_l))i (73 S)) IER9 EENJ-’ 0< kgma

1S m-k+
where the by; are bounded for £€N2,
IIT {(McCarthy and Pederson [9])

There exists a number C such that
|Pm_k(zN+5)|2<CL,,(P,,,; 7, &), TER, EENL, O0<k<m.

Remark. II and III are the two main conditions among the several equivalent
conditions of McCarthy and Pederson [9].

Proof. We observe that it follows from the proof of Theorem 5.5.7 in Hérmander
[6] that P is weaker than P,, where P,,€ Hyp N, if and only if there exists a number
C such that

| Prsk(®N +&)| SC|Pu((x+3) N +£)|, TER, EENL, 0<k<m.
Hence, by (2.1), P is weaker than P,, if and only if there is a C such that
| Prs(tN +&) 2 <00 Y LPum 7, &), TER, EENL, 0<k<m. (2.7
<k<m

Assume that P is weaker than P,, hence fulfills the condition (2.7). We observe
that L (P,; 7, &) is homogeneous in 7 and & of degree 2(m —q). Let 0<k<m. The
homogeneity of P,_, and L,(P,; 7, §) gives

| Prk(eN + &) E=|r P | P y(r Y (zN + £)) 2
SC|rfm® 3 Ly(Ppr 't rlE)
0<asm
=C 2 |rPOPLPn; 7, &), TER, EEN*, r+0. (2.8)

Ogesm
We write

P,((c+T)N+&=P, (N)I_II(O"“ o), TER,c€ER, EENL,
i
where |o;|<|0;|< ... <| 0|, and observe that the largest term in L,(P,; 7, &) is

[P (W) PII%g41] 0% 0<g<m. We separate two cases. If 7€R and £EN* are such
that ¢y.1+0, it follows trivially that

m m
e P IT |oP< T1 Ja 0<g<m.
f=g+1 f=k+1
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Hence we have with some constant ¢, independent of 7 and §&,

| 0441 29" Lo(Pps 7, §) < C' Li(Pps 7, £), 0< g <.
We put =04, in (2.8) and get

| Pk eN + &) P<C o<§<m |ok+1 9P Ly(Pp; T, &)

<CO'(m+1)Ly(P,; 1, &).

If 7€R and £EN* are such that gy, =0, it follows that L(P,; 7, £)=0, 0<g<k.
Hence we have in this case

|Pu-k (zN+ERE<C 3 |rCPL(Puy 1, £), r+0.
k+lgesm

We let r->0, and get P,_ (TN +&)=0.
Hence we have in both cases

| Pt +£)2<OC (m +1) L(Pp; 7, £), TER, FEN,

and we have proved that I implies II1.
That III and II are equivalent has been proved by McCarthy and Pederson [9].
We indicate the proof. By IIT and Lemma 2.1 we get

| Po_u(xN + &) P< OLy(PEY; 1, &),
=0 > ((PRV)(1;8), EENY, 1€R, 1<k<m.
1

I<igsm—k+

But then it follows easily that for each £€EN* we can write

Pow(N+E= 3 by (&) (PE )7 8),
I<igsm—k+1
with |5, () [?<C, 1<k<m.
-Assume, now, that P fulfills the condition II. Then we get
| Pr-i(zN + &) P < OL(P¥Y; ¢, §), EENL, TER, 1< k< m.
But since L(PEY; 7, &) <|PE D (z+4) N + &)}, T’ follows immediately.

That I' implies I is trivial.

3. A necessary condition for hyperbolicity

Theorem 3.1. (Hormander [6] Theorem 5.5.8.) Let P€Hyp N and let P, be the princi-
pal part of P. Then the degree of P(1& +n) with respect to T for a fized real & and indeter-
minate ) never exceeds that of P, (& +N).

Proof. Immediate consequence of Theorem 1.1.
A condition equivalent to the one given in Theorem 3.1 is given by the following
theorem of R. N. Pederson [10].
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Theorem 3.2. Let P = ycm P EHyp N, where Py (&) = D jq=x € £*. Then we have,
for every EERY, that if
<0, NY P, (£)=0 for j<v
then also
&Pp_1(£)=0 for |a|<v—k, 0<k<m.

Proof of the equivalence. Let £€R**, We observe that
P, (té+N)= 3 <8, N) P,(z€)/j!
0gis<m
= 2 <, NYP,(&)v"/j!,v€R.

0<ism
Hence the degree of P, (v&+ N) with respect to 7 is less than or equal to m —y» if
and only if (3, N)! P, {£) =0, 0<j<». On the ofher hand we have

P@zE+q)= ga“P(‘cE)n“/zx!

