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Holomorphic functions and Hausdorff dimension

By Vicror L. SHAPIRO

1. Introduction

Let D(z, r) represent the open disc with center z and radius r, and let C{z, r)
represent its boundary oriented in the usual counter-clockwise manner. We define
the class 4,, 1 <« <2, as follows:

f(z) is in the class 4, if
(i) f(z) is a continuous complex-valued function defined in {0, 1), and
(ii) there exist a constant K and a y >« such that for 0<<g<1 and 0<r<1—p

f f HO)d
D(0.0) C,n

We define the class B, in the same manner as the class 4, except in (ii), we only
require that y > o. It is clear that the class B, is the natural widening of the class 4,.

We shall say that the relatively closed set E < D(0, 1) [i.e. the complement of
E in D(0, 1) is open] is a removable set for the class 4, if the following fact holds:

If f is in A, and f is holomorphic in D(0, 1)~ E, then f is holomorphic in D(0, 1),
E is a removable set for the class B, is defined in a similar manner.

In this paper, we intend to establish the following result:

2
dedy < Kr**7,

Theorem. A necessary and sufficient condition that a relatively closed set E contained
in D(0, 1) be a removable set for the class A,, 1 <a<2, is that the Hausdorff dimension
of E be <o. Furthermore, the sufficiency condition is in a certain sense best possible,
i.e., it ©s false for the class B,.

If «<1 and the Hausdorff dimension of E <, Besicovitch has shown that F is
a removable set for the class of continuous functions in D(0, 1). He has shown even
more, namely that if £ is a countable union of sets of finite length, then X is a
removable set for this last named class of functions. For the details of his result
see either [7, p. 197] or [1].

We next note that the sufficiency of the above theorem in the special case x=2
is essentially known already and is a corollary of [10; Theorem 1, p. 76].

2. Proof of the necessary condition

We first establish the necessary condition of the above theorem.
Since every set contained in D(0, 1) is of Hausdorff dimension <2, it follows
that if K is a removable set for the class 4, then ¥ is of Hausdorff dimension <2.
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We can therefore suppose that 1<« <2 and that the Hausdorff dimension of
E =8 where a<f<2. We shall establish the necessity of the above theorem by
exhibiting a function f which is in 4, and which is holomorphic in D(0, 1)~ & but
which is not holomorphic in D(0, 1).

Since K is a relatively closed set contained in D(0, 1) of Hausdorff dimension
equal to f where a<p, it follows from the definition of Hausdorff dimension, [6,
p. 145], that there exists a closed set B, with E, = E < D(0, 1) such that the Haus-
dorff dimension of E, is greater than «, i.e. the Hausdorff dimension of E, is f,
where a<p, <B. Frostman has shown [4, p. 90] that the capacity dimension and
the Hausdorff dimension for closed sets are the same. Consequently, if we take
y=(B;+a)/2, we have that a<y<p,<f and furthermore that the y-capacity of E,
is positive, i.e. there exists a finite constant V and a probability measure u (that
is a non-negative Borel measure of total mass one) having its support contained in
E, such that

f |g—2]"du) <V for every z. (1)
E
We set

fz)= L (& —2)"du(0) (2)
and observe from (1) that f(z) is well defined for every z.
We next show that

f(z) is a continuous function in the complex plane. (3)

To establish (3), fix z, and let £ >0 be given. With ~ @ designating the comple-
ment of the set G, we observe that

lim (C—2)"du(l)= f (&= 20)"dp(2)-

220 J ~ D(Ro5)NE; ~DEpeNE,

Consequently, it follows from (2) that

tim sup |/~ (el < [ |e=al a0

2->29

+ lim sup fn i | ¢ —z]|""du(0). (4)
(2o XN E,L

252

Now if |z—zy| <e¢, then by (1)

fo( o=zl ) < ey f |2 du()

D(z9: )
< V(2e) 1. (5)
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Likewise from (1), the first integral on the right side of the inequality in (4) is
majorized by Ver—1. Consequently, we conclude from this last fact, (4), and (5) that

lim sup | H(z) — f(zg)] < V[e" ™ + (26) 1. (6)

But y is strictly greater than 1, and (3) therefore follows immediately from (6).
It is clear from (2) and the fact that E, is a closed set that

f(z) is a holomorphic function in ~ E,. 7)
To show that
{(z) is not a holomorphic funetion in D(0, 1), (8)

we choose 7, with 0<r; <1 such that B, < D(0, r,), which can be done since E,
is a closed set. Then E, also does not intersect the boundary of D(0, r,), and conse-
quently it follows from Fubini’s theorem and (2) that

f Heyiz = f du(®) f (C—2)de
Cc@O,7r) E, C(O. 1)

— 2 f du(?)

