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G. BJORCK, Linear partial differential operators and generalized distributions

PREFACE

The book “Linear partial differential operators” (denoted by [H] in the list of references) by
Hoérmander is written in the language of Schwartz distributions. At the Stanford conference in
1961, Beurling [3] presented the foundations of a certain more general theory of distributions,
partly based on ideas published already in [1] and [2]. The purpose of the present paper is to
develop this generalized distribution theory, including the spaces Bp' 1 of [H] and to use the theory
to generalize material from Chap. III, IV and VI of [H]. Thus we study questions of existence
and approximation and interior regularity of solutions of equations with constant coefficients and
also consider equations which have no solutions.

If ¢ is a continuous function with compact support, the condition that ¢ € C3° could be expressed
on the Fourier transform side by demanding that $(&) exp (N log (1 + |&])) is in I, for each natural
number N. In Beurling’s theory, log (1+ |&]) is replaced by another subadditive function w,
which we can think of as larger. Then the class of test functions will be smaller and the class of
distributions larger. Although much of the classical theory goes through, we sometimes get
complications from the fact that a general w is not as closely related to differentiation and thus
to differential operators (as opposed to general convolution operators) as is log (1 + |£]|). Another
kind of complication comes from the fact that we do not consider only those w which give rise
to the same class of test functions as w (with w(§) =w(—§)).! A summary of the paper is formed
by the introductions to the various chapters.

Since most of our theorems have easily recognizable counterparts in [H] and in many cases
the proofs are virtually the same, it would not be practical to make our presentation self-con-
tained. Thus the proofs often consist just of a remark that the proof in [H] works. Similarly, the
bibliography and the introductions to the various chapters should be completed by the corre-
sponding parts of [H]. To avoid confusion of theorems etc. in the present paper and in the refer-
ences, we always use abbreviations in the latter case. Thus Theorem 1.7.4 is in the present paper,
but Th. 1.7.4 (of [H]) is not.

The author is greatly indebted to Professor Beurling who has permitted the publishing of his
distribution theory and to Professor Hérmander whose suggestions have led to many improve-
ments of the manuscript. In particular, the author had originally obtained only partial results in
connection with Theorems 1.5.12, 3.4.11, 4.1.5 and 5.1.2.

Chapter 1. Generalized distributions

1.0. Introduction

The purpose of this chapter is to develop those parts of the generalized distribution
theory created by Beurling [3] which will be required in the following chapters. We
have made two changes in the notation of [3]. First, we have called the space of test
functions D, instead of 4,. This is done to stress the fact that Schwartz’s space D
is a special case of D, and to get a natural notation for the space of multipliers on
D, namely &,. Our notation also parallels that of Roumieu [17], [18]. Second, in our
notation D, is not the dual space of D, but that of D, (where w(&) =w(—£)). For
Schwartz distributions, w =w, and then the question does not occur. Our choice is
due to the feeling that the Fourier transform is so important that e.g. the conditions

1 Throughout the paper, the author has written and the reader is asked to read & instead
of . The printed notation is due to unfortunate typografical circumstances.
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in the Paley-Wiener theorems (Theorems 1.4.1 and 1.8.14) should be similar for
test functions and distributions.

We use freely the Schwartz theory as given in [19] or [H], Chap. I. For functional
analysis see [6] or [21]. For the theory of subadditive functions (Section 1.2), see
[11]. For the Denjoy—Carleman theory of classes of functions (Section 1.5), see [15]
and the references given there.

Other treatments of generalized distributions are given by Gelfand and Silov [10],
Friedman [9] and Roumieu [17], [18].

1.1. Notation

We denote the points of two dual R" spaces by =(2, ..., x,) and §=(&;, ..., &,)
respectively. The letter n always denotes the dimension.

The scalar product is denoted by <z, & =>7%,&,, and |z| denotes {x, 2)*.

In C" the points are denoted by z=x +1y or { =& +. In this case, {z,{) denotes
2 2;C, and |z| denotes (z, z>‘1“—(|x|2+|y|2)%

The open ball {z; |z|<r} in R" we will denote by B,.

We will use the multi-index notation as in [H], p. 4. Thus o denotes n-tuples
(aty, ..., &t;) of non-negative integers. || denotes X a;, and a! denotes a,!-...-oc,!.
We write D;= —18/ox, and D*= D% ... Di» and finally & =&7* ... &

L, norms will be denoted || - ||z, (since |- ||, is given another meamng).

The Fourier transform ¢ of an element ¢ in L,(R") is defined as in [19] and [H], i.e.

e (&) =¢(&)= fe’“’”'é) p(z) da. (J‘ means fm.)

The symbol ~ is used as follows: f(z) —f( —2). (See also footnote on p. 352.)

The translation operator 7, is defined by (z,¢) (x) =¢(x —y).

The letter C (without super- or subscript) will always denote a positive constant,
not necessarily the same at each occurrence.

Set-theoretic union is denoted by U, whereas + stands for Minkowski addition.
Thus if 4 and B< R" and c€R", then A+ B={a+b; a€A and b€B} and ¢+ B=
{c}+B. Similarly, {x;2€4 and x¢ B} is written 4 N (B, whereas A — B denotes
{a—b;a€4 and b€ B}.

Finally we introduce the following convenient notation concerning the inclusion
of subsets § of R". The relation S; < <8, shall mean that the closure of §; is compact
and contained in the interior of S,. If {8;}/2; is a sequence of sets, the relation
8,7 7 8 shall mean that §;= <8;,;, (=1, 2, ...) and that S=U8,. In particular we
note that if S; 78 and K is a compact subset of S, then K< §, for some j.

1.2. Subadditive functions »

Let o be a real-valued function on R", continuous at the origin and having the
property
() 0=w(0)=limw@)<wlé+y) <wé)twrn) (V&neR).

*—0

An important class of such subadditive functions consists of those arising from
concave functions in a way described in the following proposition.
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Proposition 1.2.1. If Q(t) is an increasing continuous concave function on [0, + o)
and €(0) =0, then the function o defined by w(£)=Q(|£]) satisfies (c).

The proof is left to the reader.

It is helpful in the sequel to think of the special kind of w given by Proposition
1.2.1. It is natural to ask how general this special case is. An important result in
this direction is given in Theorem 1.2.7 below. For the moment we limit ourselves
to the following question: Must a general w be as smooth as a concave function?
The answer is negative:

Example 1.2.2. Van der Weerden’s example of a bounded continuous nowhere di-
ferentiable function of one variable, [20], satisfies condition ().
In fact, w(£) =27 w (&) with

(&) =min {|&—m-10-7|; m integer},

and it is easy to see that w, satisfies («).

We remark that by adding the function of the example to an o which satisfies (o)
and is large at infinity we can destroy differentiability properties without violating
(o) and without changing the growth properties of .

However, some regularity is implied by («):

Proposition 1.2.3. If o satisfies (), then w is uniformly continuous in R™.
Proof. We get —w(—h) <wlE+h)—ow(é) <wlh)

by two obvious applications of (x).

In the sequel we will constantly use condition («) in a similar way to estimate w
upwards and downwards without explicit reference to condition (x). Before leaving
the subject of smoothness, we prove a simple approximation lemma which will be
used when the lack of smoothness gives rise to technical difficulties.

Lemma 1.2.4. Let £¢>0 and w be given and suppose that o satisfies (). Then there
exist a function w, satisfying (o) and a constant M >0 with the following properties: For
fimed &, ..., &,, ,(§) is a piecewise linear function of &. We have supg|w,(&) —w(£)| <e,
and finally |0w,/0E,| <M whenever the dertvative exists.

Proof. We choose 0 >0 in such a way that

<e.
sup wE)<e

Let us write £ =(&,, &) with & =(&,, ..., &,). Then, if 0<h<§, we have
|w(€y+h, &) (&, &) <e.
We now define w,(£) =w(&) when &, =j-0 for integer j and define w, by linearity

between these points, keeping &' fixed. Then the approximation property follows,
and it is also clear that we may take M =¢/d. It remains to prove that w, satisfies

04(s8, E) < ay(8, 7') +o,((5 —1)0, & —7) (12.1)
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for all real s and ¢, where & and #’ are arbitrary given elements in E*~1. We have
(1.2.1) when s and ¢ both are integers. We next claim that (1.2.1) holds when s is an
integer but ¢ is not. Let us for fixed integer s denote the right-hand side of (1.2.1)
by r(t). Let m<t<m+1, where m is an integer. Since r is an affine function in
(m, m+1), we have either () >r(m) or () >r(m+1), which proves our claim. Thus

— (8, ') < — (58, E) + (s —1)0, & ~77), (122)

if sis an integer and ¢ is real. Letting s vary in (1.2.2) and applying the same argument,
we see that (1.2.2) holds for all real s and . The proof is complete.

We will now discuss some growth properties of subadditive functions. We will
mainly be interested in those w which do not grow too fast at infinity. The crucial
property is as follows.

Definition 1.2.5. By My=M,(n) we denote the set of all continuous real-valued
functions w on R" satisfying the conditions () and

(®) hmkﬁ o) g

as | &[*T

We collect in a proposition some obvious properties of ,. The proof is left to the
reader.

Proposition 1.2.6. If w €My, then wWEM,. If o, and w, are in M,, then so are
Wy +wy and max (w,, w,).

We note that w € My(n) if w(£) =Q(| &|), where Q is a concave function of convergence
type, i.e. a function having all the properties required in Proposition 1.2.1 and in
addition satisfying
(7 Qe

2 dt < oo,

J(Q)

We now give Beurling’s proof ([3], Lem. 1) of a result which in many cases makes
it possible to work with concave instead of subadditive functions.

Theorem 1.2.7. Let o € My(n). Then there exists a concave function £ of convergence
type such that
max w(§) < Q(r).
1&1<r
Proof. We first consider the case n=1. By Proposition 1.2.6, we may assume that
w=w. Define w,(x) =maxg<,;; ©(£). We claim that w;€ M,(1). The proof that w,
satisfies (a) is left to the reader. We shall prove that J;(w;)<co. Let (a, ), with
b>a>1, be one of the intervals that form the open set where w <w,. Let I be the
interval (a, @ +1), where I=min (a, b —a). We will consider the following three sets:

E={z€Il;, o@@)<w(a)/3}, B =INGE, and E"=IN(a+E~E).

We claim that E”< E'. In fact, if x€ E”, then since w satisfies («) and w = @, we have
for some 2; and z, in E that

w(#) = w(@) —o( —2;) —o(z;) > o(a)/3.
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Denoting Lebesgue measure by |- |, we thus have | E| <|E"| <|E’|, which implies
that IE' [2 3. We get
A Zf w(x) E"ix_ a) lde  lo(@)
« Z ) wrp @ 6@+l @ty
b E—
On the other hand, 4,= f 1) 42— () b_{w_“
e @

Counsidering the cases I=a and I=b—a separately, we find that 4,/4 <18. Thus
J1(0,) <18J (@) < oo.

Next we define w, as the least concave majorant of w, over [0, o). Let (¢, d) with
d>c>1 be one of the intervals where w; <w,, and let k= (w,(d) —w,(c))/(d —c). Then

wo(®) =y (c) +k(x—c) (Ya€(c, d)),
and 01(2) 2 04(d) —(d —2) Z wy(d) —wy(d—2) Zkx  (Yx€(c, d). (1.2.3)
We also have w,(®) Z wy(c) (Y =c). (1.2.4)

Let B,=[lw(x)x2dx (i=1, 2). We claim that B, <eB,. Without losing generality
we may normalize by assuming that ¢=wm,(c)=1. Then we must have 0<k<1.
If d<e, we combine (1.2.4) with the fact that w,(x)/z is decreasing to deduce that
wy(x) <xwy(x) in (1, d), and hence B,<eB,. In the sequel we suppose that d>e.

We have By,=(1-k) (1—‘%) +klogd. (1.2.5)

We now distinguish the two cases kd >1 and kd<1. In the first case we use (1.2.4)
when kz <1 and (1.2.3) when kx>1. We get

B, zl-k+klogd+klogk,
and from (1.2.5) we get
By, <1—Fk+klogd.

Since klog k> —e~! and klogd — k=0, we get By/B,<e/(e—1) in this case. On the
other hand, if kd <1, it follows from (1.2.4) that B;>1—1/d. From (1.2.5) we get

1
B2<1—}l+klogd<1—&~klogk.

Since 1 —1/d>1—1/e, we get in this case also B,/B; <e/(e—1)<e. Thus we have in
all cases B, <eB;, which proves the theorem when n=1.

If w€My(n) with n>1, we define functions w, on B! by ,(t) =w(®), where
t” € R™ has all coordinates zero except that ¢’ =t. It is clear that w,€ My(1), and
thus there exist concave functions Q, of convergence type such that w,(f) <Q,(r)
when —r<i<r. Since by condition (oc o(8) <Dt w,(£,), it follows that Q=>1Q
will have the properties required in the theorem. Thls completes the proof.
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Remark. In Theorem 1.2.7 we may also arrange that Q(r)>r* and that
(&)/Q(|£]) >0 when |&] - oo. In fact, let Q, be the function given by the theorem
and take Q,(r) =Qy(r) + 7. Then define Q(r) =lim, _, ., Q,(r) where the Q, (v=-2, 3, ...)
are defined recursively as follows. Let G, be the graph of Q,_; and G, the graph of
2Q),_,. We shall construct the graph of Q,. Choose r, >0 such that [2Q,_,(r)r—2dr<
2. Let T be a tangent of G, at r,. Then 7' must intersect G, at some 7, >r,. The graph
of Q, shall coincide with G, for r<r,, with T for r, <r<r, and with G, for r>r,.
Then the result follows, since

f 2.(r) gr) dr< f Q———”_; (r) dr+27".
1 7 1 r

Corollary 1.2.8.1 If w €My, then w(&)=o(|&|/log |£]) when |&] — oo.

Proof. In view of Theorem 1.2.7 and the remark following it, we need only prove
that if Q is a concave function of convergence type then Q(t)=O(t/logt) when
t =+ oo, Replacing the graph of by the straight line segment from the origin to
the point (¢, Q(t)), we get

LaQ(t) de Q) logt
+ >J(Q)>f1 P

R

which proves the corollary.
We will now prove that the result of the corollary is best possible.

Theorem 1.2.9. If {t,}° and {a,}{" are two sequences of positive numbers such that

t,~>co and 2{°a, < oo, then there exists a concave function Q of convergence type such
that Q(tv) >avtv/log £, (V).

Proof. Let Q,(t)=a, min (,t,)/log t, and define Q(t)=>3Q,(t). Then Q has the
required properties, since J(Q,) =a,(1+1/logt,).
1.3. Spaces D,, of test functions

Let w satisfy («). If 9 €L,(R™) and if 1 is a real number, we write

loll=llpli= [Ig@] =0 e,

which may be finite or infinite.

We can now following Beurling [3] give the definition of the spaces of test functions
to be used in the sequel.

Definition 1.3.1. D,, is the set of all ¢ in L,(R") such that ¢ has compact support
and ||p|la< oo for all 1>0. The elements of D,, will be called test functions.

Definition 1.3.2. If E is a subset of R", then
D.(#) = {p€D.,; supp < E}.

! Corollary 1.2.8 and Theorem 1.2.9 have been communicated to the author by Professor
Hormander.
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Proposition 1.3.3. If K is compact, D,(K) is a Fréchet space under the natural
linear structure and the seminorms ||« ||[.(m=1, 2, ...).

Proof. Only completeness has to be proved. Let {p,}i° be a Cauchy sequence in
D,(K). Since L, (with respect to the measure e™*©d§) is complete, ¢, converges in
L. Denote the limit function by f. It is clear that f is independent of m and that
{=¢ for some ¢ with supp p< K. This proves that ¢, ~¢ in D,(K).

Definition 1.3.4. If Q is an open subset of RB* and if K, " 7Q we define D,(Q)
as the inductive limit of the Fréchet spaces D, (K ,).

When Q = R", we will sometimes write D,, instead of D, (R").
We note that D, is a fundamental space in the sense of Gelfand and Silov [10], [9],
namely

1) D, is a countable inductive limit of Fréchet spaces, and
2)If ¢;—»0in D,, then @, -0 pointwise.

