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On the remainder term in the central limit theorem

By CARL-GUsTAV ESSEEN

1. Summary and notations

Let X, X,, ..., X, be independent random variables. Throughout this paper
the following notations will be used. The random variable X, has the distribu-
tion function Fi(x), the characteristic function f,(f) and Var (X,)=o%. We shall
always assume that E(X;)=0, ¢f < 0. The normalized sum

1 n
“sz
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where s2=370% has the distribution function F,(x) and the characteristic func-
tion f,(f). By the same C we shall denote generally different positive absolute
constants and by the same 6 generally different real or complex quantities such
that |8|<1. The standardized normal distribution function is denoted hy ®(z).

Suppose that Py =E(X,|")<oo, k=1,2,...,n. It has been proved by A.C.
Berry and the present author, see e.g. Feller [1, p. 515], that

3 B
|Fo(z)— O@)| <Cly—, —oo<z<oo. (1.1)

EH

If the random variables are identically distributed with the same distribution
function F(x) then (1.1) becomes

F (x)— D( SC’»—@’—: -0 << o0, 12
l @] <07 (1.2)
where f;=E( X, ), o*= E(X}).

Recently Ibragimov [2] has obtained the following interesting result in the
case of identically distributed random variables. In order that

sup |F—n(x) - (D(x) I = 0(/"'“1/2)’ =,
x
it is necessary and sufficient that

fa 22 dF(zy = 0(1), zf PdF(x)=0(1) as z—>oo.

fzl=z
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In this note we shall prove an inequality analogous to (1.1) but valid under
weaker conditions, similar to the conditions (1.3) of Ibragimov in the case of
identically distributed rendom variables. The following notations will be used
in the sequel:

A =supz 2’ dF,(x), (1.4)
2>0 lzl=2
@c=sup ( j ) 2*dF(x) |+ 2 J- x’dFk(x)) . (1.5)
z> -z lzl=z

Theorem 1. If g, <co for k=1, 2,...,n, then

n

_ 2.0
sup | F(z) - O(2) | <C 2 (1.6)

s

The proof of this theorem is for the most part analogous to that of the in-
equality (1.1). It is based on the use of characteristic functions and the fun-
damental inequality (see for instance Feller [1, p. 512])

24
aVonT’

oup |yt ~0(@)| <L [ I=emlelae )
z -7

where 7' >0 is an arbitrary parameter.

Since absolute third order moments, however, are not assumed to be finite,
we need some new results concerning the behaviour of f,(f) in the vicinity of
t=0; these are stated and proved in the next section where the proof of Theo-
rem 1 is also given. This proof is an immediate consequence of the inequality
(1.7) once the behaviour of f,(¢) about ¢= 0 is known. We shall not aim at getting
as small a numerical value of the constant C' in (1.6) as possible. If the ab-
solute third order moments are finite then, as is easily seen, the inequality (1.1)
is a corollary of Theorem 1. _

TFinally we shall use Theorem 1 to obtain an estimation of sup, | F,(z) — ®(z)|
only assuming the existence of the variances.

2, Proof of Theorem 1
We begin by proving three auxiliary results.

Lemma 1. Let X be a random variable with the distribution function F(z) and
and let X' be a random variable independent of X and with the same distribution.
Denote by Fs(x) the distribution function of X —X'. Then

PdF(z) < 4:0f‘ 2 22dF(x).

1z122 3
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If F{(x,y) is the distribution function of the random vector (X, X'), then

2*dFe(x) f f (x—y)2dF(x, y) + f f (x—y)dF (@, y)=J,+J,.
jz|zz

(2.1)
Obviously

Iy < Jf ,@=y)PdF(z,y) ff (x—y)*dF(z,y)
+ f f cse @ WAF(z,y)=J1+J1+ T 2.2)
r<2Y>—2

From the inequality (z—y)®<2(2®+y%) we get

J1<2 Jj (J‘:, (®+ 97 dF(y)) dF(x)=2 (f:oxzdF(x) + f io 2’ dF(x) J:o dF(x)) .

The integral J; is estimated in a similar way. Hence we have

Ji+J1<2 (j 2dF(z) + ch 2 dF(x) J dF(x)) .
1zlz2 -0 |zj=zz

It is easily seen that

f - 22 dF(x) f dF(x) < f 2} dF(z).
-0 [z|>2 fzlzz

Thus Ji+Jis<4 f A F(x). (2.3)

lz]>z
In the remaining integral J;” we have
pSr—y<2z.