I

= — 2mi.

This fact and Cauchy’s theorem establish (8).
To complete the proof of the necessity, we need only show that for 0<¢ <1 and

0<r<l-—p
f f (&)l
DO.0| J Ciz1

where ¢ and V are defined in (1).
To establish (9), we first observe that it follows immediately from (1) and Fubini’s
theorem that

2
dedy <4Va®, (9)

,u[l—)(z, r)~ D(z, r)] =0 for every z and every r >0, (10)

where @ represents the closure of the set G. 4
Consequently, it follows from Fubini’s theorem, (1), and (10) that

f Ho)ds= f ) f C—s)ds
[{C 5] Eyn~ D(1) C(a 1)

+ f dp(C) (C—s)ds
EinD@ 7 (/€% 5]

= —2mip[E, 0 D(z,1))].
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‘We conclude that

fc HO)dL | < 2apu[D(z, 7). (1)
(1)
Next, we observe from (1) that for »>0,

uiD < [ Je=ap =2l au
<V (12)

Designating the left side of the inequality in (9) by I,.. and letting y, represent
the indicator function of the set G, we consequently obtain from (11) and (12) that

I, < 4Vn2r7f f du(¢) | dady
DO. | J Dy
I
< 4V7t2'r"f du(l) f Apo.n (22— )dxdy |
DO DO.@

<4Vadr?*,

(9) is therefore established, and the proof of the necessity is complete.

3. Proof of the best possible condition

The proof of the best possible condition of the above theorem in the case x=2
is particularly simple. We take a function g(x) which is in class C! on the real line,
which vanishes outside the closed interval [ —1, }], and which takes the value one
in [—%, 1]. We take E to be the intersection of the open unit disc with the strip
—3 <z <} and define f(z) in the complex plane by f(z) = —ig(z). Then E is of Haus-
dorff dimension 2 and is relatively closed with respect to D(0, 1). Furthermore,
f(z) is continuous in the complex plane, holomorphic in D(0, 1)~ E, but not holo-
morphic in D(0, 1). To complete the proof of the best possibility in the special
case xx=2, we need only show that f is in class B,.

In order to do this set K =sup_., ;< |dg(z)/dz|. Then by Green’s theorem, for
r>0and { =&+,

If HD)dg ‘ =
{JC@mn.

Therefore for 0<p<1 and 0<r<1—p

f J D) dg
D, o) C(z, 1)

and we conclude that f(z) is in B,.
To handle the situation when 1< <2, we proceed in a similar manner, though
the situation now is slightly more complicated.

f dg(£)/dEdedy ’ < Km.
D"

2
dxdy < K2n3rt,
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For 1 <a<2, we set ¢=2"“"P and on the interval [ -1, 1], we construct a sym-
metric Cantor set, ¢, ,, corresponding to ¢! (i.e., at the first stage, we take out
the open interval (—4+¢1, L —¢1). We proceed in this manner so that at the nth
stage we have taken out 2"! open intervals, leaving 2" closed intervals each of -
length ¢~} As is well-known, [5], the Hausdorff dimension of @, ; is a—1.

For Q,, that is for x=1, we take any perfect set of Hausdorff dimension zero
constructed on the interval [ —}, 1] which contains the points 4 and —3%.

For 1 <a<2, we shall designate by g,(z) the Lebesgue-Cantor function constructed
on [ —%, 1] corresponding to ¢, which is defined on the rest of the real line by setting
0.(x) =0 for x<—% and g¢,(x)=1 for x>1. Then as is well-known {5, p. 173}, g,(x)
is in Lip(e—1) on the real line (Lip 0 being interpreted here as continuous), that
is there is a constant K, such that

|9(@1) — gal@e) | < K|y —p]* (13)

for every z, and «,.