In fact, 2) follows from the estimate

@, ()] = (2)™"

f@(é) dd dE’ < (Zn)_"fl (&)] de.

So far there has been no indication why we have demanded that the function
entering in the definition of D, shall satisfy condition (). To give the main motiva-
tion for this we prove (cf. [3])

Proposition 1.3.5. Let « satisfy (a). Under pointwise multiplication, D,(Q) is an
algebra, and for each 1>0 we have

levlli<@r) " lellllvlis  (vo,v € Do (Q)).

Proof. Since @ and yp€L,, we have (pp)” (€)= (27) " @ % P(£), and thus all we
have to prove is that for all 1> 0,

Jezw@) de , f¢(§ —n)P(n)dy , < Jezw@ [@(&)| d& fezwm) [w(n)| dy.

But this estimate follows from the inequality

o(f) S (& —n)+ o),
which is a form of (a).

After giving the definitions and first properties of D,,, it is now natural to ask if
D, is non-trivial, i.e. contains any other function than zero. If the answer is affirma-
tive, we want to know if D, is sufficiently rich to contain partitions of unity. These
problems of quasi-analyticity were solved by Beurling in [3]. We first give an im-
portant example, where the answer to these questions is affirmative:

Proposition 1.3.6. If w(£)=log (1 -+ |&]|), then w satisfies (), and D,=C5(B") =D
(tn the notation of Schwartz).
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In the simple proof, which is left to the reader, Proposition 1.2.1 could be used.

On the other hand, it is easy to see by the properties of entire functions (or, of
course, by the next theorem) that if (&) =|£|, then D, is trivial.

We now give Beurling’s result.

Theorem 1.3.7. If w satisfies (x), then the following three conditions are equivalent:
(B) Jnlw)<oo (cf. Definition 1.2.5).

(8") For each compact K in R" and each neighborhood V of K there exists p €D,(V)
such that g =1 on K and 0 <@ <1 everywhere.

(B") D,(R") is non-trivial.

We remark that condition (8') implies the existence of partitions of unity, for
instance in the form stated in Th. 1.2.3 of [H]. For convenience requiring slightly
more than in [3], we make the following definition.

Definition 1.3.8. We call ¢ of condition (5’ a local unit for K.

For the proof that (8”)= () in Theorem 1.3.7 we refer to [3]. We will prove that
(8)=(8') by proving the following two lemmas:

Lemma 1.3.9. Let w € My(n). Then D, (B;) is non-trivial for each &¢>0.
Lemma 1.3.10. If D,(B,) is non-trivial for each &>0, then condition (f’) holds.

The proofs we give are essentially those of [3]. We will start by considering the
properties of a Poisson integral which will be used in the proof of Lemma 1.3.9.
Let P be the Poisson kernel for the upper half-plane in one variable:

P(éﬂ?)=£g§rnz-

We define  u(£,7) = J.HOP(t— En)w@)dt= f+°°P(s, n) w(s+ &) ds.

— o

We now prove a lemma which implies that % is finite and that u(&, ) —w(£) is uni-
formly o(1) when 7 -0 and uniformly o(|7|) when |7| - co.

Lemma 1.3.11. Let & € My(1). For each 8 >0 there exists Cs such that |u(&, n) —ow(&)| <
Cs+0|n| and also |u(&, n)—w(&)| <6+ Cs|y|.

Proof. By the subadditivity of w we have
u(€,m) < fP(S, ) w(§) ds+ fP(S, 7) w(s) ds = w(§) + u(0, 7).

Similarly we prove that

u(&,n) = w(&)— J‘P( —s, 1) w(s) ds,
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and thus |u(&, ) —o(&)| < u(0, n). It remains to find Cs such that we have u(0, ) <
COs+6|n| and a similar estimate. Let Q be the function of Theorem 1.2.7. It is
enough to find C; such that we have

2(n| [ Qr)dr _
- fo gt <Cot ol (1.3.1)

and another similar estimate. But for any B> 0 we have

sfal (= Q0 _ o, 2l [~ Q0
- . mgﬂ(R)—f' - A 1'2 dr.

Choosing R large we prove (1.3.1), and choosing R small we prove the other estimate.
This completes the proof of Lemma 1.3.11.

The essential part of the construction in the proof of Lemma 1.3.9 is given in the
following lemma (cf. {16], Sect. 8 and 10).

Lemma 1.3.12. Let Q be a concave function of convergence type and let §>0. Then
there exists a non-trivial continuous function g on R' such that g has its support in the
interval (-9, 8) and such that § exp Q is bounded.

Proof. Without losing generality we may assume that Q is continuously dif-
ferentiable except at the origin and that Q(t) >t*. We define Q for £ <0 by Q(£) =
Q(—&) and consider for >0 the Poisson integral

u(&,n) = fTwP(é —z,n) Q(r)dr = f ocP('l:, ) Q& —1)d7. (1.3.2)

Let v be the conjugate harmonic function of » and let

F(Z) =exp (—2u(&, ) —2w(&, 7)) (n>0).

By Lemma 1.3.11, « is continuous for 7 >0, if we define u(£, 0) =Q(£). From (1.3.2)
it follows that du/of is continuous for >0 except at the origin. Since dv/on —0u/oE,
we may thus define F(&) =lim, .o F(&+in) for real & and we have |F(§)| =
exp (—2Q(&)). For real z, define f(z)=(2n)! [*2e/* F(£)dE, so that F=f. Thus f
is non-trivial. However, we claim that f(x)=0 if >0. In fact, for any 6 >0 we have
by Lemma 1.3.11,

|F(0)]| < 056729 (5>0). (1.3.3)
Thus by contour deformation we have for each >0 that
flo)= @y [ s pie-vim a
Hence, if x=20> 0, we have by (1.3.3),
/(@) < oe-f’"rw 2 g,
By
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and letting % tend to -+ oo, we prove that f(z)=0. Thus for appropriately chosen
%y, the function g on R1, defined by g(x)=f(x —,) f( — 2 —%,), is non-trivial and has
its support in (-4, 8). Finally, we have ‘

§(&)= @2m) e ™t f 20" (& — ) F(— 1) dr, (1.3.4)

and thus lgA(E) | < (2n)—1fe—2ﬂ(57‘r)—29(1) dr< (27'5)_1 e—ﬂ(&)fe—r% dr.

That § is entire follows from the fact that g€ £ but can also be proved by contour
deformation in (1.3.4) and in the integral obtained from (1.3.4) by the change of
variable £ —7 —7. This completes the proof.

Proof of Lemma 1.3.9. Let Q be as in Theorem 1.2.7 and the remark following it.
Let ¢ be the function constructed in Lemma 1.3.12 with d=¢n"t. When £€R",
define @(£) =] T1g(£,). Then supp ¢ < B,, and with the notation used in the end of the
proof of Theorem 1.2.7 (w,=restriction of w to the &;-axis), we have

llolli= f [p@)] e®de<c f exp Z (Aw; (&) — Q&) dE.

Since w;(&;)/Q(£;) >0 when [&;| - oo, we get ||@]|1s<oo, and the proof is complete.
We will now consider regularization of functions and use regularization to prove
Lemma 1.3.10. We start with the following result.

Proposition 1.3.13. Let w € My(n). Let u be an integrable function with compact
support and let €D, Then uxp€D,.

Proof. Since |4| < f |u(z)| dz and (u % @)~ = a@, we get ||u x ¢|[:<||@|[1  |u(z)| de.
Corollary 1.3.14. Let w € My(n). If ¢ and p€D,, then p ¥ y€ED,,.
A glight complication in dealing with regularization is that if g €D, and g (x)=

& "p(xfe), then it is not a priori clear that ¢,€D,. However, we have the following
result.

Proposition 1.3.15. Let w€ My(n) and define w'(E) =sup,j<qw (). Let €D, and
define @ (x) =e "p(zfc). Then ¢, €D, <D,.

Proof. Let N be an integer satisfying e '<N<1+¢&~t. Then by condition (),

o’ (f) <o (NESNo'(©)<(1+e ") o' (§)

Thus, since @, (&) = ¢(e&) we get ”(peﬂﬁ“")<e‘"”<p“g":36_%.
From Propositions 1.3.13 and 1.3.15 we get as in [H], Th. 1.2.1:

Theorem 1.3.16. Let » € My(n) and let ' (£) =supy < @(@). Let £ be an open subset
of R*. Let w€L,(Q) (1<p<oo) and let u have a compact support contained in Q. If
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PED,(B,) is such that §p(x)dx=1 and if g (x) =& "@(z/e), then u % ¢, € D,(Q) if & is
smaller than the distance from K to (Q. When & ~0 we have ux @, ~u in L,(Q).

Proof of Lemma 1.3.10. Let K and V be as in condition (') and choose & >0 so small
that K4 B, < V. If we can find ¢ € D,(Bz) such that ¢ >0 and [ ¢(x) dx =1, then
the result follows from Proposition 1.3.13, if as u we take the characteristic function
of K+ B,,. To find ¢ we start with a non-trivial p € D,(B,) and form y=ypxvp.
Then it is well known that % is non-trivial. By Proposition 1.3.13, we have
X €Dy(Bse) N Dyy(By:), which implies that 7 €D,(B,). Then by Proposition 1.3.5
we have @ €D, (By), if we define ¢=|y|2=yj. Since ¢ is non-negative and non-
trivial, it only remains to multiply ¢ by a suitable positive constant. This completes
the proof.

Using once more the idea of this proof we can find non-trivial non-negative ele-
ments of D,, with non-negative Fourier transforms:

Corollary 1.3.17. Let w € My(n) and let Q be a neighborhood of the origin in R™.
Then there exists a non-trivial @ €D,(Q) such that @(x)>0 (Vz€Q) and §(&)=>0
(VEER™).

Proof. If By, =Q, we start with € D,(B,) such that y>0. Define ¢ =y % . Since
y is real, we have ¢ =y = |$|2. Thus ¢ and ¢ are both non-negative.

If we are given two functions w, we may ask under what conditions they give rise
to the same space D, and, more generally, under what conditions one space is in-
cluded in the other. This is settled by the following theorem: )

Theorem 1.3.18. Let w, and wy,€ My(n). If for some real A and positive C' we have
wy(é) <A +Cwy(&) (VEERT), (1.3.5)

then D,,<D,, and D,,(Q) is dense in D,,(Q) for each open Q< R". Conversely, if
for some E< R™ with non-empty interior, D, (E)< D, (E), then (1.3.5) holds for some
A and C.

Proof (cf. [H], Th. 2.2.2). In the first part of the theorem, the inclusion is trivial.
To prove that D,,(L) is dense in D,,(Q), let u € D,,,(€2) and let % * ¢, be as in Theorem
1.3.16 with ¢€D.;(2). We get

=t e = [1a@)] @ 1 gety e,

which tends to zero by the dominated convergence theorem. To prove the converse,
choose K compact with non-empty interior and contained in B. We claim that the
inclusion map of D, (K) into D,,(K) is closed. In fact, if ¢, ~f; in Du; (¢=1,2),
then ¢, —f, in L,(R™) and so f1=f» which implies f, = f,. Then the closed graph theorem
gives the existence of positive constants €’ and C such that

lelli?<c llplle” (Vo € Da, (K)). (1.3.6)

Let us choose a non-trivial y €D, (K). Let & €R" and define g(x)=1yp(z) <™.
Then ¢(&) =¢(&—&,). We get
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”(p”(éﬂl) — f|¢(£)| ecwl(f‘('fn) df < ecwl(ga) “w”(éﬂl)

and ”(p”(lwa) — f|¢(5)l ewg(5+fo) d§> e“”@")ﬁ'ﬁ(ﬁ)[ e*ws(—é) d§= ewz(fo) ”"l)“(f’f)

Hence from (1.3.6) we derive (1.3.5) with

A =log (" [[[[&”) —log [[p ]|
This completes the proof of the theorem.

Detinition 1.3.19. If w, and w, are related as in Theorem 1.3.18 we will write
wy<wy.

Corollary 1.3.20. Let w€ My(n). Then D, (Q)=D,(Q) for every open Q in R" (or
for some non-trivial such Q) if and only if w<w.

Corollary 1.3.21. Let € My(n). Then D,(Q)<=C§ (Q) for every open Q in B (or
for some non-trivial such Q) if and only if for some real a and positive b we have

() o) >a+blog (1+|£]) (VEER").

In the sequel we will mainly consider spaces D, consisting entirely of infinitely
differentiable functions. Thus we are lead to the following definition:

Definition 1.3.22. We denote by M the set of all continuous real-valued functions
w on R, satisfying conditions («), (8) and (y):

(@) 0=w(0)<wE+n) <o) tol) (V&nER"),
0@dE

(B) (1+l€I)n+1< ’

) o(E)>a+blog (L+[&]) (vE€R)

(for some real a and positive b).

Occasionally we must limit ourselves to the “symmetric case” described in Corol-
lary 1.3.20 or even to the case where w is given by a concave function of convergence
type. For convenience we therefore also make the following definitions:

Definition 1.3.23. We denote by M, the set of all w €M satisfying w<w and by
M, the set of all € M such that w(£)=Q(|&|) with Q concave on [0, + o).

Definition 1.3.24. If w € M, we denote by w® the element of M, giwen by w(£) =Q(|&]),
where € is the function constructed in Theorem 1.2.7.

A consequence of condition (y) is that supremum norms can be used instead of
integral norms as follows:
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Definition 1.3.25. Let 0 € M. If 9 €EL,(R™) and if A is a real number we define

AwE)

Nl =l = sup |¢(@)l

Proposition 1.3.26. Let w € M. Then there exists a positive constant A such that
Op=§ exp (— Aw(£)) dE < oo and

lelh<Callellsia (VA YoeLy(RY),

(with the natural interpretation if ||plli= + o).

Proof. Clearly, we may take A =(n+1)/b, where b is the constant of condition (y).
Another consequence of condition (y) is that D, is closed under differentiation:

Theorem 1.3.27. Let w€ M. Then if €D, and « is any multi-index, we have
Dag €D, and the mapping ¢ — D is continuous.

Proof. Since (D)~ (£) =£=@(£), we get | De@l|; < Oll@||1+jmp where b is the con-
stant of condition (y).

Apart from differentiation, we will consider two other continuous mappings of
D,, into itself. One is multiplication by an analytic function (Theorem 1.5.16). The
other is translation:

Proposition 1.3.28. Let w € M and let y € R" be given. Then the mapping T, from D,
nto D, defined by
7,¢(®) =@ —y)

18 continuous and in fact an isometry.

Proof. Since (7,¢)" (&) =e V" ®@(&), the result follows from the fact that by de-
finition |¢||; depends only on the modulus of ¢.
If @ is fixed and y varies we also get a continuous mapping:

Proposition 1.3.29. Let w € N and let € D,, be given. Then the (non-linear) mapping
from R™ into D, defined by
. . y->7{p)
18 CONLINUOUS.

Proof. We have
)= sl = [l = ) ] o=,

which clearly tends to zero when x—y.

We conclude this section by giving some examples. First, by Proposition 1.2.1
it is clear that if w(§)=|£|Y> with y>1, then w€ .. Then D, is closely related to
the Gevrey class with index y, as stated in Example 1.5.7. Our next example was
studied by Domaxr [8], p. 18.

Definition 1.3.30. We denote by E the set of all sequences {a,}o° such that ay=1

and a,=0 and
k+) ap<klay lla. (1.3.7)
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Definition 1.3.31. We denote by My the set of all non-negative functions w on R"
for which ¢*® =35 a, | £[F with {a,} €E and

f"o loi(z_iz@dt< oo,
o 1+t

Proposition 1.3.32. If w € My and w =0 then w € M;.

Proof. Condition () follows easily from (1.3.7), condition (8) follows from Defini-
tion 1.3.31, and condition (y) follows from the fact that w==0.

Finally we give an example showing that M,== M. Let £=(&,, ..., &,) and define
(&) =log (1+ |&|) when & <0 and w(£)=log (1+ |&|)+& when & >0. We leave it
to the reader to verify that w € M but w ¢ M,. '

1.4. The Paley—Wiener theorem for test functions

We will now relate the support of a test function to the behavior in the complex
plane of its Fourier-Laplace transform. Thus Theorem 1.4.1 will generalize part of
the Paley—Wiener theorem as given in [H], Th. 1.7.7. The remaining part, dealing
with distributions, will be considered in Theorem 1.8.14. We will also complete the
study of the equivalence of the sets of semi-norms {|| - [[1}1-0 and {||| - |||1}2>, initiated
in Proposition 1.3.26.

