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On a strong form of spectral synthesis

By Joun E. GILBERT

When G is a locally compact abelian group with character group I', the Fourier
Transform of a function f in the group algebra L'(G) is defined by

fy= Lf(x) @Dz (A€T),

and, for a given closed set Q in T', I(Q) denotes the closed ideal in L'(G) of all func-
tions for which f=0 on Q. Following Wik ([8], p. 56) we say that

1. Q is a Ditkin set if to each f€I(Q) there corresponds a sequence {u,}<I(()
where fi, =0 in a neighbourhood of Q and ||f —u,* f|| =0 as n—>co.

2. Q is a Strong Dithin set if the sequence {u,} wn condition 1 can be chosen inde-
pendently of f€I(Q).

If 24T') denotes the discrete coset-ring of T, i.e., the Boolean algebra generated
by cosets of all subgroups of I" whether closed or not, we prove in this note:

Theorem 1. Let I be a separable, metrizable group. Then each closed subset Q of I in
24T} is a Strong Ditkin set.

Using Theorem 1 we obtain immediately the converse of a result of Rosenthal
([6], Theorem 3.1, p. 187) completing the characterization of Strong Ditkin sets
in R*, T*, ... without interior points.

Theorem 2. Let I'=R", T™ or any compact, metrizable group such that the union
of all of its finite subgroups is everywhere dense. Then a closed set Q<=I' having no
interior points is a Strong Ditkin set if and only ¢f Q€X (I).

The principal step in the proof of Theorem 1 is the description of closed sets in
Z4(T"): every closed subset Q of I' (not necessarily separable, metrizable) in 2,(I")
is the finite union of sets of the form A(JI\A) where 1€I'*, II is a closed subgroup
of I' and A belongs to the coset-ring Z(II) of II (Gilbert [1], Theorem 3.1); conversely,
every such union is a closed subset of I' in Z,(I"). Thus, in R™ for example, a closed
set Q without interior points is a Strong Ditkin set precisely when

Q=Fu (i[:JlQi) )

1 The group operation in all groups is written multiplicatively.
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with F a finite (possibly empty) set and Q; an affine transformation of a set @,
differing from R xa,Zx..xa,Z by at most finitely many cosets of R? (here
0<p=p@t)<n, p+qg<n, ¢;€R and R is interpreted as the trivial subgroup {0}).
The examples given by Wik and Rosenthal follow easily from (1) as do the
examples given by Rosenthal for sets which fail to be Strong Ditkin sets ([6],
pp- 187, 8).

First we introduce some notation: for a closed subgroup H of G the norm on
the group algebra LY(H) is written ||(-)||z while that on LY(G) or on the measure
algebra M(G) is written ||(-)||. The Haar measure on G/H is adjusted so that

f k(m)dx:f (J k(xf)df) do’ (¢’ =xHEeEG/H)
¢ er\JH

for every k in the space X(G) of continuous functions with compact support in G.
The mapping f—f defined by

f'(x')=f fx&)dé  («'€GIH),

is norm decreasing homomorphism from LY(G) onto LYG/H) (cf. Reiter [2], p. 415)
which can be extended to the respective measure algebras M(G), M(G/H) (Rudin
[7), Theorem 2.7.2; Reiter [5]). The Fourier Transform of f is the restriction of f
to the annihilator group of H in T.

Proof of Theorem 1. In view of the known structure of closed sets in 2 (I") and
the fact that finite unions of Strong Ditkin sets are again Strong Ditkin sets (Wik
[8], Theorem 3) we need only show that a set of the form TT\A, A€X(II), is a Strong
Ditkin set in I'. For then, certainly, any translate (IT\A) and hence any closed set
QeZ D) is a Strong Ditkin set. Since already we know that any Q€X,(I") is a Ditkin
set (Gilbert [1], Theorem 3.9), given any £>0 and g€I(Q), there exists g,€I({)
such that

(@) d.=0 in a neighbourhood of Q, ®)  |g—9g: <e (2)

Now let Q=II\A, A€Z(IT). When H is the annihilator group of II in G, let ug be
the idempotent measure in the measure algebra M(G/H) whose Fourier-Stieltjes
Transform is the characteristic function of A (as a subset of II). Further, let u be
any measure in M(G) for which the restriction to II of the Fourier-Stieltjes Trans-
form of u coincides with that of uqg. Now assume for the moment that the following
result has been proved.