Next, we take the set ¥, in the complex plane to be ¥,={x+y; = in @,} and
define E, as E,=F,n DO, 1). Now, as is well- known, the Hausdorff dimension of
B, is equal to «, [5]. We define f,(z) = —ig,(x) and observe that f,(z) is continuous
in the complex plane, holomorphic in D(0, 1)~ E,, but not holomorphic in D(0, 1).
Consequently to establish the best possibility of the theorem for 1<a<2, it only
remains to show that f,(z) is in B,. We shall accomplish this by showing that for
0<g<land 0<r<1-—g,

| f s
po.lJ c@n

where K, is the constant in (13).
To establish (14), we first observe from the evenness of g(x +r cos 0) as a function
of 6 that

2
dedy <2 1K, "2, (14)

f fAO)dE = 2Tf gz +r cos 6) cos Odf
C 1)y 0

n/2
““QTJ [ga(x + 7 cos 0) — go(x —r cos 0)] cos 6df.
0

Since g,(z) is & bounded non-decreasing function of z, we conclude that for every
z and for r>0

fc(z ) fA)dE l S ar[galz + 1) — golz — 1)]. (15)

From the definition of g,(x), it follows that there exists a probability measure u,
having its support on @, such that for every x and every r>0

o«

gal® 1) — gz —1)= f Xir.n(t — @) dptalt), (16)

where y,_, 1 is the indicator function for the interval [ —r, r].
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Designating the expression on the left side of the inequality in (14) by IQ;,, we
then obtain from (13), (15), and (16) that

0 e %
I,,<2'K, nzrzﬂ“lf dyJ‘ de‘ Xi-r.n(t — 2) Q)
o e Jow

oo e
<2°K, n2r2+°‘71f d‘ua(t)f Xi—r.n{t — 2)dx
o —e

< 21+1Km 7'52”'2+“.

(14) is consequently established, and the proof of the best possibility is complete.

4. Proof of the sufficient condition

To establish the sufficient condition of the theorem, we need only show by Morera’s
theorem that

f 1($)d, =0 for every v<D(0,1), a7
o

where 7 designates a two simplex, i.e., closed triangle, and ot is oriented in the usual
counter-clockwise manner.

For =2, (17) follows easily from the definition of 4, and [10; Theorem 1, p. 76].
We shall therefore suppose in the sequel that 1 <o <2.

Suppose then that 7, is a fixed two simplex and that 7, < D(0, r;) where 0 <r; <l.
To prove the sufficient condition of the theorem, we need only show that

f f(&ydi=o0. (18)
[ 1)

To this end, we choose r,, 73 and 7, such that

0<r,<ry<rg<r,<1 where 1,< D{0,n), (19)

and select a real-valued function A(z) which is in class C° and takes the value one
in D(0, r;) and the value zero outside of D(0, r;). Using the facts that f(z) and A(z)
are bounded in D(0, ;) and there exists a constant K; such that |A(z+{)—A(2)| <
K, |¢| for every z and £, we obtain that for z in D(0, r5) and 0<r<r,—ry,

J.., 1010 di‘ < ‘ |, pero-aenmero dcl

[ dzl

[IRG d:l,
C(a, 1)

+ @)

<K,”?+K,
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where K, is a constant. Consequently, it follows from the definition of the class
4, and from Minkowski’s inequality that there exists a constant K, and there
exists a constant y with « <y <2 such that

fD(O- 73)

(We recall that we are dealing with 1 <« <2 and with no loss in generality, we can
suppose that v <2.)

Next, we introduce the two dimensional torus T,={(z,%); —n<x<ax and
—n<y<sn} and define

2
drdy < Kgr*'?

f MDf(C)
Ca,

for O<r<ry—r1,. (20)

f1(z) = A(2) {(z) for z in D(0, 1),
-0 for z in Ty~ D(0, 1). 1)

We then extend f, by periodicity to the whole complex plane, i.e.

hlz+2mz +i(y + 2nm)] = fy(@ +1y)

for m and » integers, and observe that f,(z) is a continuous function on the complex
plane and furthermore from (19), (20), and (21) that there is a constant K, such that

f f h(©)dg
T, Gz

2
dedy < Kyr**”

for 0 <7< min [rg—ry, 7, — 73] (22)
We next set
hz) =u, (2, y) + ivl(x; 9,
f(z) =u(z,y) +w(x, y), (23)
AMz) =y(x, y)

and observe that u,(z, y) and v,(, y) are periodic continuous functions, u,(x, y)=
9%, ¥)=0 in Ty~ D(0, r,), and u,(z, y) =u(z, y) and v,(x, y) =v(z, y) in D(0, ).
We first of all infer from these facts that (18) will be established if we show

fa (2, y) de —vy(x, y) dy =0,

(24)
f uy (2, y)dy +vy(x, y)dz=0.
are
Next we set
= — [udy/0y +voy/ox] for (x,y) in D(0, 1),
b =uoy/ox — voy/dy for (z,y) in D(0,1), (25)

g=h=0 for (z,y) in T,~ D(0,1),
and define g and h throughout the rest of the plane by periodicity of period 2z in
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each variable. We observe that g and % are continuous functions in the plane and
that

g=h=0in D(0, r,) and in T~ D(0, r,). (26)