Theorem 1.4.1. Let w €M and let K be a compact convex set in R" with support
function H. If U is an entire function of n complex variables { =&+in=({y, ..., {n),

the following three conditions are equivalent:

(1) For each >0 and each ¢>0 there exists a constant C; . such that
fml U(E+in)| @ dE< Oy, ePFM (yy€R™).

(ii) For each 1> 0 and Qach &> 0 there exists a constant 0,'1,6 such that
[T +in)| < e "PFIM=000 (y(E+im) €CT).
(iii) U)= [ e P p(x) dx with some @ € D, (K).
Proof. We first prove that (ii) implies (iii). By condition (y), the classical Paley—
Wiener result shows that we have U =¢ for some ¢ €C§° with supp ¢ < K. It remains

to prove that ¢ € D,. By Proposition 1.3.26 this follows from (ii) with  =0. To prove
that (i) implies (ii) we use Cauchy’s integral formula to get an estimate of the form

UGIE Cﬁs'lgl |UC+E +in')| dE dy'.

<1
Hence, using condition («) we get from (i)
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|U() @< C-2" sup f [U(+ & +in')| elod i ggr
&<t .

[n’l<1

< 02" sup M- sup f |UE+ & +i(n+9'))| ¢ dg’
R

l&i<1 Inl<1

e . . ,
<(C- 2"01.4; sup erot=5) sup eH@Tm+elntn] Ol,e eHm+elnl
[¥l<1 nl<1

with C;l,e =02"C,,, sup 5 sup gRentelr|
st Il <1
This proves (ii).
It now remains to prove that (iii) implies (i). In the proof we will use the follow-
ing well-known result, where P is the Poisson kernel considered in Lemma 1.3.11:

Lemma 1.4.2. Let g be a function of one complex variable z=zx iy, analytic for y>0
and continuous for y >0, and suppose that |g(z)| <Ce* for y>0. Then for all such y
we have
+

log |g(z)] < f log | g(t)| P(z — ¢, ) dt+ Ay.

- 0

Proof. Consider the function f(z) =log |g(z)€'#*/C|. Since f is subharmonic and non-
positive for non-negative y, it follows that f is not greater than its Poisson integral.
(We can for instance map the half-plane ¥ >0 conformally onto the unit disk.)

End of proof of Theorem 1.4.1. Let A>0 and ¢>0 be given. Clearly the result will
follow if we can find a constant C; . (independent of @) such that for every choice of
(orthonormal) coordinate system (with the given origin) and for every real 4 and
each 7, >0 we have (with &' =(&,, ..., £,) ete.)

[Jserin gl de<op gl vpeD(mn<ah. (141

Let ¢ € D, ({x; 2, < 4}). Then by the classical Paley—Wiener result we have
[ @&, +imy, E)| < O™,

and thus we can use Lemma 1.4.2 to get
+o0
log | ¢(&; + iy, &')] <f P, —t,my) log | (¢, &) |dt+ An, (Vo >0).  (14.2)
For fixed & we will also consider the Poisson integral of o and write

ult, m>=f Ples—t,m) olt, &) dr.

-0

To estimate | —w| we repeat the caleulations in the proof of Lemma 1.3.11, using
the inequality w(s-+£&,, &) <w(&;, &) +fs, 0), so that w(s) will be replaced by w(s, 0).
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Since the same  can be used for all w(s, 0), we find a constant Cj . (with the required
independence) such that

A Iu(f, 1) — w(f)] SlogCi.+en; (YEER", Y, >0). (1.4.3)

Using Jensen’s inequality we get from (1.4.2),

+

|¢(51 + 1:1713 6/)' elu(&.ﬂl) <ed™m exp (J‘ e (log I(i';(t’ 5’)' + ﬂ,a)(t, E,)) P(El -, 171) dt)

— o

+o0
Setn f |g(t, &) 4 P —t, ) dt.

— o0

Integrating over R'xR"™! and using the fact that [ P(& —¢,7,)dE; =1, we get

f |61+ im, &)] 46 dg < et . 144

Since (1.4.1) follows from (1.4.3) and (1.4.4), the proof of the theorem is complete.
From the proof of Theorem 1.4.1, combined with Proposition 1.3.26, we get the
following result:

Corollary 1.4.3. Let 0w € M and let K be a compact subset of R". Then the family of
semi-norms {p —|||@|lli}a>0 o D,(K) is equivalent to the family {p —||@|l1}1>o. Still
another equivalent family of semi-norms is

{p—~ sup |$(C)| exp (Aw(&) — H(n) ~ ) }150-

1.5. Spaces &, and Denjoy—Carleman classes

Starting from the space D,, we will define £,, D, and &, as generalisations of
&, D’ and £'. The distribution spaces will be considered in Section 1.6. We will now
first define &£,. Then we will discuss some relations between spaces D, and &,, on
one hand, and D.—C. classes, on the other hand. Here “ D.-C. classes’ stands for classes
of infinitely differentiable functions of the kind studied by Denjoy and Carleman.

Definition 1.5.1. £ (€2) ¢s the set of all complex-valued functions p tn Q such that for
each compact subset K of Q the restrictions to K of ¢ and of some ¢€D,(2) agree. The
topology of E,(Q) is given by the semi-norms

p— inf |yl (YA>0,VK).
y=@ink

From Proposition 1.3.5 and the existence of local units it is clear that we may also
consider £, as the set of multipliers on D,. We formulate this fact as a proposition.

Proposition 1.5.2. £,(Q) ¢s the set of all complex-valued functions @ in L such that
if w€D,(Q), then pp€D,(Q). The topology in E,(Q) is given by the semi-norms
9= llypla (YA>0, Vy€D, ().
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A more general interpretation of £,(Q) is given in Proposition 2.3.3.
We now collect some definitions and results from the theory of D.-C. classes.

Definition 1.5.3. Let L={L,}7_, be an increasing sequence of positive numbers and
let Q) be an open subset of R™. Then C*(Q) is the set of all w in C°(Y) such that to each
compact subset K of ) there exists a constant C such that

sup | D*u| < C*"1LE (Vo with || =k; k=0,1, ...),
K

and ¢*(C2) 1s the set of all w in C=(Q) such that to each compact subset K of Q and each
£>0 there exists a constant C such that

sup | D*u|< O&LE  (Va with |a]=k £=0,1,...).
K

We call C(Q) a D.~C. class. For C*(R™) we sometimes write C*.

Definition 1.5.4. 4 D.-C. class C*(Q) is said to be non-quastanalytic (n.q.a.) if it
contains a non-trivial function with compact support contained in €.

Theorem 1.5.5. (Denjoy-Carleman) The class CX(Q) is non-quasianalytic if and

only if o g
0 Z(t ¢
Jo e (2 ) ) ¥

or equivalently, DLyl < co.

Example 1.5.6. If we denote by 4(Q) the class of functions analytic in Q, then we
have 4(Q)=C%>. (Here and in the sequel we agree to replace L, by 1 if it is 0 or
undefined).

Example 1.5.7. If o(£)=|&|V7 and L,=k» with y>1, then ¢Z(Q) N D(Q) =D,(Q).
This follows from Lem. 5.7.2 of [H].

Theorem 1.5.8. The intersection of all n.q.a. classes OF, where L /(k!)"'* is increasing,
is equal to the class C<F18%>,

Proof. This follows from Th. 2 of [5] (cf. also Th. 7 of [5]).
Let us write ¢,(5)=>320(|£]|/Ly)*. Then we have:

Proposition 1.5.9. If u€D(Q) and |4(£)| < Clg.a&)(1+ |£])** where C and a>0
are constants, then uw€CHQ).

Proof. From the formula D*u(x)=(27)™" f £24(&) €% d¢ and the hypothesis
we get

|§1|d§ -k kf dé -kTE
D <C LCa*Li| — 7= <Ca "L
max sup | D*u(e)| <€ max f qo(@d) (LH[ET 70 T e T T

(k=0,1,2,...).

Finally we will use the following lemma as a replacement for local units in a quasi-
analytic case:
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Lemma 1.5.10. Let Q be an open set in R™ and let K< < U< <Q. Then there exists
a sequence {g,}5° of functions in CF(U) such that all g,=1 in K, and all || <|do|,
and such that for every increasing sequence {L,} with L, >k (Vk) and every u€C*(<D) -
there exists a constant C such that

sup |D*(giu)| < O**1LE  (Va, kb with |a]<k). (1.5.1)
rel

Proof. This follows from Lem. 1 and Lem. 2 of [4], except for the inequaliﬁies
|Gl <|do| (YE). (1.5.2)

But (1.5.2) follows from the proof of Lem. 1 of [4]. (Let g,€C5°(U) be a local unit for
K. Choose ¢>0 such that B,+suppg,=<U, and let ¢ €C(B,) be such that
|4(8)] <$(0) ~1. Then g, is defined by (&) —fol&) (G(E/R))".

The following result connects the D.—C. classes considered in Theorem 1.5.8 with
the subclass Mz of M, considered in Proposition 1.3.32:

Theorem 1.5.11. Let C* be n.q.a. and such that L /(E)"* is tncreasing. Define
wr=logq;. Then w; € Mg and Dw,< OL.

Proof. Since Ay = L/ (k!)"'* is increasing, we have AF1}> A% A} or
B+ LED <Y L1 L (1.5.3)

Thus {L;*}€E. By Theorem 1.5.5 and Proposition 1.3.32, we have w€ Mz< M.
Finally it follows from Proposition 1.5.9 and condition (y) that Dw,<= C*. This com-
pletes the proof.

We now state the main result of this section.

Theorem 1.5.12. () £,(Q) =C<Flsk> Q).
wem

Proof. We first prove that N £,(Q)< CF1¢+>(Q). By Theorem 1.5.8, it is clearly
enough to prove that each n.q.a. O*(Q) such that L,/(k!)* is increasing, contains
E.,(Q) for some w€ M. Let w; be as in Theorem 1.5.11. Then D, (Q)< CX(Q). Let
9 € Eu,(€2) and consider a local unit @ in Dw,(Q). Then gy € Do, (Q) = CX(Q). Since the
property 9 €C* is a local one, the result follows.

Since N &,(Q2)= N &,(£2), the proof of the theorem will be complete, if we prove

wem WEM,

the following result:

Lemma 1.5.13.1 Let @ € M,. Then CF1¥*(Q)c £,(Q).

! Lemma 1.5.13 and its proof have been communicated to the author by Professor Hérmander,
who has also pointed out that a self-contained proof of the first inclusion in Theorem 1.5.12
(not using Theorem 1.5.8) can be obtained by characterizing the functions in £,(Q), with w € 1,
as those u for which, when {— + co,

il;f sup |#(2) —u(@)| = 0 (exp (—Awr(t)) (¥A>0, VK< <Q),
IE€E

where f ranges over all entire functions of exponential type ¢ with an appropriate a priori bound,
and using Theorem 1.2.9.
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Proof. Let w€C¥1%®%> €D, (Q) and 1>0 be given. We have to prove that
[fug|||x<oo. Let K—supptp and choose U such that K< < U< <. Let g, be as
in Lemma 1.5.10 and write u, =g, «. Then up =u,@ (Yk), and it suffices to find ' such
that for each £€ R™ there exists k with

f(f?(é —n) b () dnl <Ce O, (1.5.4)

From (1.5.1) with L,=klogk and |a|=%k we derive the existence of a constant
C such that

) Ck log B\*
Iuk(n)|<0( Inolg) (VnER", VE>2). (1.5.5)

We claim that for some ¢ we also have
flﬁk m|dn<C (k). (1.5.6)

In fact, if we choose p€CF(Q2) such that y=1 in U, then u,=g,v with v =u.
Using (1.5.2) and inverting the order of integration, we have proved (1.5.6) with

= flsio ()] dnflﬁ(ét —n)|d&.

Using (1.5.5) when [|>}|&| and (1.5.6) when |£—7|>}|£|, and writing o (&)=
o(|&]), we get

) . 20k log k\* oo
| [t =m e an| <l (2OEE) + Cllplls s> vy,

Taking k~ |&|/(2Celog |£|) and using Corollary 1.2.8, we have proved 1.5.4 with a
new constant. This completes the proof of Lemma 1.5.13 and Theorem 1.5.12.

Since OtF18%> js quasianalytic (Theorem 1.5.5) and contains the analytic class,
we have the following two results:

Corollary 1.8.14. N D,, is trivial.

wem
Corollary 1.5.15. Let w € M. Then A(Q)< E,(Q).

We will finally prove a quantitative form of Corollary 1.5.15, needed in Chapter V,
namely:

Theorem 1.5.16. Let O C™ and Q< R™ be given open sets such that Q< <ON RB*
and let € M be given. Then for each A>0 there is a constant K; such that for each f
analytic in O and each @ € D,,(L2) we have

lifglll:< Kxllgll sup [

The essential part of the proof is the case where Q is a cube and O is a polycylinder
with the same center. We formulate this case as a lemma:
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Lemma 1.5.17. Let the polycylinder P={z€C™; |z; —x?l <3nR (j=1,2,..,n)} and
the cube Q={x€R"; |x,—af| <R (j=1,2,..,n)} be given. Then the conclusion of
Theorem 1.5.16 holds with Q replaced by Q and O replaced by P.

Proof of Lemma 1.5.17. Without restriction we may assume that z=0. Let

(2) =2 442* in P and let p €D,(Q). Then
(ﬁp)" (5) — z a“f Pt % (P(OU) 2* de,
Q

since the series we integrate is absolutely and uniformly convergent in ¢. Thus
=2 ay( |“"D"‘ P(E). (1.5.7)

By Theorem 1.4.1 and Corollary 1.4.3 we have

966+ il <Cllglsexp  ~ 2(e) +22 3 ).

Thus by Cauchy’s inequalities we get
| D&)< C||@|li k! v * exp (— Aw(§) + Aw, (r) +2nRr)  (VEER")

for k=0, 1, ... and any o with || =% and any r >0, where we have written w,(r) =
supig|<r0(£). Choosing in particular r=k/2nR and using Stirling’s formula we get
with a new constant

| D*¢ )| < Olp|ls (B + 1) (2nR)* exp (— Aw(£) + Awy (k/2n R)).
Applying Cauchy’s inequalities to f we get on the other hand

|a.| < @nR)*sup |f] («|=F)

Introducing our estimates in (1.5.7) and using the inequality > ;1< (k+1)""*
we get

|69)" ©)1 0 <Cllpllsup |1] 3, -+ P 3) exp ooy (/20 B),

and it only remains to prove that the series is convergent. But since w(£)/|£]| 0
when |£| = oo, we have for every ¢ >0 that Aw,(k/2rnR) <ek if k is sufficiently large.
Choosing ¢ so small that 2¢°<<1, we have proved the lemma.

Proof of Theorem 1.5.16. Since Q is a compact subset of ON R", we may cover Q
with a finite number of open cubes @, < B" such that the corresponding closed poly-
cylinders P;< C™ with the same centers and 3» times the “sides” are contained in O.
Let {y;} be a partition of unity for { such that y,€D,(Q,). If p €D,(Q) and f€ 4(0)
we apply Lemma 1.5.17 to ¢y, and observe that ¢ =X,py;. This proves the theorem.
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1.6. Spaces D,, and &., of generalized distributions

The reason for the apparent awkwardness of the following definition is given in
Section 1.0.
We recall that (&) stands for w( —£) and note that if w € M, then w € M.

Definition 1.6.1. Let Q be an open subset of R™ and let € M. Then D,(Q) is the
space of all continuous linear functionals on D (Q).