Lemma 3. For each A>1, there is a sequence {t,} < M(G) such that

(i) ||zl <4, .
(i) the Fourier-Stieltjes Transform of T, is 1 in some neighbourhood of 11,
(iii) for any fELYG),

lim |-;,,*f|dx<Af T 3)

n—>o00 G/H
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Under the conditions of I" there is a sequence {6,} < L(@) forming an approximate
identity i.e., ||d,| =1 and

[f—0,%f]| >0 as m—oo (fELYQ)). )
Since, clearly, uxJ,€I(Q), choose a sequence {r,}< I(Q) for which
(@) #,=0 in a neighbourhood of Q, (B) o —px 6, <1n. (5)
Setting P =0 — (T % 0 =T, %7,) (n=1,2,..),

we can soon check that j, =0 in some neighbourhood of Q. On the other hand, for
any fELNG),

1F —pan 3¢ fll = 1 =8 % 4703 B f—wu % )|
SN =05 fll + lmwse (F—pese DIl +AIF - v =2 00l
Le., by (3), (4), (5)

lim ||f—‘u,,*f||<Af |f — ' *f |da’. (6)
n—o0 GIH

But p’ =ugq and, if f€1(Q), then uq* ' =f, for clearly when I,(Q) is the closed ideal
in LYG/H) of functions whose Fourier Transforms vanish on Q (as a subset of II),

f €Iy, 14(Q) = po* LNG/H)

(cf. [4], p. 561). Hence, by (6), if f€I(Q), lim,q |/ —p, % f|| =0 which proves that
Q is a Strong Ditkin set.

Remarks. Lemma 3 is only a mild reworking of a generalization by Reiter (un-
published, but see Reiter [3], Lemma 2) of a result of Calderon (cf. Rudin [7},
Theorem 2.7.5). From Reiter’s version of Lemma 3 it follows, in particular, that if
Q<1 is a Ditkin set in IT then Q is a Ditkin set in I'. Theorem 1 shows, in effect,
that a similar result holds with Ditkin set replaced by Strong Ditkin set at least
when Q €2(I1). In general, however, the result fails for, as Rosenthal points out, a
finite interval in R! is a Strong Ditkin set in R! but it cannot be a Strong Ditkin set
in R? since it then has no interior points and does not belong to the discrete coset-
ring X,(R?). Notice that, even so, it is a Ditkin set in R2. It is, perhaps, worth noting
that the proof of Theorem 1 for an arbitrary Strong Ditkin set fails because the rate
at which

tim (e /=4 [ |7@))ax)
n—>0 G/IH

becomes 0 or negative depends on f and it should be clear that the sequence {u,}
cannot always be chosen independently of f€I(Q).

Proof of Lemma 3. When {K,} is an increasing sequence of compact symmetric
sets in H for which U,K,=H, let {U,} be a nested sequence of symmetric neigh-
bourhoods of the identity e in I'/H* shrinking to e and such that |1 — (=, y)| <1/n,
z€K,, y€U,. Following the construction of approximate units in L(H) as in Reiter
(2], p- 405) we obtain, for each 4>1, a sequence {r,}<L(H) satisfying
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@) LI Ta(§)|dE< A,

(ii) 7,=1 in a neighbourhood of e in T'/II,

(iii) nsup f | Ta(n E) — (&) | dE<2A/n.
€KnJH

When each 7, is regarded as a measure on @, the first two of these conditions give the
corresponding conditions (i), (i1) of the lemma. For condition (iii) suppose first that

(3) has been established for each k€ X(G). Then, by (i), for any £>0 and k€ X(G)
satisfying ||f —#|| <e,

tim | |7 fldo < tim {f 2w kdat || f— k. “1:,,“,,}
G

<A(f |f'(x')|dx'+f ]f’wk'ldx+e)
G/H G/H

<4 (fG/Hl f ()] dx') +24e,

i.e., (3) then holds for f since ¢ was arbitrary. Now only minor modifications are
required of the second and third steps in Reiter’s proof of his Lemma 2 in [3] to
obtain (3) for k€ X(G). For clearly

okl [ | [ b e - ) dnlaz 4] | eman|

<4 ‘ Lk(xn)dn’Jr 2A/n) || k. || )

for all sufficiently large n since the function k(x#) vanishes outside some fixed
compact set as x ranges over the support of k and » over H (in fact, the compact
set C-1-C'n H where C is the support of K). As both sides of (7) are functions on
G/H we may integrate both sides with respect to dz’ obtaining

Jaulsaise=J ],
L,

=f f kan) T.(p ") dy
G H

<Af |Ic'(90')|dac'—i—(ZA/n)J~ | k()| da.
I G

f ko m) Ta(n &) dn} dx
H

f k(xEn) Ta(n™") dny ‘ df} da
H

do= |z, % k||

Taking the limit as n— co we obtain (3). This completes the proof of the lemma.

The University, Newcastle-upon-Tyne, England
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