We furthermore observe from the fact that f is holomorphic in D(0, 1)~ E that
(m‘z)_lf uy(&, m) A& —vy(&, m)dn = g(=, y),
c@wym

(er®) uy(&, ) dn + vy (&, n) dE > h(z, y),

C@,y. 1

as r—0 for (x,y) in Ty~ [D(0,7,) N E],

where we are now writing C(x + 1y, 7) as C(z, y, 7).
We continue along these lines and observe that (22) can be interpreted in the
following manner:

there exist y with « <y <2, a constant K,
and r, with 0 <r7y<1 such that for 0 <r <,

f f Uy dé — vy dy
T, C@,y, 1

f f uydn + v, dé
Tyl J C@ 1)

Using (27), (28), and the theory of double trigonometric series, we shall establish
(24) and consequently the theorem.

To this end, we introduce the notation X =(z,y), M =(m,n), and (M, X)=
mx +ny, and write the Fourier series of 4, and », on T, designated by S[«,] and
S[v,] respectively, as

2

dedy < K,r*™ (28)

and
2

dedy < Kyt

Sluy]= > ul (M) ™ ® and S[v,]= %vf (M) ™MD, (29)
M

where M represents an integral lattice point.
Now, with | M| =(M, M)*,

f M Dde = —in f "M Ddx dy
(o1 (1% 5] D@O.7)

= — (2mi)nd (| M |r)r| M |!
and |, eomay = @aiyma a1y el 01,
co.n
where J is the Bessel function of the first kind and order 1.
Consequently, it follows from the Riesz-Fischer theorem, the fact that u, and v,

are continuous functions and from (28) that
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there exist y with &« <y <2, a constant K,
and 7y with 0<7,<1 such that for 0 <r<v,

S| @) n+ ot (Mym | Jy(| M |7) 2| M| 2 < Ko, (30)

and
%qu(M)m—v{(M)nmJl(|M|r)|2|M|‘2<K4r".

As is well-known, J,(¢)t~! is a continuous function on the interval (0, o0) and
lim; ,oJ4(t)¢~ =2-1. Therefore, there exists a £, >0 such that for 0 <¢ <y, |J,(¢)|¢ 1> 1.
Consequently from (30) we obtain that for 0 <r<r,,

E |u1A(M)”+”1A(M)m|272<42K4r”,
‘MJ<toT*1
and a1
2 |ul(Mym—ov (M)nfr® <42K,r".

M|ty r—1

Next, let § be such that « <8<y <2. Then we conclude from (31) that there exists
a constant K such that for 0 <r<r,

S luf (M)n+of (M)ym 2| M |P~2 < Kzr ",
to@n "l M|ty r 1
and (32)
|uf (M)ym —op(M)n|?| M|P2< Kpr*P.

to@n g Mgty r™L

Next, we observe there exists an integer j, such that for j =7, £, 277/ <r,. Therefore
from (32), it follows that for j >4,

|uf (M)n + o) (Mym|*| M P2 < Kty #2677
27 1< | Myl
and

|uf (M)ym— o} (M)n|*| M P2 < Kgty #2671,

2f 1< | a2

However, f<y: consequently the series >3y 2# "/ < co, and we conclude that for
B<v,
2 et @D n+of (M) m [P M |72 < oo
Mo
and (33)
D lut (Mym — o (Myn*| M|f2< oo.
Mo
Next, we conclude from (27) and [8; Lemma 2, p. 606] that
(=) 2 [ul (M) n+of (M)m]e™ DM g(X) as t>0
M
and .
0> [uf (M)ym—v] (M)n] ™0~ 1M j(X) as -0 (34)
M
for X in T,~[D(0, r,) N E].
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We next introduce the Fourier series of g and &, that is S[g] and S[k] respectively,
and write

Slg}=2g" (M) e,
M

Sk = 21" (M) 44D, %)

Since g(X) and A(X) are continuous periodic functions and therefore in L? on T,
and since y <2, we obtain from (35) that

> |9 P | MP2<co and > [pNM)P| M < 00
M+£0 M=0
for every f<y. (36)
Also, from [9; p. 56], we obtain that

g (M) P MlE . g(X) uniformly on T, as t-0,
i

. 37
gh"(M)e'(M’X)"M"—)h(X) uniformly on 7', as t—>0. 37)

Next we observe (since the Hausdorff dimension of E is <« and since D(0, ;) N B
is a closed set and since, furthermore, the Hausdorff dimension of D(0, 7,) N E is
the same as the capacity dimension of D(0, r;) 0 E, [5, p. 90]) that the f-capacity
of D(0, ry) N E=0 for a<p, i.e.