An equivalent definition is: D,,(Q) is the space of all linear functionals » on D, (Q)
such that for each compact K < Q) there exist >0 and C such that

lu(@)| < Cllell& (Vg €Dy (X)) (1.6.1)

D,(Q) is given the weak topology, that is the topology given by the semi-norms
u~|u(p)|, where ¢ is any element of D,

Following Beurling [3] we remark that two important properties of D, make it
possible to take over much of the Schwartz theory. The first property is that of being
an algebra (Proposition 1.3.5). This property gives sense to the usual definition of
the product of a test function and a distribution, although at this point we must pay
for the choice we made in Definition 1.6.1:

Definition 1.6.2. If ¢ € D,(Q) and u€D,(Q), we define pu € D,(Q) by
(pu) () = ulgp)  (VYEDL(L2)).

The second property is the existence of partitions of unity. This property makes
it possible to prove that if two elements of D,((2) agree locally, they agree globally
(cf. [H], Th. 1.3.3). Thus we may make the usual definition of support:

Definition 1.6.3. Let w € M. If u€D,(Q), the support of u (denoted supp u) is defined
as the smallest closed set K such that w =0 in QN 0K.

In analogy with this we generalize the notion of singular support ([H], Def. 1.3.3)
to the present situation:

Definition 1.6.4. Let w, and w € M. If u€D,, (Q), the w-singular support of u (denoted
sing,, supp u) is defined as the smallest closed set K such that u € £,(2N Cx).

Another property of D,, essential when dealing with differential operators, is
closedness under the usual differentiation operators. Theorem 1.3.27 gives sense to
the following definition:

Definition 1.6.5. If w €D, (Q) and « is any multi-index we define D*u €D, (Q) by
Dru(p)=(— " u(D*p) (Vp€D.,(Q)):
We will also consider the space of generalized distributions with compact support:

Definition 1.6.6. Let w € M. Then E,(Q) is defined as the space of all continuous
linear functionals on €,(Q).
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Just as in the classical case (cf. [H], Th. 1.5.1 and Th. 1.5.2) we have

Theorem 1.6.7. £,(Q) can be identified with the set of all elements of D,(§2) which
have compact supports contained in Q.

Clearly we have £,(Q)< D, »(Q), if we define the space D, z({2) of generalized
distributions of finite order in the natural way:

Definition 1.6.8, D, »(Q) is the set of all w€D,(Q) with the property that A can be
chosen independent of K in (1.6.1).

Next we note that Theorem 1.3.18 and condition (y) imply the following theorem
and corollary:

Theorem 1.6.9. If w, and w,€ M and w,<w,, then D.,,< De, algebraically and topo-
logically.

Corollary 1.6.10. If wE M, then D' <D,

Finally, since locally integrable functions can be identified with certain elements
in D, it follows from Corollary 1.6.10 that the following definition makes sense:

Definition 1.6.11. If w€LY°(Q), then we identify u with the element u in D,(Q)
which is defined by

ulg) = f ul@) pl@)de=ux 5(0) (Vo €D (Q)).

1.7. Convolutions of generalized distributions

We will start by defining the convolution of a test function and a distribution and
proving two theorems generalizing Th. 1.6.2 and Th. 1.6.1 of [H].

Definition 1.7.1. Let w € M. If w€D,, and €D, we define the convolution uxg
as the function given by

(ux9)(2) = w(pE—y)) = w7 9).
Theorem 1.7.2. Let w€ M. If ¢ and wE€D, and u€ D, then (ux@)*xp=ux(p*yp).

Proof. For ¢ >0 we form the Riemann sum

fo(w)=¢" ; ple — &t) p(et),

where ¢ runs through all points with integer coordinates. We claim that f, >@xy
in D, when £¢—0. In fact,

lfe—@xvla= f |§(&)] P [9(&) — R (£)| dE,

where R, (&) is a Riemann sum for the integral defining . Since $(£) >0 when |£| —co,
the claimed convergence follows from the dominated convergence theorem.
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Consequently,
(w3 (p %) (@) = (g % y) (z—y) = im w, (f (¢ — )
=lim &" 3w, (p(r —y — &) plet) = (u x ) % ) (2),
which proves the theorem.

Theorem 1.7.3. Let w € M. If u€D,, and ¢€D,,, then ux @€ &, and supp (u*¢)<
supp u +supp .

Proof. The last result is trivial. We now choose €D, and have to prove that

v€D, if v(x) =y(x) u(r,p). Let & be fixed. By Proposition 1.3.29, u(r.p) is a continuous
function of z. Hence, since v has compact support,

5(&)= fﬂp(x) e T (ux @) (z) do= ((ux @) ¥ pe) (0),
where we have written y;(x) = y(x) e ***®. Using Theorem 1.7.2 we get
(€)= (u (p* P5)) (0) = u(@ % pe).
Since supp (¢ % ye) is contained in a fixed compact when & varies, we then have
|8 < Clllp wellli (1.7.1)

for some A>0 and C independent of & But (px%we)~ (9)=¢(—n)P(£+n), and
consequently (1.7.1) gives

[8()] <C(sup l¢(—n) & +m| o)y <OlllpllER Ml pllli? e *©.  (1.7.2)

This completes the proof of the theorem.

In view of the complication mentioned in connection with Proposition 1.3.15, we
give the regularization of distributions (cf. [H], Th. 1.6.3) the following form, for
convenience using Definition 1.3.24:

Theorem 1.7.4. Let € M. If w€ D, and ¢ € D, and fp(x)dz =1 and @ (x) =& "p(z/e),
then uxp,—~u in D,

The proof is the same as in [H]. Similarly, all remaining material of Sect. 1.6 of
[H] can be taken over without difficulty. We will here only mention that letting
lle]l|s? -0 in (1.7.2) we see that the mapping ¢ »u¢ from D, into &, is con-
tinuous. This is the starting point of the argument which gives sense to the following
definition.

Definition 1.7.5. Let w € M. If u, €D, and u,€E, or conversely, then u,%uy is
defined as the unique element w of D, satisfying u, % (s> @) =u3*¢@ (YP€D,).
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1.8. The Fourier transform and the spaces §,,, S, and F,

We note that D, does not necessarily satisfy Cond. @, of [9], p. 101, or in our
notation, that we have 7M,+ M. In spite of this we could of course define the Fourier

transform of any » in D, by the formula 4(y)=u(}) (Vy)e‘b,,,), or equivalently,
u(p) =(27) " 4(p) (Vo € D,,)- Then % would be a “‘generalized function” over the test-

space D, of Fourier transforms of the elements of D,,. But we will avoid this generality
and only define the Fourier transform % when %€ §,,, where §,, generalizes the space
§' of tempered distributions. To prepare for this definition we will first study a gen-
eralization of the space § (cf. [H], Sect. 1.7). If w ¢ M, we may by Theorem 1.6.9
consider D, as a subspace of D,.. Thus it is no restriction that we will define S,
only for the case w € M,.

Definition 1.8.1. Let €M, We denote by S, the set of all functions €L, (R")
with the property that (g and GEC™ and) for each multi-index o and each non-negative
number A we have

Pa,i(p) = sup €@ | D*p(z)| < oo

reRn

and a1 () = sup €@ | D*G(&)| < oo.
£eRn

The topology of S, is defined by the semi-norms Py ; and 7w, ;.

We recall that the Fourier transform is an automorphism of §. Using this fact and
the symmetry of the definition of §, and applying condition (y) we get the following
result.

Proposition 1.8.2. If w(&)=log (1+ |&|), then §, is identical with §. For any
® €M, we have S,< §, and the Fourier transform is a continuous automorphism of S,.

Just as in the classical case we also have

Proposition 1.8.3. If w€M,, then §,, is a topological algebra wnder point-wise mul-
tiplication and also under convolution.

Proof. It suffices to prove the first result. Thus let ¢ and ¢ € §,. Fix « and . Since
e.g. all pga(p)<oo and all py o(y) < oo, Leibniz’ formula proves that p, (py) <eo.
On the other hand,

D*pp=2n) " D¢,
and thus

1) < (2) " sup f | D* (& — )| € || € iy

< 27) " 10,29 70 («p>fe<l*’> o g,

which by condition (y) is < oo, if I is chosen sufficiently large. This completes the
proof.
We leave it to the reader to check that we also have the following two results:
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Proposition 1.8.4. If w€ M., then differentiation and multiplication by x* are con-
tinuous operators in §,,.

Proposition 1.8.5. If w€M,, then the translation operator T, and the multiplication
by exp (—1{-, a>), where a € R", are continuous operators in §,,.

Next we relate §, to D, and &,,.
Proposition 1.8.6. If w €M, then D,< §,< &,

Proof. Let p€D,, and let o and A be given. Then p, 1(¢) < o, since g has compact
support., That mr, ;(p) < oo follows from Theorem 1.5.16 with f(x) =x* (or directly from
Theorem 1.4.1 and Cauchy’s integral formula). Thus ¢ € §,,. Next we suppose that
@€S, and choose p€D,. We have to prove that gp€D,. By what we have just
proved, y€S§,. Thus by Proposition 1.8.3, gw€§,. But since gy also has compact
support, the result follows.

Finally S, has the following important property (cf. [H], Lem. 1.7.2):

Theorem 1.8.7. If o € M, then D, is dense in S,

Proof. Let us write w(&) =Q(|£]|). Let ¢ €S§,,. Choose p €D, such that y is a local
unit for B, and 0 <y(x) <y(0) =1 (Vz € R"). Define ¢ (x) =¢(x) y(ex). Since §,< &,,
we have @, €D,. Thus it suffices to fix « and 4 and prove that when £¢—0 we have

Pai(pe—9)—>0 (1.8.1)
and T, 1 (P~ ¢) =0 (1.8.2)

Expanding D=p, by Leibniz’ formula and using the boundedness of each derivative
of 1 we see that due to the e-factors it is enough to prove that

sup | (p(ex) — 1) D*p(x)| =0 (1.8.3)

TeRn

in order to have (1.8.1). But since y(ex) —1 =0 when |z| <1/, the left-hand side of
(1.8.3) is
— ()

S Pa,a+1(@)* sup e
|z|=1/e

which implies (1.8.3) and thus (1.8.1).
On the other hand, we have

| D*@e (§) — D*(8)| < (27r)_"f|¢(77)| | D*@(& — en) — D*¢(&)| dn = (2m) " (Ip+ L),

where I, denotes the integral over B={n; |5|<|&|+ & 1™*®} and I, denotes the
integral over U = B. Evidently we have for any >0,

Ty 20,0 () f [ ()| dn < 27,0 (p) IHwHImJ em 4D dy
U U

< C sup PG O J gl dn < O e~ o® J‘ ol dy.
U 1

nel ,]I>E~l/('n+2)
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From condition (y) then it follows that if 1 is sufficiently large, we have I, - ¢*® —0
when ¢~—>0. To prove (1.8.2) and the theorem it thus remains to prove that
SUDgern I 5 e*® —0.
By the theorem of dominated convergence we see that Iz—0 when &0, Thus it
suffices to prove for instance that
sup I e™® — (. (1.8.4)
1§1>2
In the rest of the proof we suppose that |&| > 2 and that & <}. Let us denote the line
element vector in R" by dr. Since ¢ is bounded, we have

|To] < O (€] + " )" sup | D" ~ en) = D*(8)|

< O(l‘fl + 8—1/(n+2))n sup
neB

§—en
f {grad D*@, dr>
3
SCs(|€]+ e V™2 1l gup | grad D*¢(& — e7)|
T€B

< 081/<n+2)(|§l + 1)n+1 Z 75,1 ((p) e—lQ<|5|—s|5|~1).
18l=1|+1

Since Q(|£| —e|£]—1) >3 Q( &) — Q(1), we get with a new constant,

[Ip| < Qetimt® g=to®, (1.8.5)

if we choose [=21+ (n+1)/b, where b is the constant of condition (p). This proves
(1.8.4). The proof of the theorem is complete.
We can now define §;, and the Fourier transform in S,

Definition 1.8.8. Let w€M,. A continuous linear form on S,=S§, is called an
w-temperate distribution. The space of all w-temperate distributions is given the weak
topology and is called S.,.

In view of Theorem 1.8.7 we may identify §,, with a subspace of Dy,. It is obvious
that &€,< §.,. Another important subset of §,, will be considered in Definition 1.8.10.

Definition 1.8.9. If w €M, and w€S,, we define the Fourier transform 4€S,, by
@p) =u(@) (VPE€S,=S.),
or equivalerily, WUP) =(2r) "ulp) (YPE€S,).

As in [H] it follows that the Fourier transform is a continuous automorphism of S,.
In Chapter II we will work with those « in §, for which

|u(@)| < Cmoa() (VPES,).

We prefer to define 4 explicitly in this case even when w ¢ M, so that we have not
defined §.:

Definition 1.8.10. Let w € M. We denote by J,, the set of all elements u in D,, such
that for some measurable function U with
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fl U)| e *® dg < oo for some A>0

we have u(g) = (22) ™" f UEG(—EdE (VpeD,).

If u € F, we define its Fourier transform 4 as [the equivalence class of] the function U:

WE) =UE) (ae.).

We remark that if functions are identified with certain distributions as in Defini-
tion 1.6.11, then % and #€S,. and the new definition of the Fourier transform
agrees with Definition 1.8.9. We also remark that if u, € F,, and u,€ F,, and if u, =u,
as elements of D,,,+4,, then the corresponding functions U, and U, are equal (almost
everywhere).

The following theorem generalizes Th. 1.7.5 of [H] and is similarly proved.

Theorem 1.8.11. The Fourier transform of u € E,, is the function
WE) =g (e D).

The right-hand side is also defined for every complex vector EEC™ and is an entire
function of &, called the Fourier—Laplace transform of u.

The following theorem and corollary connect convolution and Fourier transform
and partly correspond to Th. 1.7.6 of [H]. Another related result is given in Theorem
1.8.15.

Theorem 1.8.12. Let w€M,. If p€S,, and u€ S, then o % u€ S, and (p%u)” =¢-d.
Proof. If p € D,, = D,, we have (using Definition 1.6.11 and results from Section 1.7):
(p*u) () = p*uxp(0) =u(g*y),
and thus there exist constants C, A and % such that

[ (% u) (p)| < Clalzk(p«.a(é*w) + (%) (YpED,).

Then it follows from Proposition 1.8.3 that there exist constants C, I and k such that

| (@ u) ()] < OMZ,C (Pat () T 7001 () (VY E D).

Thus g u, considered as an element of D, is in fact [extendable to] an element of
S., defined by
(px*u)(y) =ulpxy) (VPES,).

Thus, using Definition 1.8.9,
(pxu)” () = (@xu) () = ulp*$).
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Since §,< §, we have (¢-y)” =@ %1, and thus we get

(pxu)” (y) =1Py) = (¢8) (y),
which completes the proof.
From the proof follows (when only 7, ; or only p, ; is used):

Corollary 1.8.13. Let w € M. If u€ 3, and p €D, and yE€D,,, then pxu and yu€F,
and we have

(pxu)” =¢-d
and (wu)” = (27) P * .

We can now state and prove the Paley—Wiener theorem for generalized distribu-
tions with compact support.

Theorem 1.8.14. Let w € M and let K be a compact convex set in R™ and let H be the
support function of K. If U is an entire function of n complex variables {=§& +in=
(815 s &p), the following three conditions are equivalent:

(@) For some real J and all positive ¢ there exists a constant C; . such that
f | U+ in)| e*® dE< O, , ¥ P,
Rn

(b) For some real ) and all positive ¢ there evists a constant C; , such that
| U +in)| S O, eF0F e 2o®  (we+ ipne Cm).
(¢) U is the Fourier—Laplace transform of some u€ &, with supp u< K.

Proof. That (b) implies (a) is clear (cf. the proof of Proposition 1.3.26). To prove
that (a) implies (b) we may suppose that A is positive. We can then use the inequality

—Aw(8) < —Aw(é+&') + o)

and proceed as in the proof that (i) implies (ii} in Theorem 1.4.1.
To prove that (b) implies (¢), we derive from (b) with =0 that if y €D, then

fU(E)tﬁ(—&) d&l<0fe“"5l¢(—£)|d§<01|wll‘a‘°’-

Hence the linear functional
P> (Qn)_"fU(E)?ﬁ( —§&)dé

is an element % in D, Thus «€F, and #="U.