=2 2 FPuil®T" My al

« Ogk<m—|al

= 2 P( 3 OPuwEn/a!), 1ER, nERM.
0<i<m  0<lei<m—i

Hence the degree of P(r£+7) with respect to 7 is less than or equal to m —y» for

all € R*** if and only if

z 3“P,+,,‘(§)'r)“/oc!=0,qERd+1,0<m—j<v.

O<lelsm -4
But this is equivalent to 8*Pp_x (§)=0 if |oj <v— k.

The conditions of Theorem 3.1 and 3.2 are, however, not sufficient for hyperbolicity.
We consider once more the polynomial

P((7, &, &) = (P~ - 8) (P - & - 28) + & &

The principal part is clearly hyperbolic with respect to (1, 0, 0), and has simple
characteristics everywhere except for £, =0 where it has double characteristics. The
lower order term is zero when £,=0 o the condition of Theorem 2.2 is fulfilled.
However, we can see by the example after Theorem 1.1 that the polynomial P is not
hyperbolic with respect to (1, 0, 0).

4. An application to hyperbolic systems!

We consider r xr matrices Q(&) =(g4(£)) where the elements g, of @ are poly-
nomials in £=(£,, ..., £4+1)- We let I denote the 7 x 7 unit matrix. The operator @(D)
is hyperbolic if it hag a fundamental solution £ with support in a proper cone K,
that is, if there is a matrix E =(E ) where the & are distributions with support in
K such that

QD)3+ E =041.

1 This section was added to the paper on November 7th, 1968.
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The matrix @ is hyperbolic if and only if the polynomial det @ is hyperbolic. In fact,
if det @ is hyperbolic and if F is a fundamental solution of det @(D) with support
in some proper cone K, then we have

Q(D)0 % @Q(D)é% FI = ((det Q(D))dx F) I =61

But this means that °@Q(D)d FI is a fundamental solution of Q(D) with support
in K. Assume on the other hand that @ is hyperbolic and let # be a fundamental
solution of Q(D) with support in some proper cone K. We observe that all scalar
distributions with support in K constitute an associative and commutative convolu-
tion algebra. In view of this fact it follows that Q(D)dx E =4I implies that
(det Q(D))6 (det B)=4 where det £ means the convolution determinant. Since
the support of det ¥ lies in K, it follows that det @(D) is hyperbolic.t

By this discussion it is clear that we should call @ hyperbolic with respect to
NeR™! if and only if the polynomial det @ is in Hyp N. We define Hyp, N to be
the set of all polynomial matrices @ of type r x r such that det @ is in Hyp N.

Let
Q&) =A(5)+ B(&) (4.1)

be rxr-matrices where the elements a; of A are homogeneous polynomials in &
of degree m;+mn,, and where the elements b, of B are polynomials of degree<
m;+ny, 1, k=1, ..., r. All the m; and n, are integers, not necessarily > 0. We shall say
that the zero polynomial is a polynomial of any degree (even negative). We call
Q=4 + B strongly hyperbolic with respect to N€R**! if 4+ B’ is in Hyp, N for
any choice of the lower order matrix B’ (Yamaguti and Kasahara [14], Strang [13]).

Assume that the matrix 4 of (4.1) is in Hyp,N. In particular this implies that
det 4 is not identically zero, and it follows easily that the principal part of det @
is det 4. But then we get immediately from Theorem 1.3 the following theorem.

Theorem 4.1. Let Q=4+ B be a matriz of the type (4.1), and assume that A is in
Hyp,N. Then Q is in Hyp, N if and only if

det @& +2)/det A(&+iN) = det(I + B(E+iN) A-L(E+iN))
13 bounded for real &.

The condition of Theorem 4.1 means that the product of all the eigenvalues of
Q& +iN) A-1(£ +4N) is bounded for real & When all the m;+n, of (4.1) are equal to
1, it is easy to prove that even the individual eigenvalues must be bounded. For the
proof we shall need the following lemma.

Lemma 4.1. Let P= 3o 4 n P.€Hyp N, where the P, are homogeneous polynomials
in EERYof degree k. Then there is a number C such that

P E+iN)+ 3 2 P(E+iN)+0 if E€R™ and 3 |zu|<C

Ogkgm—1 Ogkgm -1
Proof. By Theorem 1.3 it follows that there is a number C, >0 such that
| P& +iN)| /| Pu(§+iN)| <Oy it E€ER,0<k<m.

1 This very short proof is due to L. Garding.
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By the triangle inequality we get

| Pu(E+iN)+ 3 lszk(§+iN)|>IP,,,(§+1}N)|—0<kz llszk({-‘+'£N)|

o<k m— Shkgm—

2P+ i 1-0 3 |zl

>0 if > lal<1/C,=0C.

0gesm—-1

Theorem 4.2. Let Q(£)=A(E)+ B be a r xr matriz, where the elements a,, of A are
homogeneous polynomials of degree ome in &=(&,, ..., Ear1), and where the elements
by of B are complex numbers. Assume that A is in Hyp,N. Then Q is in Hyp, N of
and only if the spectral radius of BA-1(£ +1N) is bounded for real £.