C4DO, r)NE] =0 for «<p. (38)

We next invoke the following lemma which we shall prove in Section 5 of this
paper:

Lemma. Let F be a closed set contained in D(0, 1) with Cy(F) =0, 1 <f<2. Suppose
that

@ > |eu| M2 < oo,
M40

(ii) im 3 cpre™ ™14l =0 for X n Ty~ F.
t>0 M

Then ¢, =0 for every M.

{The above lemma is the two dimensional analogue of [3; Theorem 5, p. 36].
The proof of the above lemma which we shall give in Section 5 of this paper will
have many points in common with this last named reference.)

By selecting a § such that «<f <y and recalling that y <2, we conclude from
(33), (34), (36), (37), (38), Minkowski’s inequality, and the lemma that

(—)[uf (M)n+v (M) m]=g"(M) for every M
and (39)
O)[ui (M)ym — vy (M)n]=r"(M) for every M.
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Next, if w(X) is a function in L* on T', with Fourier series S[w] =, w" (M) ®,
we shall set for ¢ >0
w(X, t) =3 w" (M) O-IME,
o
It follows that for >0, u,(X, t) and v,(X, t) are functions in class C® on the plane

and that their derivatives are obtained by differentiating under the summation sign.
We conclude in particular from (25), (35), and (39) that for £>0

—ouy(X,t)/ay —ovy (X, t)/ox=g(X, )
and (40)
ou(X, 1)/ oz — ov (X, t)/oy =X, t)

Consequently, for our fixed two simplex 7, in (24), we have from (40) that

f u (X, t)dx — v (X, t)dy = f g(X,t)dX

and (41)
f ul(X,t)dy+vl(X,t)dx=fh(X,t)dX.

To

Now, from the continuity of u,(X), v,(X), g(X), and A(X), from (29) and (35),
and from [9, p. 56], we obtain that

Uy (X, §) > uy(X), v( X, 1) = 0,(X), g(w, ) > g(X) ]
J (42)

and
h(X, )~ h(X) uniformly in X as £—0.

We conclude from (41) and (42) that

f wy(X) dr — v, (X) dy = f g(X)dX
J%e To
and . (43)
f ul(X)dy+v1(X)dx=f MX)dX.
07 To

But by (19), 7, < D(0, r;) and by (26), ¢(X)=k(X)=0 for X in D(0, r;). We con-
clude from (43) that

f u(X)de — v{X)dy=0
42
and
f uy(X) dy + v,(X) dze=0.
0%
Consequently, (24) is established and the proof of the sufficiency will be complete
once the lemma is established. We now prove the lemma.
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5. Proof of the Lemma

We shall suppose from the start that F is a non-empty closed set contained in
D(0, 1), for the lemma is already known in the case F is empty, see [9, p. 65]. We
first recall that C4(F)=0 means that for every probability measure x4 on the plane
with its support contained in F the following fact obtains:

LL\X—PE*%ﬁ(X)du(P): + oo, (44)

Next, we introduce the function G5(X), 1 <f <2, defined as follows on the plane:

GX)=|X|*+1lim 3 [|X+2aM|?—|2aM| "]

R 1 |M|<R
for (2m) 'X = integral lattice point, (45)
G5 (X)=+oco for (2n)7'X =integral lattice point.

(For other approaches to the function G3(X), see [2, p. 50] or [11, p. 40] and
{(49) and (53) below.)

We observe that for § a compact set contained in D(0, 2nR,), the following limit
is finite and furthermore

im > [|X+42aM|?—|2aM| ")

B3>0 Ro<|M|<R
exists uniformly for X in 8. (46)
Also, we observe that for (27)~1X <= integral lattice point,

lim 5 [|X+2a(M+ M) | X+2aM|*]=0. (47)

R—ow [M{<R

We conclude from (45), (46), and (47) that
G5(X) is a periodic function of period 27 in each variable, and G5(X) is conti-
nuous in the neighborhood of every point not of the form 2zM. (48)

It follows from (45) and (48) that G3(X) assumes its minimum value. We designate
this minimum value by 7,4 and set

G5 (X) = G3(X) —75+1. (49)
Then it follows from (45), (46), (48), and (49) that

(i) G(X) is continuous in the torus sence on T, —0,
(i) Gs(X)>1 for x in T,, (50)
(iii) G5(X) isin L' on T,
Also, it follows from (44), (45), and (49) that C4(F)=0 means that

L L Gs (X — P)du(X)du(P)= + oo (51)
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for every non-negative Borel measure y defined on the Borel subsets of 7T, with the
property that u(7',— F)=0 and u(F)=1.