Let ¢ be in D,e(B;) and [e(x)dz=1 and let @s(x)=0 "p(x/d) and us=uxgs.
Then by Corollary 1.8.13 we have u;€F, and 4;=U-¢@. From conditions (ii) of
Theorem 1.4.1 and (b) (with A replaced by 1) we then derive for any 2>0 and any
£>0 the existence of a constant Cj , such that

[ s (& +1in)| SCF, exp (lo(£) + Hn) + e |n| — Aw (&) + 8| n| + &|n)).
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Thus, by Theorem 14.1, u,€D, (K + Bs). Hence when §->0, we get supp uc K
(Theorem 1.7.4), which completes the proof of (c).

Finally, we prove that (c) implies (b). The meaning of (c) is that U({) =u,(e ")
for some %€ £, with supp u< K. Clearly, for some 1>0 we have

lu@| <Clgllli  (vo€Da). (1.8.6)
Let o€ D, (K + B,.) be a local unit for K. Then U()=u(p) with ¢(z)=p(z)e
and @(r)=@(r+¢). Thus, if we apply to o condition (ii) of Theorem 1.4.1 with ¢
replaced by %e, we get
|U(& +in)| < O sup|g(z+ &+ in) exp (ko (7))
< C exp (lw(&)) sup | §(v + & +in) exp (ko(z + £))|

<O Cf e exp (lw(€) +H(n) +elq)).
This proves (b) and completes the proof of the theorem.

Remark. From the proof it follows that as 4 in condition (b) we can use any I satis-
fying (1.8.6).

We note that Theorem 1.8.14 implies that £,< F,. This now permits us to prove
the following result:

Theorem 1.8.15. Let w € M. If u, € E,, and u,€ F,, then u; % u, € F, and (u, ¥ u,)” =
iy iy,

Proof. We have if p€D,,
(g% ug) () = (uy % Uy % 17)) (0) = u(tly * ).

Since by Theorem 1.7.3, #%,%y€D, we have by Definition 1.8.10 and Corollary
1.8.13 (note that «, € 3F,):

(% 05) () = (%z)'"faz (&) ()" (€) d& = 2m) " f iy (&) By (£) P~ £) dE,

and the result follows, since 4,4, is a function of the kind considered in Definition
1.8.10.

We will now prove an analogue of the Paley—Wiener theorem for the w-singular
support (cf. Definition 1.6.4 and [H], Th. 1.7.8).

Theorem 1.8.16. Suppose that w and w,€M and that v, <w and w;<w, and let
u€E,,. Let K be a compact convex set in R™ with support functton H. In order that
sing,, supp u< K, it is necessary and sufficient that there exist a constant A and a
sequence of constants C,, (m=1, 2, ...) such that

|9| <mw(§) implies |4(£ +in)| < O, O E@*halim, (1.8.7)
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Proof. To show that (1.8.7) is necessary, we choose A>1 such that

lu@l<Cllleller (Vo€ D). (1.8.8)

For each m we can by hypothesis write u =u; +u, where supp %, < K + B2, and
%, €D, (B™). Since

Jua(p)] < 2 gl [ 1601,

(1.8.8) implies that [ (@< llollli”  (vp€D.,). (1.8.9)
Thus by Theorem 1.8.14 (with ¢ =1/2m) and the remark following it, we have
| @& +in)| < O exp (Awy(8) +H(n) + 0] /m) (vE+m€C™).  (1.8.10)

On the other hand, if supp u,< By_,, we may apply Theorem 1.4.1 to u,, taking
e=1and A=Nm+1. We get

[%a(& +1n)| < O exp (N |n] —(Nm + D w(&)). (1.8.11)

Now (1.8.7) follows from (1.8.10) and (1.8.11) if 7 is sufficiently large.
To prove the sufficiency of (1.8.7), we make an orthogonal transformation and
reduce the problem to the following one. Suppose that

|4(& +in)| < O, exp (Aoy (&) + Ay + || fm) if || <mw(E) and 2,>0. (1.8.12)

Prove that if v € D,({z; 2, > 4}), then pu€D,. By Corollary 1.8.13 we thus have to
prove that for each (sufficiently large) I there is a constant C; such that

fy‘)(r — &) 4(&) dg, <0 e "™ (YrERM. (1.8.13)

We want to deform the integration contour in this integral. By Lemma 1.2.4 and
Theorem 1.3.18 we may suppose that  is so smooth that the following integral is
well defined:

In= fd5'fr Yoy — L, v = &)y, £) ALy, (1.8.14)

where &' =(&,, ..., £,)€ER" ! and the integration with respect to {, =&+, is over
the contour I',, defined by 7, =mw(&).

Since the support of y is compact and contained in {z; 2, >4}, it is in fact contained
in {z; 2, > A4 -+ 34} for some § >0. Thus, taking £¢=4 in Theorem 1.4.1, we see that for
each [>0 there is C; such that for 7, >0:

[$(z1—L1, 7' —&)| < O exp (—loo(v —&) — (4 +20)my). (1.8.15)

From (1.8.12) and (1.8.15) it follows that if m >1/3, then the modulus of the integrand
of (1.8.13) and (1.8.14) is

< C exp (Awy(&) —lo(t — &) —on,)
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when 0 <7y <mw(§). Hence, since w;<w and
—lw(r—§&) < —lw(—§&) +lw(-1)

(if 1>0), the integrals in (1.8.13) and (1.8.14) are equal by deformation if I is suffi-
ciently large. (A similar argument is carried through in more detail in the proof of
Lemma 4.1.3.) On the other hand, since w,<w and

~lo(r - &) <lw(&)—lw(1),
the modulus of the considered integrand on I',, is
< 0 exp (C'o(&) —dy, —loo(z)) = O exp ((C" —dm)w(&) —lo(T)).

Further, by Lemma 1.2.4, |d{,|/|d&| is bounded on T',. Thus, if we take m suf-
ficiently large, the result follows.

Specializing w,, we get the two following results (with K, H, 1 and C,, as in Theorem
1.8.16). '

Corollary 1.8.17. Suppose that w€E and w€M. In order that sing, supp u< K
it 18 necessary and sufficient that

|| < me(&) implies |@(& + i) | < O (L4 | &) eFOPFIIm,

Proof. Since » and w satisfy condition (y) we may choose w,(£)=log (1+ |&[) in
Theorem 1.8.16.

Corollary 1.8.18. Suppose that w € M, and u€ E,. In order that sing,, supp u< K
it s necessary and sufficient that

|| < mw(&) implies |4(&+in)| < C,, @TH®, (1.8.16)

Proof. Since v, =w, (1.8.16) is equivalent to (1.8.7), if we replace 1 by 241 when
necessary.

Chapter II. Some special spaces of generalized distributions

2.0. Introduction

In this chapter we generalize the spaces B, , and By considered in Chap. IT of

[H]. This generalization will be done by considering weight functions k& with more
rapid growth than those considered in [H]. To each w€ M we will define a class
X, of admissible weight functions k. Then B, , will be the set of generalized distribu-
tions « whose Fourier transforms 4 are such that 4-k€L,. It turns out that B,
does not depend on w as long as k€ X,,. Since the conditions defining D, are given on
the Fourier transform side, spaces of type B, , are particularly well adapted to our
situation. On the other hand, when replacing log (1 + |£]) by a general @, we lose the
close connection between w and differentiation, as pointed out in the preface.
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2.1. Weight functions k

We start with the following two definitions and note that the first one reduces to
the definition of X in [H], when w(£)=log (1 -+ |£|), since the constant that occurs
there could be left out without any change.

Definition 2.1.1. Let € M be given. Then X, is the set of all positive functions k
in R™ with the following property. There exists >0 such that

k(& +9)<e* P I(n) for all & and 7 in R™
Definition 2.1.2. If k is a positive function on R", we write

k(& +
M ()= sup &—‘,f( n)’”-

We note that by condition (y) we have X< X, for every w € M. We also note that
by condition (x) we have exp w€ X, Next we list as Theorem 2.1.3 some results
which are proved just as are the corresponding ones in Sect. 2.1 of [H].

Theorem 2.1.3. Let w€ M. If kEX,, then log k is uniformly continuous, M, €X,
and the following inequalities hold for all & and n€ R™ (with the A of Definition 2.1.1):

e PO E(]f(;;ﬁ)") A 2.1.1)
5(0) e %@ < (&) < (0) 2, (2.1.2)
M (&+nm) < My (&) M (), (2.1.3)
1=M,(0) <M, (&) (2.1.4)

As in [H] we immediately get the following result from Definition 2.1.2 and Theo-
rem 2.1.3. However, the situation is complicated by the fact that we do not assume

w€EM,.

Theorem 2.1.4. Let 0 € M. If ky and &k, are in K,, it follows that ky+ky ki ks,
sup (ky, ky) and inf (k,, k,) are also in K, If k€KX, we have ¥’ €K, for every non-
negative s but k°€ X, for every non-positive s.

_ We note that in particular %-P and k/P€ X, if k€ X,, where we have defined
P(£) =0 by P(£)2 =73 y=0| D*P(£)|2, when P is a polynomial.

Since we work with a whole family of classes X, the question naturally arises:
Given k, when does there exist w€ I such that k€ X ,? The following theorem an-
swers that question.

Theorem 2.1.5. Let k be a positive function on R™. Then a necessary and sufficient
condition that there exists w € M with k€ X, is that log k s uniformly continuous and

|Log k(& -+7) —log k()| -
fm 2:115 a +|§|)n+1 d& < + oo, (2.1.5)
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Proof. By Theorem 2.1.3 and condition (§), the condition is necessary. To prove
that it is sufficient, we define

o(§) = max (log My(~£), log (1+|£])),

where M, is given by Definition 2.1.2. Now (2.1.3) has nothing to do with the fact
that @ € M in Theorem 2.1.3, but follows directly from Definition 2.1.2, Thus (2.1.3)
holds also in the present case, and hence w satisfies condition (). By hypothesis,
o satisfies condition (). By the uniform continuity, lims_, o @{£) =0, and hence the
subadditivity of o implies that w is continuous. Finally, » satisfies condition (y),
and the theorem is proved.

Definition 2.1.6. We denote by Koy, the class of functions U K, that is the class

of all positive functions k with uniformly continuous logamthm on R™ and satisfying
(2.1.5).

2.2. The spaces B,

We will now generalize the spaces B, , of [H] to the case when k€ X yy,. We will
first give a definition of a space Bj ,, apparently depending on w.

Definition 2.2.1. Let w € M and k€ X, and let 1 <p<oo. We denote by By, the set
of all w in F,, for which

Up
llwlp,x = ((27:)—" f | (&) ﬁ(f)l"drf) < oo, 2.2.1)
where, of course, ||u||w,, means ess.sup. k(£)|4(&)|.
When o € M, we need not assume that u€3F,;

Proposition 2.2.2. Let w € M, and k€K, and let 1 <p<oco. Then By, is identical
with the set of all w€ S, such that 4 is a function and (2.2.1) holds.

Proof. From Holder’s inequality and condition (y) follows that (2.2.1) and (2.1.2)
imply that for some 4,

fld(E)] e MO GESCO|ullpp< 0. 2.2.2)

Thus u€ JF,,.
We now prove the counterpart of Th. 2.2.1 of [H].

Theorem 2.2.3. Let o» € M,. Then B is a Banach space with the norm |||, 5 We
have

S, Bk < So
also in the topological sense. D,, is dense in BY., if p<co.

Proof. Just as in [H] we have §,<L,(R" k(&)*dE)< §., algebraically and topo-
logically, and we take the Fourier transforms of these three spaces. We do not repeat
the details.

We will now prepare for an invariant definition of B, ;.
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Theorem 2.2.4. If w,€M and k€K, (r=1,2) and w,<w,, so that we have a
continuous injection i:D,,— Dy, then ¢ restricted to Byl is an isometry of By
onto By'.

Proof. Since w does not appear in the definition of the norm ||-||,,, we only have
to prove that the restricted mapping is onto. Let us therefore choose € BjY,. Then
since u€JF,, we have

ug) = @) [0 - (vpeDa) (223)
Repeating the proof of (2.2.2) but using o, instead of w, we get
[1a@) o d <o,

Thus, since D,, is dense in D,,, we can define u(p) by (2.2.3) for every g€D,,,
which means that » € F,, and thus « € By*,. The proof is complete.

From Theorem 2.2.4 it follows that if k€ J{., is given, the choice of w in the
definition of B is irrelevant as long as k€ X,. We prefer to express this fact in the
following slightly inexact way:

Definition 2.2.5. Lei k€ Ky, and let 1 <p<oo. Then we identify oll By for which
w€M and k€ X, We denote the result of the identification by B, .. If Q is an open
subset of R" we also define

5.6 (Q) =By N E5,(Q).
We may now summarize part of our results as follows:

Theorem 2.2.6. B,,; is a Banach space with the norm ||+ ||, For any w such that
k€ X,, we have

D,<B, <D,
algebraically and topologically. Further, if p< oo, then D,, is dense in B, ;.

The results of [H], Sect. 2.2, on relations between B, ;-spaces could now be‘ proved
for general k€ Koy (In the statements, B, N £'(Q) should be replaced by B 1 (£2).)
As an example we give the following theorem, which we will use several times.

Theorem 2.2.7. Let w €M and k€ X,. If u€B, , and ¢€D,, then pu€B, , and

”‘Pu”p,k < ”q’”LMk"u”p.k'
If w €M,, then the same result is true when @ €S§,,.

Proof. By Corollary 1.8.13 (and Theorem 1.8.7), we have
(pu)” (&)= (27t)_"f¢(§ —n) @) d,

and the proof proceeds as in [H], Th. 2.2.5.
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Finally we prove the following theorem, which is more general than the obvious
counterpart of Th. 2.2.7 of [H], and which is also related to Th. 2.2.2 of [H]:

Theorem 2.2.8. Suppose that k; and ky€ Koy and that 1 <p < oco. Then, if
. 1 1
ky/ky€ L, with 54-17: 1, (2.24)
i follows that B, ;, < By .1, algebraically and topologically. Conversely, if B 4,(€2) < By x,
for some open non-void €, then (2.2.4) holds.
Proof. If (2.2.4) holds, then by Hélder’s inequality,

el < 2m0) ™7 || oy /Beg||zor | )]s (Y € Byo),

which proves the first part. Conversely, we may assume that 0 €. Choose ¢ € D,,({2)
such that ¢ >0 (Corollary 1.3.17). Then if « € B, 1, we have pu € Bj, ,(Q) by Theorem
2.2.7. Hence, by hypothesis, pu € By ;,- We claim that the mapping u —¢u is a closed
mapping of B, ,, into By ,,. In fact, if u,>u in B, , and gu,—v in By ;,, then for a
suitable w € 71, we have on one hand that u,—~wu in §, which implies that gu, —>gu
in §;, and on the other hand that gu,—>v in §,. Hence pu=v. Thus by the closed
graph theorem,

flq(f) [(pu)™ (&)| e < Cp||ullpr, (VuEB,k,)- (2.2.5)

Now ¢ is non-negative. If also 4 were non-negative, we would have (using Defini-
tion 2.1.1)

0k (&) ) @)= k(@) [ 6 =) gy an> [0 =) k(=) gl e 57
Hence, inverting the order of integration, we would get

@n)" f 5 (©) | @w” O] >l f &) by (&) dE.

Combining this with (2.2.5), we have proved that

k1 (8)
| 20 ye e <cligl,

for every g >0 such that g=£k,-4 for some w€ B, ,,. Since k, is bounded away from
zero on each compact set, every measurable non-negative g with compact support
trivially is of this form. Thus the result follows from the inverse of Holder’s inequality.

2.3. Local spaces

In this section we will define spaces ByS when k€ Xuy, thus generalizing Sect.
2.3 of [H].

Definition 2.3.1. If G is a linear subspace of D,(<2), we define
G ={u€Du; €D, (Q)>pueG}.
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Definition 2.3.2. If G< G°°°, we say that G is w-semilocal, and if G=G*'°, we
say that (G is w-local.

It is clear that the properties of local and semilocal spaces, given in the beginning
of Sect. 2.3 of [H], generalize to our situation. In particular, by Theorem 2.2.7
we see that B, is w-semilocal if k€ X,. We leave to the reader the proof of the
following result.

Proposition 2.3.3. £,(Q) = (D, ().

We will now define spaces BiS, and just as in Section 2.2 we first consider spaces
which apparently depend on w.