Hence JY<4PP(X—-X'22 X<z X' > —2)

coc(p(-s<x<-2) s 2l x<2)) cnold) 21 x152).

But f 2?dF (x) 2 2°P(| X | > 2).
lzlz2
Thus JU< 16J.I 52 2*dF(z). (2.4)
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From (2.2), (2.3) and (2.4) we get

Je szof L B*dF(z).

lzl>g
In a similar way
J2<2OJ‘ ,T°dF ().
I:L'I)i
By (2.1) it follows that
J <40f , TdF(z)
lzlz3

and the lemma is proved.

Lemma 2. Let F(z) be a distribution junciion,

o= f 2’dF(x), A=supz f 22 dF(x) < oo.
~c0 lzlz2

2>0

Then oy /A%3 < 2.

Denote by ¢ a parameter such that 0<g<1. Then

o= f _2%dF(x)+ f 2P (z) < Sy + f _ 2*dF(x).
|.t|<sVz. | lzl?eVm

zizelas

Thus Aze Vc?zf 22 dF(x) > e(1 — ¥) .

lzizelas

But £(1—¢? takes its maximum 2/3V3 for £¢=1/V3. Hence
23
3
and the lemma is proved.

Lemma 3. Let X be a random variable with the distribution funciion F(x) and
the characteristic function f(t). If E(X)=0, E(X®) =0® and

A=supz 2’dF(x) < oo,
2>0 |zi=2
then IO E<1—o**+47A[t]%

Using the distribution function F*(z) introduced in Lemma 1 we have
0

[f®) P =1—0o*+ f (cos tz— 1+ 3% dF(x). (2.5)

-0

10
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Denoting the integral in (2.5) by J we get

171 ¢
J =J (cos tx — 1 + % 22?) dF*(x) + f (cos tx— 1 + 3 t3%®)dF*(x).

-y)el FIES V!
We apply the inequality
1
— 2<___ 4
cosy—1+3y 2.

to the first integral, the inequality cos y—1<0 to the second integral and obtain

)t
J< élzt“ f o d e (x) + %tzf P2 dF(x). (2.6)

-1/it] jz>1/18}
From Lemma 1

1

A F(x) <404 |t 2.7)
2[t]Jizz 120

12 f PdFo(x) <40 |¢[?
fziz1/]¢]

Putting R(z) =£ | 2 dF(x),
e (2.8)
Riz)= f x?dF(z),
lz]>2

we have, still from Lemma 1,

1] 1141
f a*d F(x) = f x*d( — R¥(x))
0

-1j¢]

14t
0

= —[¢]2Re(|8]™Y) + 2f B o< wof

IIHEI:E
0

Tr(Z) de< -1,
2R(2)dx 160 4[¢]

1

Th _—
us 24t

1/[t]
4 f AP (@) <TA|t].
~1/{£]

From (2.5), (2,6), (2.7) and (2.9) we obtain the desired inequality.
We now proceed to the behavior of f,(f) about ¢=0.

Lemma 4.

3
IfB|<e®™ for [e]<T, =§1:1 Zn
Za

From Lemma 3
t\ 2 ok A { P A
|| S1-F2+47E 1P <expi— 4 2 +475|t]*}.
M) s1-Ger ek cem|-Geraki

11
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Thus, since 274, < D7 ok

B t _t2 Zek
ol=Ta(2)| <om | 1= a L0l <o tor pp1<t,
1 n. n
Lemma 5,
Ok s
a0 - <4 T for (1] <= d
" B
1
From ) =1—3%c2%+ j (e® — 1 — itz + } 2%)dF, ()
we obtain

sliH| :
fl)=1—3o22+ f ( — sy 9 t‘*a:") dF,(x) + f ( - Qtzac2 +3 t"’xz)dFk(x).
-y 6 24 lei=e\ 2

This partitioning of the domain of integration has earlier been used by Ibra-
gimov {2, p. 571]. As in the proof of Lemma 3 we get

11t 18]
0< f 2 dF(x) < 2f xR (x)dz,
0

=1/1¢]

where R,(x) is defined by (2.8) and thus

fk(t)=1—%<r%t2+eltl"‘((1s

1)
f 2°dFy(x)

Uit
+lt|—1Rk(lt|-1)+lli2l fo :I:R,,(x)dx).