Proof. If the spectral radius of BA-1(£+iN) is bounded, then the same is true of
the spectral radius of I + BA-Y(£ +4N). Hence det (I + BA-Y&-+1N)) is then bounded
for real £ which in view of Theorem 4.1 means that @ is hyperbolic.

Assume, on the other hand, that @ is in Hyp, N. Then we have, by Lemma 4.1,

det (Al + BA-YE +iN)) = A" det (A(£+iN)+A-1B)/det A-LE+iN) +0

for all real £ if |A]|-! is sufficiently small. But this means that the eigenvalues of
BA-Y&+1iN) are bounded for real £.

Remark. It is easy to see that if r>1, the necessary and sufficient condition on B
given by Theorem 4.2 is strictly weaker than the sufficient condition used by Kopadek
and Such4 [7] to define a class of first-order hyperbolic systems of the type (4.1).
Their condition is that if (°4(£)) B =(b,(&)), then (see Theorem 2.1, II)

(& +TN)= L e @et A), (3 )

with bounded functions yJ¥, 7€R, £ENL, j, k=1, ..., n. In view of Theorem 2.1 it
follows that this condition is equivalent to the condition that

| 4-1(5+iN) B]| =||(det (A(&+3N)))-L(P4(£ +iN)) B

is bounded for real & This implies of course that the spectral radius of BA-(&+tN)
is bounded for real &.

Example 1. The following example of a non-hyperbolic matrix is due to Petrowsky

[11]. The matrix
_§1+§2 "53 0
Q(f)=( & —& —& )
0 -1 =&

is not hyperbolic with respect to (1, 0, 0) although the corresponding matrix 4 is.
In fact a simple computation shows that the only non-zero eigenvalue of B4-1(£ +1N)
is

—Ey(Ey &) (&, +0) (&L +9)2 — (&, +9) &, — £5).
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If we put & =0 and &, =£5 we get
—&6-8)/i(-1-i8— &)
which is clearly not bounded.

Ezxample 2. Consider the matrix

§—& O 0
A(f) ={ 0 51 - 52 0 .
52 0 51 - 52
The maitrix 4 is clearly hyperbolic with respect to N =(1, 0).

Let further
0 1 0
B =( 0 0 0 )
0 0 1

4 simple computation yields

(Ei+o—§) 0 0
A“($+iN)=( 0 (§1+i—§2)‘1 0 )
“‘52 (51‘}"1:"52)_2 0 (51+i‘52)—1
We get
0 (&+i—-&)T 0
BA‘1(§'+1IN)=( 0 0 0 ),
—52(51'*‘2:_52)_2 0 ($1+i—52)—1
and
0 (Ei+i—&)* 0
A“1(§+iN)B=( 0 0 0 . )
0 "52(£1+i-§2)—2 (51 +i‘52)~

Since &5(&, +% —&,)~® is not bounded for real £, as is seen by putting £, =&,, it follows
that neither ||BA-1(5+iN)|| nor ||[A-1(£+iN)B| is bounded for real & But the
eigenvalues of BA-Y£+4N) are 0 and (£ +1—&,)-1. It follows that the spectral
radius of BA-1(£+4N) is bounded for real £, and hence that 4 + B is in Hyp, N.

Example 3. The condition of Theorem 4.2 is of course always sufficient for hyper-

bolicity, but in general not necessary if some m;+ny, is different from one. Consider
e.g. the matrix

A(§)=( (51—52)2 52 )'

0 51 - 52
A is hyperbolic with respect to N =(1,0), and we may put n, =2, ny=1, and

my =my=10. Set
B(E)=( c 0 )
El_§2+l 1
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We put = (& +14—&,)"". A computation yields immediately

2 2.3
B(E+iN) A"1(§+iN)=( St )
ntnt —&pt—&ntty
Further we get

det (A1 + B(E +iN)A-YE+iN)) =22+ A(n—&:m®) + &

Now it is clear, by putting & =&,, that £ is not bounded for real £. Since the
coefficients of the polynomial in A are not bounded for real £, we see that the zeros
cannot be bounded either. Thus the spectral radius of B(§+iN)4-1(£+4N) is not
bounded. But det (I + B(§+iN)A-Y&+iN)) =1+ is bounded for real £, and thus
A+ Bisin Hyp, N.

Theorem 4.1 makes it easy to derive necessary and sufficient conditions for the
matrix A of (4.1) to be strongly hyperbolic.

Theorem 4.3. Let A be the matriz of (4.1). If A is strongly hyperbolic with respect to
N € R**, it follows that the matriz A-YE +iN) =(cx(€)) ewists for all real &, and that there
18 @ number C such that

lea(®] <C@+|&]ym™ 4.2)

if EER* and my+m,;>0, §, k=1, ..., 7. On the other hand, if (4.2) is valid for real &
and oll §, k=1, ..., r, @ follows that A is strongly hyperbolic.