Definition 2.3.4. If €M and k€KX, and 1<p<oco, we define Byi(Q)=gG**®
where (G 1is the set of all restrictions to Q) of elements of By... The topology is given by
the semi-norms u —||gu|| .k (p € Du(L2)).

Corresponding to Theorem 2.2.6 we have the following theorem, which is proved
like Th. 2.3.8 of [H].

Theorem 2.3.5. B3 is a Fréchet space and
£ (Q) =By (Q) =D, (Q)
algebraically and topologically.
Corresponding to Theorem 2.2.4 we have

Theorem 2.3.6. If w,, w, and ¢ are as in Theorem 2.2.4, then 1 resiricted to Fy is an
isomorphism of F, onto F;, where F, =B Q) (r=1, 2).

Proof. Since B2, and B%*, can be identified and D,,, < D, it is clear that the restric-
tion of ¢ to F, is a linear injection j of F, into F,. Since every semi-norm u —||ug]|, x
in J,, given by a function ¢ in D,,, can be considered as a semi-norm in J,, we see
that j is continuous. Then by Theorem 2.3.5 and Banach’s theorem it suffices to
prove that j is onto. Thus let w€F, and let p €D,,,. Let K, be compact subsets of
Q such that K, 7 »Q and let ¢, € D,,,(Q) be a local unit for K,. If » is so large that
supp ¢ < K,, we have gu=gp,u, so that by Theorem 2.2.7,

lpullo e < gl o eyl
Since k€ X,,,, it then follows from Theorem 2.1.3 that there exist constants 4 and

C, such that
llpullo. < Cllplli (Vo € Do, (K2))- (2.3.1)

Then we may extend u so that (2.3.1) holds for all ¢ €D,,,(K,). Clearly, the extended
% is in F,, which completes the proof.
We can now define BY%(Q).

Definition 2.3.7. Let k€ Ky, and let 1<p<oco. We identify all By i°(Q) for which
k€N, and call the result of the identification BYL(Q). We give By%(Q) the natural
topology.
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We could now prove for general k€ Xy, the results of [H], Sect. 2.3, on relations
between spaces By%(Q) and on their interplay with P(D). We leave this to the
reader and only remark that the proof of Th. 2.3.6 of [H] actually gives the following
more precise result:

Theorem 2.3.8. Let U and W be bounded open sets such that U—W<Q, and let
€ B 1 (W) and u,€ B, (Q) with &, and ky€ Komy- Then uy % us€ By, r(U).

We now prove a theorem which generalizes formula (2.3.2) of [H].

Theorem 2.3.9. Let w € T and k,€ K, and let 1 <p,<oo (u=1,2,...). If the space
F= ﬂ Byrk, (Q) is equipped with the topology given by ! all the semi-norms w=||lgulls,x,

(p€ D (Q)), then F is a Fréchet space. I} in particular k =exp (uw), then F is naturally
isomorphic to E,(€).

Proof. To prove the first result we only have to prove that the topology is metriz-
able. Choose compact sets K, »Q and local units ¢, for K, with ¢,€D,(Q). It
then suffices to use the semi-norms u—||p,u|,,., The last result follows from the

local version of Theorem 2.2.8, since we have k, [k, €L, for every p'(1<p’ < oo),
if py—pu, is sufficiently large.

As an application of Theorem 2.3.9 we prove the following result, which will be
used in Chapter IV, and which could easily have been proved in Chapter I.

Theorem 2.3.10. Let w € M. Let U and W be bounded open sets such that U — WO
and let w€ E,(W) and g€ E,(Q). Then uxgp€ &, (U).

Proof. By Theorem 2.3.9, we have that ¢ € BL°, (Q) with £, =exp (pw) (u=1, 2, ...).
By definition, u € Bf (W) with &k, =exp (—lw(& )) for some [ >0. Hence, by Theorem
2.3.8, pxu€B%, (U) with k,=exp (u—l)w and hence also with k,=exp [1—No
(u=1,2,..). Applying again Theorem 2.3.9, we get the desired result.

In Section 3.3 we will consider the space D, (Q) (cf. Definition 1.6.8). Then we
will need the following result:

Theorem 2.3.11. Let «w € M. For every p with 1 <p < oo we have
U BR%(Q)=Dar(Q).

KeXx,

Proof. If € By%(Q) and ¢ €D,,(Q), then from (2.2.2) it follows that

f [(@u)™ ()| 7@ dé < oo,

with 4 depending only on k. Thus

lpu)|<Cllvlie  (vy€Da).
Let K be a compact subset of €. Choosing ¢ as a local unit for K we get

lutp)| < Celllplle  (vpe D, (K)). (2:3.2)
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Conversely, suppose that (2.3.2) holds and choose ¢ € D,,(K). Then gu€ &, and
we have

()" (€)= (pu)e (7 9) =, (p() ™).
Thus ()™ ()] < Og sup [P ¢z + £)| < Ce | I& €2,

and hence pu€B, ,, if k is a suitable negative power of exp w. This completes the
proof.

Chapter III. Existence and approximation of solutions of differential
equations

3.0. Introduction

This chapter corresponds to Chap. IIT of [H]. For various distribution spaces
G(Q2) we consider the question of finding necessary and sufficient conditions on
Q to have P(D) G(Q) = G(Q).

It turns out that the classical fundamental solutions will suffice to treat the case
G=E., (Section 3.1), and that P-convexity (cf. [H], Sect. 3.5) still is the relevant
property if @ is related to spaces BYS (Section 3.3). We also find that the results
in [H], Sect. 3.4, on approximation of solutlons of homogeneous equations, generalize
in a natural way (Section 3.2). In the final section we prove that an analogue of
strong P-convexity (cf. [H], Sect. 3.6, and [14]) is necessary and sufficient when
G="D,. Our result, which is given in Theorem 3.4.12, in particular implies that
convexity is always sufficient.

3.1. The equation P(D)u=f when f€ &,

We recall the definition of a fundamental solution:

Definition 3.1.1. A distribution E€D'(R™) is called a fundamental solution for the
differential operator P(D) with constant coefficients if

P(DYE =4,
where O 18 the Dirac measure at 0.

If w € M we could of course define a “‘fundamental w-solution’ in a similar way but
with E €D, (R"). But we avoid this generality for the following reasons. First, just
as in [H], p. 64, it follows that if for some p and some k€ X, there exists a “funda-
mental w-solution” E for P(D) such that

Ee Bloc (Rn)

then BY°;<B)%. Second, we know from [H], Th. 3.1.1, that to every differential
opera’cor P(D) there exists a fundamental solution E € ‘Bl"c {(B™.
Let now E be a fundamental solution for P(D) and let € TH. Then

P(D)(Exf)=f (VI€Eu): @.L1)
Ex(P(D)u) =u (Yu€E,). (3.1.2)
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Starting from (3.1.1) and (3.1.2) and using results from Sections 2.2 and 2.3, we
can now take over the results from [H], Sect. 3.2, on spaces B, , and By and their
relations to P(D). We leave the details to the reader.

3.2. Approximation of selutions of homogeneous differential equations

This section generalizes Sect. 3.4 of [H]. Thus we deal with questions concerning on
one hand the approximation of arbitrary solutions of the differential equation

P(D)u=0 3.2.1)

by sums of exponential solutions, on the other hand the approximation of solutions
in one open set by solutions in a larger open set. We start by recalling the definition
of an exponential solution:

Definition 3.2.1. A solution w of the differential equation (3.2.1) in R" is called an
exponential solution if it can be written in the form

u(z) = f@) =,
where {€EC™ and f is a polynomial.
Since every exponential solution is analytic, Corollary 1.5.15 gives
Proposition 3.2.2, I} u is an exponential solution, then u € &, for any o € M.

In the rest of section 3.2 we use the following set-up. Let £ be an open subset of
R". Let w €M be given and let I be an arbitrary index set. Let k, € X, and p, be
given for each (€ 1. We suppose that 1 <p, <o (Vi€1). We define

loc

J(Q) = DI Bpt,kt (Q)

with the topology given in Theorem 2.3.9. In particular, we may have F(Q)=E,(Q).
Then all theorems, lemmas ete. of [H], Sect. 3.4, remain true if £ is everywhere
replaced by &,. The verification of this is left to the reader.

3.3. The equation P(D)u=f when f is in a local spacec D, r

In this section we will study the equation P(D)u=f when f belongs to some space
loc

55:{Q2). We start by recalling the definition of P-convexity, which is the key concept
in the corresponding Sect. 3.5 of [H].

Definition 3.3.1. An open set Q is called P-convex if to every compact set K<L
there exists another compact set K'<Q such that ¢ €C5°(L2) and supp P(—D)p< K
implies supp < K'.

The following procedure may now seem natural. In Definition 3.3.1 we could
replace the condition “@p€CF(Q)” by “@p€D,(Q)” and thus define an apparently
weaker property of Q, which might be called “(P, w)-convexity”. However, it is
clear by regularization (Theorem 1.7.4) that this property does not depend on w
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and is thus identical with P-convexity and also with the corresponding property
where the condition “@p€D,(Q)” is replaced by “p€ £,(Q)”. Having made this ob-
servation, we will now prove:

Theorem 3.3.2. Let w € M. Suppose that the equation
PDyu=f (3.3.1)
has a solution w€D,(Q) for every f€ E,(Q). Then Q is P-convex.

Proof. Let K be a fixed compact set< Q. Consider the bilinear form

B: (g, f)—>f<pf dz,

defined when f is in the Fréchet space &,(Q) and ¢ €®, which is a metrizable space,
defined as follows. @ consists of all functions ¢ € D,,(Q) with supp P(— D)p< K. The
topology is defined by all semi-norms

9> [|P(— D) gl

B is continuous in f for fixed g, since ¢ has compact support. If f€ €, we have by
hypothesis P(D)u=f for some u€D,(Q). Thus [efde—u(P( — D)g), which proves
continuity in ¢ for fixed f. Thus B is continuous ([6], Chap. ITI, § 4, Prop. 2), which
means that there exist ¢ € D,,(Q) and constants 4,, 1, and O such that

s

In particular, supp g <supp y if p€®, and taking K’=suppy in Definition 3.3.1
we have proved the theorem.
Conversely, we have

<C|P(—D)oplli |l vt

[ (Vped, VieE, (Q)).

Theorem 3.3.3. Let w € M. Let Q be P-convex and let
fejri B, (Q), where k€K, and 1<p,< oo.
Then equation (3.3.1) has a solution
” e]fjl Bty ().

The proof is the same as in [H], Th. 3.5.5. Using Theorems 2.3.9 and 2.3.11 we
now get the following two results:

Corollary 3.3.4. If Q is P-convex, the equation (3.3.1) has a solution u€ E,(Q) for
each f€ £,(Q). «

Corollary 3.3.5. If Q is P-convex, the equation (3.3.1) has a solution u€D,, z(Q)
for each fE€D,, #(Q).
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3.4. The equation P(D)u=f for general f€D,,
We start with the following definition (note that we consider Schwartz’s space £'):

Definition 3.4.1. Let w € . An open set Q is called strongly (P, w)-convex if it is
P-convex and to every compact set K <) there exists another compact set K'<Q such
that for all € E'(L)) we have

sing,, supp P(— D)u < K = sing,suppu<K'. (3.4.1)

The following theorem is proved just as Th. 3.6.1 of [H], twice using Corollary
1.8.17.

Theorem 3.4.2. If u€ E'(R"), the convex hull of sing,, supp u is identical with that of
sing,, supp P(— D) u.

Replacing o by w we thus get

Corollary 3.4.3. Euvery open convex set Q is strongly (P, w)-convex for every w€ M,
and as K’ we may take the convex hull of K.

Our next theorem gives an equivalent definition of strong (P, w)-convexity (cf.
[H], p. 84, and [14]).

Theorem 3.4.4. Let « € M and let Q be a P-convex subset of R". In order for L to be
strongly (P, w)-convex it is necessary and sufficient that for each u€ E'(2) the distances

from GQ to sing,, supp u and to sing,, supp P(- D)u are equal.

Proof. The sufficiency is proved in the following way. Let Q, = {x €Q; d(x, 0Q) >¢}.
If K is a compact subset of Q, we have K< Q, for some £>0. Then if y € £'(2) and
sing,, supp P(—D)u< K we have by hypothesis sing, supp p<=€2,. On the other
hand, considering u as an element of &'(R"™), we have by Corollary 3.4.3 that
sing,, supp u< H, if H is the convex hull of K. Thus we may take K'=Q.NH
in (3.4.1). The necessity is proved as in [H], Th. 3.5.2.

We also have the following two results, which can be proved as the corresponding
ones in [H].

Theorem 3.4.5. If I is any index set and Q, is strongly (P, w)-convex for every
LET, then the interior of N Q, is strongly (P, w)-convex.
el

Corollary 3.4.6. To every open set Q there is a smallest strongly (P, w)-conver open
set containing Q.

We will now prove the first main result of this section, using the proof of Th.
3.6.4 of [H].

Theorem 3.4.7. Let w € M and suppose that Q is strongly (P, w)-convex. Then the
equation P(D)u=f has a solution u€D,(Q) for each f€D,(Q).

Proof. It is sufficient to prove that for given f€D,(Q) there exists a continuous
semi-norm ¢ on D (Q) such that

@] <aP(—D)p) (VpEDLQ)). (3.4.2)
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For then it will follow from the Hahn-Banach theorem that the linear form
P(—D)p—f(p), defined when € D,(€2), can be extended to a linear form % € D),
which is a solution.

To construct ¢ we choose compact sets K;, K,, ... such that K; 7 7Q. We take
K, =K,=0. Since Q) is strongly (P, w)-convex, we may choose compact sets K A7
(with K{=K;=0) such that

@€ E(Q), supp P(~D)gp< K, = supp p < Kj, (3.4.3)
and @€ £'(Q), sing,, supp P(— D)p < K; = sing,, supp ¢ < K. (3.4.4)

The construction of ¢ will be made in an infinite number of steps, each using the
following lemma.

Lemma 3.4.8. Let q be a semi-norm on D,,(C2) which is stronger than the L, norm and
assume that

[H@)| <g(P(—=D)p) if @EDLK). (3.4.5)
For every >0 we can then find another semi-norm q' on D(Q) such that ¢’ >q,
g (p)=(1+e)gly) (V€D (K;-1), (3.4.6)
and [H@)|<d' P(=D)g) (V@€ Dy (Kjw)).

Proof of Lemma 3.4.8. Let @ be the completion of D,,(K;,;) with respect to the
metrizable locally convex topology defined by the semi-norms @ —g(P(—D)gp) and

@ —~>[[pP(—D)gp| where 1 is any real number and y is any element of D.(CK,_),

with 0 denoting complement relative to Q. Since ¢ is stronger than the L, norm it
follows from Th. 3.2.5 of [H] that ®<L,n £ (K;,). If p€D we have P(—D)p€

ELCK,_)) j—1) and hence by (3.4.4), p€E,, (CK;_,). Since ® is a Fréchet space, it follows

from the closed graph theorem that the natural mapping of @ into &, (CK;_,) is
continuous.

