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Poisson processes as renewal processes invariant under
translations

By Murart Rao and Hans WEDEL

Introduction

Let {Xn in= 11, £2,...} be a sequence of random variables such that a.s.
i, X o< X 1< 0< X, < X,...

Put Yo=X_1,Y,=X,Y,=X,—X,_1,n+0, 1.
Assume that:

(i) {(Yo, Yy), Y, n£0. 1} is a set of independent random variables.

(i) {7, :n=+0,1}, are independent, identically distributed positive random var-
iables with P[Y, <y]= F(y), ‘

F(0)=0 and E[Y"]=fr—tz< 0o,

Let {&,n=+1, +2, ...} be a set of independent random variables which is inde-
pendent of {X,} and &,, n= 11, +2..., be identically distributed with the same
non-degenerated distribution G. Put Z, =X, + &, and let N(I)=number of X,€1
and N(I)=number of Z,€1.

Doob has shown [1, pp. 404—407] that if all ¥, have an exponential distribution
then N(I) and N(I) have the same distribution. Thedéen proved the converse of
this statement, namely that every Y,,n==0, 1, has an exponential distribution if
N(I) and N(I) have the same distribution and if

(iii’) P[Y, >y, Y,>yl=m (1— F(s)) ds.

Yot Y1

We shall here prove that the weaker conditions E[N(I))]=m |I| and E[N([)N(J)]=
E[N(I)N(J)] are sufficient to imply exponential distributions of Y,,. Our proof is
at the same time a simplification of Thedéen’s proof.

Let X, and Y, be as in the introduction and instead of (iii’) put

(iii) B{N(I)]=m|I| where |I| denotes the Lebesgue measure of I.
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Then (iii) is equivalent to P[Y;>u]= ¥ (1 — F(t))dt for 1=0, 1, see [2], pp. 354.
Let now {&,,n=+1, +2, ...} be a sequence of random variables which is inde-
pendent of the sequence {X,}. We shall assume that for all n, m, n+m, (&,, &,)
have the same joint distribution G and that the support group of G. i.e. the group
generated by the support of @, has an element of the form (0, d) with d >0; if &,
and &, are independent and have a nondegenerate distribution then thisis certainly

true.
Put Z,=X,+&,,n==1, +2,..., and N(I)=number of Z,€1.

Theorem. Let X, £,, Z, be as above. If B[N(I) N(J)]=E[N(I)N(J)] for all I, J
then {X,} is Poisson i.e. F(y)=1—me ™.

Proof. Put ®(I,J)=E[NI)NJ)]—ENI NJI)]=DnemP[X, €I, X, €J]. Using
independence of {£,} and {X,} we get E[N(I)N(J)]—ENINJ)=[f dUI-u,
J —v)dG(u,v). The condition E[N(I)]=m|I|implies B[N (I)]=m|I|. Thus E[N(I)
N(I)]—E[N(InJ)]=E[N({I)N(J)]—E[N(InJ)]: which gives &= x G.

A simple consequence of the renewal theorem is that for any pair of finite inter-
vals I, J, we see that E[N(I+ h) N(J+ k)] is a bounded function of (k, k). The
Choquet-Deny theorem [3, p. 152] applies and we deduce that every point of the
support of G is a period for ®@. The set of periods for ® is a group and this group
contains the element (0, d) and hence (0, kd) where k is any positive integer (in-
deed any integer). Thus for all 7, J and all positive integers k, @I, J)=®(I, J +
kd). Take I=(0, ] with x< kd. Then I n (I + kd)=¢.

Also

O, I+kd)= > P[X,el, X, €l+kdl= D> P[X,el, X,€l+kd]

nzl

Il

>
n¥m
S 3 PX,el,X,el+kdl= 3 f H(I + kd — u) d(Fyx F®0*) (u)
n=1 m>n n=1J0 '

=f H(I+ kd — u)du,
0

where H(zx)= >3, F* () and (iii) implies max = > 3-¢ Fo % F** (z), = >0.
Similar calculations give ®(I, I)=2 (2 H(x—u)du=2 [§ H(u)du. Thus

2fIH(u)du=sz(I+ kd — u) du=fx [H(zx+ kd —u)— H(kd —u)] du
0 ) 0
= fz [H(kd +u)— H(kd — u)] du.
0

This equality for all z< kd implies 2 H(u) = H(kd + ) — H(kd — u), u < kd.

Suppose d, is a positive number such that F(dy) >0 and F(d,—)=0. Then F**
has an atom at nd, and thus H has a mass point at every positive integral multiple
of dy, but Hu)=0u<d,. Choose k so that kd >d,. For u<dyH(u)=0 and the
functional equation for H shows that H(kd—u)=H(kd+u)u<d, Since every in-
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terval of length larger than d,, contains a multiple of d, and H has a positive mass
at such a point, we see that H(kd —u)< H(kd+ u) for some 0<u<dy Thisisa
contradiction and thus F certainly cannot be arithmetic. As k—>oco Blackwell’s
theorem [2. p. 347] shows that H(kd + u) — H(kd — u)->2 wm, and thus 2 H(u) = 2 um.
This is equivalent to F being exponential. Q.E.D.
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