Proof. Assume first that 4 is strongly hyperbolic with respect to N. Then, in
particular, 4 is in Hyp, N, and it follows that 4-2(£ +4iN) exists for all real £. Further,
A+ B is in Hyp, N for any choice of the lower order matrix B. We choose B with
only one noun-zero element, say b,, 1<p<r, 1<q¢<r. It is easy to see that the
condition of Theorem 4.1 for our choice of B means that |1+b,4(&+iN)c,(£)] is
bounded for real £, and this implies that b,,(£ +iN)c,,(£) is bounded for real §. But
we may choose any polynomial of degree <m,+n,—1 for b,,. It follows that

leal®] <C(A+|g]) ™" it EER'™ and my,+n,>0.

Assume, on the other hand, that 4-1(£ +4N) exists for all real £ and that [c,(&)] <
C(1+ |&|—m—m if EER**, §, k=1,...,r. Let B be any lower order matrix. Since the
elements by, of B are polynomials of degree <m;+mn,—1, it follows that for some
congtant C,

|balé +iN)| <C(1+ ||+t EERM, j, k=1, ., 1.
Hence we have for the elements of B(E+iN)A4-1(&+1N)
l z rij(§+iN)cvk(§)l<02(l +|§I )mi-mks éeRd+1’ j’ k= ]-; veey T

LS

In particular the elements on the main diagonal (j =k) are bounded by a constant,
and this property is not altered by adding a constant to those elements. Hence, if
I+ B(E+iN)AYE+iN)=(d (&), we have

[da(&)] SC4(1+ &))", EER™, j, k=1, ..., .
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But then it follows, quite trivially, that det (I + B(&+iN)A-1(§ +1N)) is bounded
for real &.

It remains only to prove that 4 is in Hyp, N. But this is clear since the existence
of A-1(§+iN) means that det A(£+4N)=+0 for real & From the homogeneity it
follows that det A(§+4N)+0 if £€R**! and v€R—{0}. In particular we have
det A(sN) +0, and it follows that det 4(N)=0. Thus 4 is in Hyp, N. By Theorem 4.1
it follows that A + B is in Hyp, N too. Hence A4 is strongly hyperbolic with respect
to N. The proof is complete.

When 4 is a 1x1-matrix, i.e. a polynomial of degree m, the condition of the
theorem is simply

[AE+IN)| =C(1+ &)™), e R

If all the m;+n, of (4.1) are equal to a common integer m,, the condition can be
expressed as
[4-1E +iN)]| <C( + |&|) =™, € R,
or if my=1, simply
|4-YE& +iN)|| <C, E€ R,
Because A(§+4tN) is homogeneous in & and 7, the last inequality is equivalent to
T|A-Y& +iTN)|| <O, EER™, >0,

which is essentially the condition for strong hyperbolicity, derived by Strang in [13].

A couple of examples will show that it is not necessary for strong hyperbolicity that
(4.2) is valid for all §, £=1, ..., r in the case when some m,+n,<0, and that it is not
sufficient that (4.2) is valid for all §, k with m, +n,>0.

Ezample 1. Put

_ 2

4= L& & )
Y §—&

Then 4 is in Hyp, N where N =(1, 0). We may take m, =1, my=0, 1, =0, and n,=1.

It is easy to see that 4+ B is in Hyp, N for any choice of the lower order matrix

a b +cky+d )

B(§)=( 0 e

This means that 4 is strongly hyperbolic with respect to V. But if we compute the
¢y5, corresponding to A4, we find that c,5(&) = —E5(£, +4 —&,)-% In particular we have
that ¢,5((&,, £;)) =£5. We see that ¢;, does not fulfill the condition (4.2).

Example 2. Consider the matrix

6—&)& O 0
A(§)=( 0 i—&) 0 )
0 & & &)

A is clearly hyperbolic with respect to N=(1,0), and we may put m; =1, my=0,
mg=1, ny=1, ny=1, and ny,=0. We have m; +n;>0, except for the case k=2, j=3.
We compute 4-1(&+4N), and get, with 7=(&, +1—&,),
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nE+a)t 0 0
A g+ ={ 0 n 0
0 -&87 9

We see that all the elements ¢, except cgy, fulfill the condition (4.2). However, A
is not strongly hyperbolic, as is seen by choosing as lower order matrix

We get

0o 0 1
B=[1 o o
0O 0 0
0 -&n n
BANE+iN)=| n&+9) 0 0
0 0 0

Hence it follows that det (I + BA-Y(&+iN)) =1+&5%%(£, +4)-1, and this is clearly not
bounded for real &, so by Theorem 4.1 4 + B is not hyperbolic.
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