~1/1t]
(2.10)
From (2.10) and the definition (1.5) of g, it is easily seen that
filt) =1—}oit® — 200, | ¢ [
and thus fk(si) =1, (2.11)
2
where u,c=%%t— +2B§—§|t[3. (2.12)

For |¢|<T, we get from Lemma 2

12
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16k2121

< — 2.13
el <57t 375" 21 <3 @18)
4
and Iu,c|2<2(4 t4+49’°t°) l—s(é/—l—l’—‘«+§g)<§§;ltl3.
Ze
Thus z|u,c (2.14)
From (2.11), (2.12), (2.13), and (2.14) we obtain
AW 8 |ul* 5 2
Ingk(:?;)* +21 Tu| ulc"'seluk‘
n t t2 ZQ’C ZQ’C
and logf,,(t)=ZIogfk(8)=——+20 |t|3+ 6———|t(3
1
21, Ze" £
or log f,(t) = ——+ |t|‘°’——§+A, (2.15)
7
where |A}|<= for |t|<T,
72
From (2.15) we get
Ifn(t)"e_wzl< el |t|3 “”’2<4———|t]3 “t2 for |E|<T,

and the lemma is proved.

The proof of Theorem 1 is now an immediate consequence of the fundamental
inequality (1.7), Lemma 4 and Lemma 5. Assume that 7>7T, (the case T', <7,

is treated similarly). In (1.7) we choose 7'=T, and obtain

_ Ty ng \ 1
sup | F(x) — ®(x)| < C f L1t |2e“"2dt+f (e ¥4+ e~ |t ldt + T
z ~T, Sn T [E]<T, 1

n
2.0
<0
Sn

13
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3. A generalization of Theorem 1

Various generalizations of the inequality (1.1) have recently been obtained by
Katz [3], Petrov [6], Studnev [7], Osipov [4], Osipov and Petrov [5] under
weaker conditions than the finiteness of the absolute third order moments. These
results are all based on the same method which is in short the following. The
random variables are suitably truncated. The deviation of the distribution funec-
tion of the sum of the original variables from the normal distribution function
is estimated by the error term in (1.1) applied to the sum of the truncated
variables and by the truncation error. It is not necessary to assume the finite-
ness of absolute moments of any order. Proceeding in the same way we may
easily obtain similar results using this time the inequality (1.6) from Theorem 1
instead of the inequality (1.1).

For the sake of simplicity we shall assume that E(X})=c} < oo, though this
is not at all necessary, see e.g. Osipov-Petrov [5]. Under this condition the
following inequality has been given by Studnev [7] and Osipov [4]

|z [*dF, () + -slgi xzdFk(x)) A

<Sn 1 [EZ2

— 1z
sgpan(x)~<I>(x)l<0(s—s§ "

The following analogous inequality contains third order but not absolute third
order moments.

Theorem 2. Let B(X,)=0, E(X})=0%<co. Then

sup | F(z)— ®(x)| < —C—'é [0 sup (

8,3, <2<Sn

fz 2°dF, (%)

+z f a:zdFk(x))]. (3.2)
lz)>2

Remark. The inequality (3.1) is clearly a corollary of (3.2).
Sketch of the proof. We define the truncated random variables Xj by

Xk if leI<sm

* _

"_{0 i# | X > s

Let Fi(z) be the distribution function of >} X} and

ap = B(X]) = — f 2dFy(2),
1z]>%n

(3.3)

n n n
& =Var (Z X’,':) =g -3 f 2*dF () — 2. otk
1 1 1

[z1=3n

We distinguish between the two cases s} <s,/2 and s3>s,/2.

(a) sy <s,/2. Then it it easily seen from (3.3) that

14
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1
5

[o L]

> f 2dF(z) >
1 [z|=sn

Thus the inequality (3.2) is true with C'=8/3.
(b) s >s,/2. In the same way as in the paper of Osipov-Petrov [5] we get

_ n snx_zak

sup | F.(x) — Ox) | < dF,(x)+sup | Fa(s,z)— ® —-———8;1——
1 Jizizsn z n
1 %[a%! 1 s,—st

— - (3.4)
+l/2:n: sh Vome sn

In (3.4) the first term to the right is the truncation error; the inequality (1.6)

of Theorem 1 is applied to the second term of the right-hand member. The
desired inequality (3.2) is then easily obtained by obvious estimations.
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