Let us now consider the Fréchet space &,(0K, ;) and choose a special sequence
{p,}° of semi-norms giving its topology. The semi-norm p, shall have the form

2,@) = |ly,¢||with 1,>0 and y,€D,(0K,_,), and the sequence shall have the
property that for every pair (x, N) of natural numbers there exists M such that

p»=Np, (Vvz=M). (3.4.7)

Clearly, this is always possible. For each » we now define a continuous semi-norm
g, on Dy(Q) b
&=(1+e)g+p (3.4.8)

(where p, (¢) =||y, ¢|[{’ for any ¢ € D, (Q)).
Suppose now that the lemma is false. Then, since (3.4.6) is satisfied if we take
¢’ =gq,, there exists ¢, €D, (K;,,) such that

|H(p,)]| =1 +e (3.4.9)
and ¢.(P(—D)p,) <1+e. (3.4.10)
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From (3.4.7), (3.4.8) and (3.4.10) we get
1+e

P P(= D)) < (Vv = M).
This implies that P(—D)p,—~0in E..,(CKj_l)- (3.4.11)
Combining (3.4.8) and (3.4.10) we also have
q(P(—D)g,) <1. (3.4.12)

Thus the sequence {g,} is bounded in @, and hence by the continuity proved above
it is bounded in Sw(cK,-',l). Hence by Theorem 2.3.5 the sequence is bounded in
Blz?,iﬂ(cK}_l) with k,=exp (uw). Applying a generalized Th. 2.3.9 of [H] to two
different u we then see that the sequence is precompact in each fq‘,’,‘é”(cK}_l).
Hence by a diagonal process it is precompact in &,,(GK}_I) (Theorem 2.3.9). We
want to prove that ¢, —0 in SM(GK; _1)- Replace {g,} by any subsequence converging
in SN(GK}‘I) and let the limit be ¢. We claim that ¢ =0 in CK}_I. By (3.4.3) it is
enough to prove that P(—D)y=0 in Cx ;1 for some y€ £'(QQ) such that y=¢ in
GK}_I. We will now construct such a 4. Since ¢ is stronger than the L, norm and
g(P(—D)g,) <1, the sequence {P(—D)g,} is bounded in L,. Thus by Th. 3.2.5
of [H], the sequence {p,} is bounded in L,=B, ;. Hence by Th. 2.2.3 of [H], {g,}
is precompact in B, , if k€ X is such that k(&) >0 when |£| —>oco. Choose such a k.
Take a subsubsequence, this time converging in B, ; and call its limit ¢. By (3.4.11}

we have P(—D)y=0 in 0K, ,. But we also have y=0 in 0K;,, (by the definition
of @) and y=¢ in GK;_, (by Theorem 2.3.5). Thus we have found a suitable . This
proves that ¢,—~0 in &,(0K;_,).

To complete the proof of the lemma we choose y €D, (K;), a local unit for K;_;.
We get ¢,=(1—x)gp,~0 in D,(Q) and thus P(—D)g, >0 in D,(Q) by Theorem
1.3.27. Taking ¢, =y¢, we then get from (3.4.9) and (3.4.12) that for sufficiently
large v,

[f(@) )] >1+2¢/3 and g(P(—D)p,')<1+g/3.
Since supp ¢, < K, this contradicts (3.4.5). The proof of the lemma is complete.

End of proof of Theorem 3.4.7. Choose &;>0 such that >{°¢,<oco. Let ¢; be the
L, norm. Using the lemma we successively construct semi-norms ¢, in D, (€2) such that

[f@)] <a,(P(-D)g) it @EDLK)), (3.4.13)
and Qi) = (L-+e)g(y) it pEDLK; ).
Then g¢{y) =1im ¢,(y) exists, and ¢ is a continuous semi-norm in P, (L2), since
dp) =g [1A+ea) if yeDu(K:-).
From (3.4.13) it follows that (3.4.2) holds. This completes the proof of Theorem 3.4.7.
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From Theorem 3.4.7 and Corollary 3.4.3 we get:

Corollary 3.4.9. Let € M. If Q is an open convex set in R", the equation P(D)u=f
has a solution w€D,(Q) for every f€D.(Q).

We will now prove the counterpart of Th. 3.6.3 of [H] (necessity of strong P-
convexity for the existence of solutions). The proof of that theorem depends on
Lem. 3.6.1, which roughly states that if v€ £ and there is a fixed “degree of local
regularity’”’ shared by every derivative of », then v € D. Instead of derivatives we will
consider convolutions with distributions having their supports near the origin:

Lemma 3.4.10. Let € M and let r>0, 1>0 and a € R™ be given. Let € Du(a+ Bs)
and suppose that
uxu€ Blgfexp(—lw) (a+By) (Vu€ Eo (B:))-

Then p€ E,(a+ B,).

Proof. We may assume that ¢ =0. Let € D,.(Bz,) be a local unit for B, and let
@ € D,,(By). Then with u as in the hypothesis, we have @(u % yu) € Be, exp(-iay. Thus
we may in the rest of the proof assume that UE Eo(Byy). Then if y€D,(By,) is a
local unit for Bs,, the hypothesis implies that

u*ﬂzx(u*/lr)egoo,exp('ﬂw) (Vuee;’(BT))

Thus |44| < Cy exp (Aw), and the lemma follows, if for each >0 we can find  such
that inf |4 exp (—lw)| >0. This can be done by choosing v€D,(B,) with >0
(Corollary 1.3.17) and defining « € £,(B,) by i@ =75 %exp (lw).

Theorem 3.4.11. Let w € M. If P(D)u={ has a solution w€ D,(Q) for each € D, (L),
it follows that € is strongly (P, w)-convez.

Proof. Suppose that Q is not strongly (P, w)-convex. Let K be a compact subset
of Q and choose compact sets K, (j=1, 2, ...) such that K; 7 7 Q. Using Theorem
3.3.2 we construct (as in the proof of Th. 3.6.3. of [H]) a sequence {x,}{° of points in
Q, a sequence {u;};° of elements in £'(Q)< &,(Q) and a decreasing sequence {£2;}3° of
open balls Q,= By, (with center origin and radius 4r;) such that the compact sets
Q,+supp u; are contained in Q and the following four relations hold:

sing,, supp P(— D) u;, < K (V7),

x;€sing,, supp u; (V7). (3.4.14)
z;6K; (V)), (3.4.15)
and x;6Qy +supp i (7> k). (3.4.16)

By succesively shrinking the Q; for j=1, 2, ..., we strengthen (3.4.15) and (3.4.16),
respectively, as follows:

1 Note added in proof. This is not evident. We may use functional analysis to give the hy-
pothesis a quantitative form and then apply Fourier’s inversion formula to .
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(;+QINK, =0 (Vj), (3.4.17)
and (2;+ Q)N (Qu+supp w) =9 (G>F). (8.4.18)
To simplify notation we will in the rest of the proof write ||-|[1 for |- " * and

1|4 for || ||lw.x With E=exp Aw. By Theorem 1.8.14 we may choose s,>0 in such
a way that
Il x| - < oo (3.4.19)

We will now choose the elements of two sequences {;}¢° and {4,}1° of positive numbers
and a sequence {u;}i° with € £, (Q) in the following order: ly, Ay, uy, &, Ag, Us, ..vy
and in the following way: We start with [;=0. We define 1, =s,+41,_,+1. Since
x, €sing,, supp u, we may by Lemma 3.4.10 (with w replaced by w) choose u, € E,,(Br;)
such that

U X i § Bgfexp(—lkw) (2 + (). (3.4.20)

Finally, by Theorem 1.8.14 we may choose [, in such a way that
N2z < oo (3.4.21)

We now claim that I, — + co. In fact, |||u,% ||| -1 < oo, and thus by (3.4.20) we
have 2, <[, +s;, which means that [, >1+1,_,.
We now define f(§) = 5% exp (— i {(xy, &) 6k (— &), that is,

9= S () (VpED(Q)

The series converges in D,,(Q) since by (3.4.17) only a finite number of the sets
.+, meet the compact set supp . Now suppose that P(D)u = f for some u € D,(Q).
This means that

w(P(— D) ) ? n(T-ny)  (VPEDa(Q). (3.4.22)

If €D, (L), we have u, %@ €D,(Q) by Theorem 1.7.3, and hence we may apply
(3.4.22) to p=p, %@, which gives

w(P(~ D) o % @) = _§ (7 (s % 7). (3.4.23)

Since supp (u, % @) < supp yy + £, it follows from (3.4.18) that all terms in (3.4.23)
with j >k must vanish, and we get as in [H]

Ui (T o (e % @)) = w(P( — D) pe % ) ~ 2 (T2 (Ui % ).

Since §{(7-, )= (v %) (), this may be written
(¢ s 9) (8= u(P(~ D) po @) = 3. (e ) () (VpEDW(Q).  (3:4:24)

We will now estimate the various terms of (3.4.24). We first note that using (3.4.19)
and (3.4.21) we have
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Loy % g | = | 3¢ (% )| < 20) 7| el l] - [l ¢ p [l
<Olglll-sellpllyeee (Vo € Do (C%)-
Since {l;} is increasing, this gives by the choice of
luy% e p| < Cillglly,  (G<E, Vo €Dy (). (3.4.25)

Let x€D,:(Q) be a local unit for K such that K =0, +supp x <Q. Then if b is
the constant of condition (y), applied to w, and m is the order of P, we have

I”vl’C“l*Sk‘m/b< oo and »,€D,(Q),
where we have written
ve=XP(—=D)u and vg=(1—2%)P(— D)

Since supp v; % ¢ is contained in the compact set supp uy + Qx <, there are con-
stants C and 2 such that

[up @) | <O|lvi*oplh  (V@€D, (%),

and thus lu(vh % @) | < oﬁ Pr (&) (&) €@ dE < O s (3.4.26)

for all s and all p€D,,(Qx) (With Ci=C||[#f]ll1-s). To estimate u(vi % ) finally,
we note that supp (v, % @) < K when ¢ € D,, () and that we have for all ¢

lIvexoll.= fe"‘“‘f’ |72(6) ¢(&) | A& < [[1willl-se-rmpo @l 2o

If ¢ is so chosen that it can be used as 4 in (1.6.1) with K replaced by K, we
therefore obtain

[ % @) <Cll@llossemp (V@€ Dy (). (3.4.27)
Summing up (3.4.24)-(3.4.27), we have proved

(% g @) (@) | < Cllglls, (V@€ Do (QW), (3.4.28)

if k is so large that o +m/b<l;_;+1.
We will now prove that (3.4.28) implies

Uy, X M € Bg?exp(_/‘[kw) (xk + Qk). (3.429)
We may assume that 2, =0, and then we obtain if 9 € Dae(Qx),

[ (% i) (@) = | (s ¢ pie) (@) | = | (3¢ e 36 pp) (0)| < Oyl
<Ol (V€ Su).
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Here we have used Theorem 2.2.7. Writing - (%, % u;) =w, we have thus proved that
w is a continuous linear form on B, ; with k=exp (,w). Thus by a generalized
Th. 229 of [H], w€Bo,exp-1p for each p€D,(). This proves (3.4.29). But
(3.4.29) contradicts (3.4.20), and the assumption that P(D)u={f is thus disproved.
The proof of the theorem is complete.

We note that we have in fact proved the necessity of a condition, apparently
stronger than strong (P, w)-convexity, as stated in the following theorem, which
collects the main results of this section:

Theorem 3.4.12. Let » € N, and let Q be an open set in R™. Then the following three
conditions on ) and the differential operator P(D) are equivalent:

(i) P(D)(D.(Q)) =Du(Q).
(i) Q s strongly (P, w)-convex (cf. Definition 3.4.1).
(iii) Q is strongly (P, w)-convex and (3.4.1) holds for all u€ £,,(Q).

Chapter IV. Interior regularity

4.0. Introduction

In this chapter we will study a concept called w-hypoellipticity, for (&) =
log (1+|&]) reducing to hypoellipticity. Friedman [9] has studied this concept
with (&) = |§|m. In particular, the proof of Lemma 4.1.3 is adapted from Chap.
11, Sect. 2, of [9]. Otherwise, the present chapter is closer related to Chap. IV of [H].

The classical condition of hypoellipticity is the property that every w€D’ with
P(D)u=0 is in fact in & The corresponding algebraic property of the polynomial
P is that Im { - oo if { - oo on the surface P({)=0. As is well known, this condition
is equivalent to the following one: For some ¢ >0 and each O there exists B such that
P({)=0 implies [n| = C|&|°—~ B. Thus the (a priori) intermediate condition “For each
A there exists B such that P({)=0 implies that |5| > A4log (1+ |&])—B” is also
equivalent to hypoellipticity. Precisely this condition generalizes to our situation.
Replacing log (1+ |£]) by w(£) with o € 1, we get a necessary and sufficient condition
that every w €D, with P(D)u =0 is in fact in £ and that every u €D’ with P(D)u =0
is in fact in &, (Theorem 4.1.1). Thus a hypoelliptic equation may have ‘“wild”
solutions, provided they are sufficiently “wild”.

At the end of the chapter we discuss relations between ellipticity and w-hypo-
ellipticity.

4.1. w-hypoelliptic operators

We collect our main results in the following theorem.

Theorem 4.1.1. Let w, and w,€ M and let w=w,+w,. Let P(D) be a differential
operator with constant coefficients. Then the following four conditions are equivalent:

(i) For each A>0 there exists B such that
P(Z) =0 implies |n| > Aw(&) - B.
(ii) P has a fundamental solution E€D'(R") such that E€ E,(R"N G{O}).
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(iii) For any open set Q in B", from w€D,,(Q) and P(D)u€ &,,(Q) it follows that
u € £,,(Q).

(iv) For some non-empty open set Q in R", each solution u €D, (Q) of P(D)u=0
s in fact in E,,(Q).

Definition 4.1.2. If P(D) satisfies these conditions, we say that P(D) is w-hypo-
elliptic.

Proof of Theorem 4.1.1. Tt is trivial that (iii) implies (iv). We will now prove first
that (iv) implies (i), then that (ii) implies (iii) and finally that (i) implies (ii).

Let Q be as in (iv). Let S be an open ball with §< <Q and let H be the support
function of 8. Let 1>0 be fixed and consider the two Fréchet spaces D,,(S) and
F={u€ B%xp-10p (Q); P(D)u=0 in Q}, where in F we take the topology induced by
that of Bi%p(-1y. Choose y in D,.(S) such that $(0) == 0. We claim that the mapping
u—>yu maps F into D, (S) and that this mapping is closed.

First, by condition (iv), if #€JF, then w€ &,,(Q) and hence pu€D,,(S). Second,
suppose that u,->0 in F and yu,—v in D,,(S). Considering in F the semi-norm given
by % > [|pu)l1 exp (10, We see that [z |(pu)” (£)]| exp (—Awy(&)) >0, which implies
§ 5. |8(&)|dE=0. Thus v=0, since 4 is entire.

We now apply the closed graph theorem and Corollary 1.4.3. We conclude that
there exist a constant €' and a function g € D,,(Q) such that

sup | (ypu)” (£)] @~ Em-Inl < OJI (ow)~ (&) e *®dE (Yued). (4.1.1)
teCn

Let {,€ C" be such that P({,) =0 and define « by u(x) =e"“**”. Clearly, u € F, and
we have (ou)” (§)=4(&— ) and (yu)” ({)=9%({— ;). We now apply (4.1.1) to the
present u and estimate the sup in the left-hand side by the value for {=¢,.

We get
]¢(0)| ezwl(so)—H(m)~lﬂ| < Oflé(é_ Co)l e—sz(E) df

SCetonw f |8(& — &, — in,)| &9 . (4.1.2)

Since p€D,,(Q), the last integral can by Theorem 1.4.1 (with ¢=1) be estimated
by Ciexp (Hy(n,) +|n,), where H, is the support function of the convex hull of
supp . Thus, if H(n)+ H,(n) <K |y|, we get from (4.1.2):

(K +2) 0] =My (&) +0a(&p) —log (OCH/|$(0)]).

Since 1 is any positive number and ¢, is any element of C" with P({,) = 0 and since
the last term does not depend on {,, we have proved (i).

Next we prove the implication (ii) = (iii). Let Q and u be as in the hypothesis of
(iii) and let Z€D'n E,(R™N G{O}) be the fundamental solution whose existence is
guaranteed by (ii). Let U be an arbitrary (bounded) open set such that U< < Q.
It is then enough to prove that w€ &,,(U). Let § >0 be so small that U+ Bs< <Q,
and let 9€D,(Q) be a local unit for U+ B;s and € D, (Bs) a local unit for Bys.
Since pu€ &, we have gu= ExP(D)(gu), and we may thus write pu=u, 4u, with
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Uy =P(D)(1 —a) E % (ou)
and Uy = ali x P(D)(pu).

Since (1 —a) E € £,(R"), we have P(D)(1 —«) E € £,(R") by Theorem 1.3.27, and thus
(by Theorem 2.3.10) we have u, € £,(R"). On the other hand, we have pu =uin U + B;,
and hence by hypothesis, P(D)(ou)€ &, (U + Bs). Since aE€ &, (Bs), we get by
Theorem 2.3.10 that u,€ £,,(U). Since u, +u, =% in U, the result follows.

The final implication (i) = (ii) we formulate as a separate lemma:

Lemma 4.1.3. Let w€ M. Suppose that for each A >0 there exists B such that
P(£)=0 implies |n| > Aw(&)—B. Then P has a fundamental solution

E€D'(R")n E,(Rn C{o}).