From (50), it follows that we can introduce the Fourier series of G4, which we
designate by S[G] and write as

S[Gg)= > G5 (M) M P, (52)
M
From (45), (46) and (49) we obtain that for M,+0,

@2r)’G4 (M) = lim > f | X |-Be Mo dx
Ta+2aM

R->0 |M|<R

= lim e MO | X | Py
R—->o0 ./ D, R)

= 2nﬁf Jo(r)yr Pdr/| M, 2P
1)

Observing that lim;,o > Gf(M)e M’ = + o0, [9, p. 55], we obtain from the
above computation that

GHM)=K/|M|*? for M=+0 where K>0. (53)

Next, we note from (45), (46), and (49) that if (2n)-2X 3 integral lattice point,
then there exists a neighborhood of X such that G is in class C** in this neighbor-
hood, and that in this neighborhood all the partial derivatives of G4 can be computed
under the summation sign in (45). In particular, with A designating the Laplace
operator, we infer from (45), (46) and (49) that

AGyX)=pFY| X|"#*® + lim 3 |X+2nM|"<ﬂ+2>}

R0 1M R
for (27)-1X s=integral lattice point. (64)
We conclude from (54) that

G 4(X) is subharmonic and in class C® in a neighborhood of every point in 7', —O0.

(55)
We also conclude from (45), (49), and (50) that
G4 (X) is lower semi-continuous on 7',. . (66)
Furthermore, from (45), (46), (49) and (50), we obtain that
there exists a constant K, such that
(r®) 1 G (X +P)dP < K,G5(X)
DO
for every X and for 0 <r<1. (87)
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Consequently, if we designate by F;, the closed set defined as
F, ={X: distance (X, F)<k™'},
where k is a positive integer, we obtain from properties (45) to (57) and from the

theory expounded in [5, pp. 24-41] that for each k there exists a non-negative
Borel measure g, defined on the Borel subsets of 7', with the following properties:

(i) peTy—Fr)=0 and ux(Fi)=1,
(ii) L L G (X — Pydp(X)dpr(P)=Vy,

(ili) Up(X)= f Gp(X — P)duy(P) issuch that } (58)

O0<Ui (X)<V, for every X

and

Uk(X): Vk for X in Fk.
Also, it follows from (51) and the theory expounded in [5, pp. 22-23] that

lim V= + oo, (69)
ko0
We denote by
Sldue] = > az e ™ (60)
M

the Fourier-Stieltjes series of u, and obtain from (52), (563), (57), (58) and (60) that

> |an|? G (M) = (47%) 2V . (61)
M
and that
S[Ux]= (47%) gafif GH (M) &, (62)
Next, we set
HX, 0) =3 ey’ ™M for ¢>0, (63)
M

and observe from (i) of the lemma and Schwarz’s inequality that
> leu|| M| < oo, (64)
M=o

We consequently obtain from (64), (ii) of the lemma, and [8; Lemma 6, p. 609]
that

lim |/(X,t)|dX =0 for every k. (65)
Fi

t20 o To—

Let M, be a fixed integral lattice point. The proof of the lemma will be complete
if we show

M, = 0. (66)
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To establish (66), we observe from (iii) of (58), (62), (63), and (65) that for every £,

dnlcy,=lim | f(X,t)e "M HgxX

t50 J Ty

=lim | f(X,t)e M Od4x

t>0 JFg

=Villim | HX, ) Up(X)e "M ®dX

150 J my
=V;! limf HX, U (X) e~ ®
t—>0 T,
- V,;lt]im S caraly, u G) (My— M)(dn?)? e~ 1M1,
-0 M

But then it follows from Schwarz’s inequality and (61) that
|oan | < Vit {3 Lo [ G (Mo — D)} (67)

But it follows from (i) of the lemma and (53) that the sum on the right side of
the inequality in (67) is finite. Consequently, there is a constant K, such that

lea,| <Ky/VE for k=1,2, ...

But then it follows immediately from (59) that cy,=0. (66) is established, and
the proof of the lemma is complete.
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