Proof. If necessary, we first make an orthogonal coordinate transformation to
arrange that all pure powers in the principal part of P have non-zero coefficients.
That is, for 1=1, 2, ..., n, the form of P is ;" +-lower order terms in ; (with a;=0).
The hypothesis of the lemma is not affected, since || is invariant under any orthogo-
nal transformation. Let k —min;|a,|.

We now define E in the following classical way. If € D(E"), we take

B - [ oS,

where the integration is over a “Hormander ladder” T (see e.g. [9], p. 285). On T
we have |P({)|> k. Outside some cube @, the integration can by our hypothesis
be chosen to be over R". From the classical construction it follows that E is a funda-
mental solution in D’(R™). Thus it only remains to prove that K€ & (R"N G{O}).
Let €D, (B™N G{O}). We have to prove that pE€D,, that is, that for any 1>0
we have

sup |(pE)" (1)] @ < co. (4.1.3)

TeRn
Since pE € &', we may use the Fourier-Laplace transform:
(@E)” (2) = (@E): (e )= B (p(x) e 7).
Taking yp(x) = @(z) e "™, we then get from the definition of E:
(27)" (9B)” () = f(z) +g(7)
—{+1)

ith = ¢ d
wit g(T) f;e T, EeQ P(C) C
- —é+7)
and i f mota PE 5

Here Q={& max;|&|<M} is the above-mentioned cube. We will prove (4.1.3) by
proving that for any choice of M, we have sup |g(7)| €*® < oo (Y1), and that given
A it is possible to choose M so large that
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sup ()| €49 < co. (414
TER"

To prove the first of these results it suffices to notice that the integration is over
a compact set where |P({)| >k and where we may obtain from Theorem 1.4.1 an
estimate of the form

|§(— 4+ 7)| S Qe Pomthe®, (4.1.5)

It remains to prove the second result.
Let us fix 2>0. Choose 4 in such a way that (with § to be determined below)

f gD gE < oo (4.1.6)
R»

(cf. Proposition 1.3.26). Let B be the number whose existence is guaranteed by hypo-
thesis. We now choose M so large that Aw(£)-—B—2>0 outside ¢. We claim that
with this choice of M, (4.1.4) holds. If so, the lemma is proved.

We start by using a partition of unity to write ¢ as a sum of functions @, with
supports in half-spaces, not containing the origin. In fact, @ is zero in a neighborhood
of the origin, say when max; |;| <30. We can thus choose functions yy, ..., xzn € Dy
such that > y,=1 in supp ¢ and such that supp x,,< {#; #,>26} and supp yz, 1<
{z; 2, < —26} v=1,2, ..., n). Let ¢,=y,p. We consider

P (— &+ 1)
. (7) = =
for () fRnnco Pé) d
and claim that sup | fon ()] €2 < 0. (4.1.7)
TeRn

To simplify notation we consider only the case v=1. Let us thus write {=({, (')
where ' =((,, ..., {n) and similarly for £ and 7. Let us define @' = {&' € R"71;
maxs,|&;| <M} and F(O)=ga(~L +7)/P(C). Then we have fy(r)= fo(r)+ feo (1),
where we have written

for(0)= L,ds' F(g) ds,

|&l=M
and foa (1) = fwldf'f_ wF(E) dé,.

We will now deform the integration contours of the inner integrals and use the fact
that @, and P are analytic. If necessary we first apply Lemma 1.2.4 and Theorem
1.3.18 to arrange that o is sufficiently smooth. By Lemma 1.2.4 we have for some
v<}m,

ow

A o <tge  (ae.). (4.1.8)

1

We will always keep within the set where ¢’ is real and |y| = |, | < Aw(§)— B-1.
Factoring P as a polynomial in ; we can then prove that |P({)| = k (cos v)", and thus
F is analytic. We claim that for each fixed &’ €0’ we have
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+o0
f F(§)dé, = f F()dz,, (4.1.9)
—o v
where the curve y in the {;-plane is defined by
m=Ao(é)-B-1. (4.1.10)
Since @, €D, ({x; x,>26}), we get from Theorem 1.4.1 (with ¢=4) that if {’ is real
and %, >0, then
|go(— L+ 7)| S Cetotimom, (4.1.11)

Thus for real ' and positive 5, we have

i< 0exp (Ao =7) —rac-o-om:
IF(Z),< IC(COS’U)m g h0(=5) .

This implies that ;| F(Z)| dy,—0 when |£,|—>oc, and hence (4.1.9) follows. Thus
we have

fw(r)=f d§’ f F(C) dg,. (4.1.12)
tQ’ y

From (4.1.8), (4.1.10) and (4.1.11) we get

0 i +0 A

< e () +6(B+1) P —-84) w() df
= .
k(cosv)™tt - t

LF(C) sy

Thus by (4.1.12),
|fea(m)| <O’ é_mmf

e(l—éA)w(é) df,
Rn

and from (4.1.6) it follows that (4.1.7) holds with f;, instead of f,.

We will now consider f,.. We lift the integration path in the same way, this time
only to the part of 9 on which |& | > M and use the same estimates as above. We
must also estimate the integrals (where 7, =Aw(+ M, &)—B—1)

7.
f ’df’foyF(iM-l-inl, £) dn,.
Q

Since the integration is over a subset of @' x I, where I is a fixed interval on the
7,-axis, it suffices to use an estimate of the form (4.1.5) for ¢,. We have thus proved
{4.1.7). To prove the corresponding inequality for f,,_;, we only have to choose as
y the curve n,=—Aw(f)+ B+1, use the fact that ¢, ,€D,({z; x,< —25}) and
proceed as above. We have thus proved (4.1.4). This completes the proof of the lemma
and of Theorem 4.1.1.

Corollary 4.1.4. If P(D) s elliptic, then P(D) is w-hypoelliptic for each w€ M. In
particular, if P(D) is elliptic and w€D,,(Q) for some 0 € M and P(D)u=0 in Q, then
u is analytic in Q.
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Proof. From the ellipticity it follows that there exist constants 4 and B such that
P()=0 implies |y|>A|&|—B

(cf. [H], Cor. 4.4.1, or [9], Chap. 11, Th. 9). Then by Corollary 1.2.8, condition (i)
of Theorem 4.1.1 is fulfilled for each w € M. This proves the first result. To get the
last result, we apply condition (iv) of Theorem 4.1.1 to conclude that w€&,(€2)
which is more than enough to prove that u is analytie, using ellipticity in the classical
way.

Conversely, we will prove that elliptic operators are the only ones which are
o-hypoelliptic for each w € M. A related result is given in [7]. In our case, the result
is true even in the following strong form, where we may take e.g. w(&) ~ |£]/(log |£|)2.

Theorem 4.1.5. Let o € TN be given and suppose that for every y >1 we have |£[|'" < w.
Then P(D) is w-hypoelliptic if and only if P(D) is elliptic.

Proof. We only have to prove that if P(D) is w-hypoelliptic, then P(D) is elliptic.
Let P(D)u =0 and w€D’. Then by hypothesis and Example 1.5.7, u is in the Gevrey

class ¥} for every y>1. Thus by Th. 4.4.3 of [H], for each y € E* and each y>1
there exist constants ¢>1 and € >0 and ¢ >0 such that

Fzck® (k=1,2;...), (4.1.13)
and [<y, Ol<C+]|nl)y if PE)=0. (4.1.14)

Then by (4.1.13), we have 1 <o <y. Thus, using (4.1.14) and Def. 4.4.1 of [H], we
have g(y) =1 for all y € R", which by Th. 4.4.6 of [H] gives the desired result.

Chapter V. Differential equations which have no solutions

5.0. Introduction

Let us consider the famous example of H. Lewy, namely the equation
— i Dyu+ Dyw—2(x, +9%,) Dgu = f.

Here f is a certain function in C°(R?), such that for no open non-void Q does there
exist a solution w€D’'(Q). It is now natural to ask if for any w € 7 we may choose
f€E, in such a way that we do not even have a solution %€ D,(€2). We will prove
that the answer is affirmative. In fact we will consider the necessary condition given
by Hérmander ([12], [13] and [H], Chap. VI) for the local existence of a solution
u€D) of an equation P(x, D)u=f for each f€ £. We will prove that if P(x, D) is of
first order and has analytic coefficients, then the same condition is necessary for
the local existence of a solution u € D), for each f€ &,

5.1. Conditions for non-existence
In an open set Q< B" we consider a differential operator

P(z,D)= 3 a(z) D"

=
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of order m with coefficients in &,(Q). We collect the notation of [H], Chap. VI, as
follows:

Definition 5.1.1. Cy,,_,(x, D) is the sum of the terms of order exactly 2m —1 in the
commutator P(z, D)P(z, D)—P(x, D) P(x, D), where P(z, D)= q<n @*x) D*

We will now state a weak form of the main result, partially generalizing Th. 6.1.1
of [H]. We denote by P,(x, D) the principal part >, —ma*(x) D>

Theorem 5.1.2. Let P(x, D) be a linear first order partial differential operator with
analytic coefficients in (. Let w € M. Suppose that the equation

P(x, D)u = f (5.1.1)
has a solution uw€D,(Q) for each FE€D,(Q). Then we have
Ciz, &) =0 if Pz, &) =0, where € and FER™

Before giving the proof we will also state Theorem 5.1.4, which is a strong form
of the main result, partially generalizing Th. 6.1.2 of [H]. The proof of the strong
result, assuming the weak one, proceeds as in [H] with obvious changes, and we will
not repeat it.

Definition 5.1.3. Let w € M,. We denote by §,(Q) the Fréchet space which is the closure
of D,(Q) in S,

Theorem 5.1.4. Suppose that the coefficients of the first order operator P(x, D) are
analytic in . Suppose that N is dense in ), where N is defined as the set of points
x wn Q for which there exists &£ € R™ with

Ciz, &)+£0 but Pz, &) =0.

Let € M,. Then there exist functions f€§,(Q) such that the equation (5.1.1) does not
have any solution u € Dy,(L,) for any open non-void set Oy < Q. The set of such functions
1 ts of the second category.

We will prepare for the proof of Theorem 5.1.2 by deducing an inequality from
the hypothesis. We prove the following lemma (cf. Lem. 6.1.2 of [H]), where ‘P is
defined by the identity fvPudx= f (!Pv)udx when v or w has compact support.

Lemma 5.1.5. Let w € M. Suppose that P(x, D) is a linear partial differential operator
(of any order) with coefficients in E,(Q). Suppose that the equation

P(x, D)u =f

has a solution w€ D, (Q) for each f€D,(Q). Let Q, be an open set< <Q. Then there
exist constants C and A such that

vadx

Proof. § fvdz is a bilinear form defined for € D,(Q,) which is a Fréchet space and
v€MN which is a metric space defined as follows. ! consists of the same elements

<Ol M1*Pollls  (Yf,v€ Dau(Qy))- (5.1.2)
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v as D,(Q) but is equipped with the semi-norms v—|*Pv|; (corresponding to all
positive numbers 1). The bilinear form is obviously continuous in f for a fixed »
(by Parseval’s formula). On the other hand, when f is fixed, we can by hypothesis
choose u €D,,(2) such that P(z, D)u=f. Hence

ffv dx = (Pu) (v) = u(‘Pv),

which proves the continuity in v for a fixed f. Thus by [6], Chap. ITI, § 4, the bilinear
form is continuous, which proves the lemma.,

Proof of Theorem 5.1.2, To save & for use as the variable on the Fourier transform
side, we write 8 instead of £ in the hypothesis of Theorem 5.1.2. Making the same
reductions as in [H] we thus have to prove that if for some € R" we have

P,(0,0)=0 and C,(0,0)<0, (5.1.3)
then (5.1.2) does not hold for any choice of 2 and €. We will use the following lemma:

Lemma 5.1.6. Let Pz, D) be a linear partial dszerential operator of order 1 with
(malytw coefficients in a nezghborhood Q of the omgm in R™ such that (5.1.3) holds.
Then in some neighborhood O of the origin in C™ there is an analytic function w such that

Pi(z,gradw)=0 (x€QnO), (6.1.4)
w(z) =<2, 0>+ 1 > apzz+0(E)  (z—>0), (5.1.5)
where the matriz oy, is symmetric and has a positive definite imaginary part.

The proof of Lemma 5.1.6 is given in [H], Lem. 6.1.3. (Since the coefficients of
P, are analytic, no modifications of the coefficients are needed. Also the function
W of [H] can be used as it is, but of course at the cost of having it defined only in 0.)

Proof of Theorem 5.1.2, continued. By the Cauchy-Kovalevsky theorem there is
in some neighborhood €2, of the origin in R™ an analytic solution v of the equation

tP(x, D)y =0,
and we may assume that p(0)=1.
Let Q.= <=Q,nQ,N0 with the Q,; of Lemma 5.1.5 and the O of Lemma 5.1.6.
Let OGQ < <Q, and let y€D,(Q;) be a local unit for Q,. Define g =y (defined
as zero outside Qs). By Corollary 1.5.15, ¢ € D,(£2;). We also have ¢(0)=1 and

P(x, D)p =0 in Q,. (5.1.6)
Let us now define for positive 7 (which we shall let — + o) and positive K
F. ()= (K7)" e® F(K7z) with F(x)=e ¥,
fe(@)=g(x) - Fe ()

and v, () = ()  €7*®

with the w of Lemma 5.1.6.



G. BJORCE, Linear partial differential operators and generalized distributions

We have by Corollary 1.5.15 that 7, and »,€D,(£2;). A change of variable gives
f}‘,(x) vy () da =fF(x) ((p(x/KT)z.e—iz<x,e>/x+mw<z/m de.

If Q, is chosen sufficiently small, Re (iz*w(x/Kt) <0 when /Kt €Q,. Thus we may
apply the theorem of dominated convergence to get from (5.1.5) that

f (@) o2 () dz—> ((0))” f exp (— |zl + 3K 2 S o) da

when 7—+ oo,

We claim that the right-hand side is different from zero, at least if K is sufficiently
large. In fact, by dominated convergence it tends to | exp (—%|«|?)da when K — co.
Thus to prove that (5.1.2) is not valid, it is enough to fix a suitable K and prove that

[1elll: 1*Pelll: =0 when 7>+ co. (5.1.7)
We will first estimate |||"Pv,||[;- By (5.1.4) (with m=1) we have

tPy, = "% - Py, (6.1.8)
and by (5.1.6) we have thus
‘Pv, =0 outside €, (6.1.9)

where we have written Q; —=Q,n 00),. We now claim that for some 6 >0 it is possible
to choose €; and Q, in such a way that Re (1w(x)) < —30 for £ €€2;. Infact, by Lemma
5.1.6, all we have to do is to choose €, s0 small that the remainder term in (5.1.5)
does not destroy the effect of the positivity of Im ay. Thus by continuity we can
find a complex neighborhood O, of Q; such that

[¢7®]| <e™®7 for 2€0,. (5.1.10)
Combining (5.1.8), (5.1.9) and (5.1.10) and applying Theorem 1.5.16, we obtain
Pl < e,
and thus to prove (5.1.7) it is enough to prove that
Il < Ce™. (6.1.11)

We may assume that w€M,. Since ¢ and F.€S,, it follows from the proof of
Proposition 1.8.3 that to prove (5.1.11) it suffices to prove the m 1 (F,) <Ce’™.
Evidently, F,(£) = F((£ +1%0)/K7), and thus

0. () = sup | F(§)] /K757 < (2m)¥" 170 sup ™ T A00ed,

Since w(—1720)/12—>0 when 7> oo, it is enough to prove that for some constant C’
we have |
sup (—|£[* + 220(K7£)) <07 + C". (5.1.12)
&

For each £>0 there is a number X, such that Aw(z) <¢|z| when |z| > X,. Thus if
Kz|&| = X,, we get '

— |&]2+ 22w (K7E) < —(|&] —eKv)? +£2K272 < 2K%72
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Taking ¢ =§%/K, we have then proved (5.1.12) with

' =2} sup w(z).

lz]< X,

This completes the proof of Theorem 5.1.2.

University of Stockholm, Stockholm, Sweden
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