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Quasi-analytic vectors

By A. E. NussBaum

1. Introduction

If § is a symmetric operator in a Hilbert space H and x is an element in
H which belongs to (), D(8") (D(4)) denotes the domain of an operator A4
acting in H, then the sequence of real numbers u,(x)=(S"z/z), n=0,1, 2, ...,
is of positive type in the following sense: Given any finite sequence of com-
plex numbers (x,, &, ..., &), then

2 2 i p (x)= 12 o S'z|*= 0.
i=0j=0 i=0

Hence the sequence (u,(x)) is a Haniburger moment sequence (cf. [9]). That is,
there exists a bounded positive Radon measure » on the real line such that

,un(x)=j t"dy(t) for n=0,1,2, ....

The moment sequence is said to be defermined if the measure » is uniquely
determined. Accordingly we shall call the vector = a wvector of uniqueness for S
or a defermining wector for S in case the moment sequence ((S*z|x)), n=0,1,2, ...
is determined. Now, T. Carleman has shown that a Hamburger moment sequence
(1n) is determined if >3, u;.'%" diverges (cf. [2]). If u,=(S"x|x), this means
that

ad 1
721”5'"1””" ©0
A vector z € (), D(S") such that
oo 1 -
|8

will be called a quasi-analytic vector for S. Thus a quasi-analytic vector for §
is a vector of uniqueness for S. In [7] E. Nelson has introduced the notion of
an analytic vector for 8. A vector z in ) ,., D(S") is called an analytic vector
for 8 if

t"<oco for some t>0;
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that is, in case there exists a constant p>0 such that [|S"z||<p™n! for n=1,
2, .... Since n!<n", it follows that

Thus every analytic vector for S is a fortiori a quasi-analytic vector for § and
hence a vector of uniqueness for S.

E. Nelson has shown [7], using Stone’s theorem, that a closed symmetric
operator § is self-adjoint if and only if it has a dense set of analytic vectors.
In § 2 we shall prove by completely different methods the following theorem:
Let S be a closed symmetric operator in a Hilbert space H and D, the set of
all vectors of uniqueness for S. Let D, be the vector space spanned by the
vectors {S8*z}, k=0,1,2,...; x€D,. Then § is self-adjoint if and only if D, is
dense in H. As a corollary we obtain Nelson’s theorem and the theorem that
a closed symmetric operator is self-adjoint if and only if it has a total set of
quasi-analytic vectors.

In § 3 we derive various permutability theorems for symmetric operators and
in § 4 we apply the results of § 2-3 to obtain various theorems of the two
parameter moment problem. Further applications will be considered in another
publication.

2. The main theorem

Theorem 1. Let S be a closed symmetric operator in a Hilbert space H. Let D, be
the set of all vectors of uniqueness for S and D, the vector space spanned by the vec-

tors {8z}, k=0,1,2,...; x €D, Then 8 is self-adjoint if and only if D ts dense
m H.(%)

. Proof. If 8§ is self-adjoint, then S has a dense set of analytic vectors and
hence a dense set of vectors of uniqueness (and hence also a dense set of
quasi-analytic vectors).

By a theorem of M. Naimark (cf. [13] p. 4) S has a self-adjoint extension in
the extended sense. That is, there exists a Hilbert space H,, which contains H
as a Hilbert subspace and a seif-adjoint operator T in H, which extends S
(i.e. Sx=Txz for all x € D(8)) and which is minimal in the following sense: If
E(c) is the canonical spectral measure of T, then the set {E(a)x} where
ranges over H and ¢ over all the Borel sets of the real line R, is total in H,
(i.e. the vector space spanned by {E()x} is dense in H,).

If z is any element in (), D(S"), then

(S| ) = (T | ) = j " d| B )|

If x€D,, then the polynomials are dense in L,(v,), where v, is the measure
v;{0)=||E(o)z||* on the real line (cf. [8], [9] and [11] Theorem 10.40). Let now

() If z € Dy, S*x does in general not belong to D,. (Cf. discussion following Theorem 3.)
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x be a fixed element in D, and ¢ a Borel set on the real line. Let X, be the
characteristic function of o with respect to the real line and choose a sequence
of polynomials (p,) such that p, () > X, (¢)t* in the L,-norm of L, (»;). Now,

f_w |2 (8) — %o (8) |22 || Bty 2| = || 1 (T) 2 — E(0) T"x II* = | 22(S)  — E(o) S¥x||*.

Hence p,(S)x— E(o)S*c strongly in H,. Since p, (8)z €H for all n, it follows
that E(c)S*z € H. We have proved that E(¢) Dy, H for all Borel sets o on the

real line. Suppose now that D, is dense in H. Since E(s) is bounded it follows
that E(c)H<H for all Borel sets 6. Hence H,=H and therefore T is a self-
adjoint extension of § in H.

Suppose that ST, then there exists another self-adjoint extension T, of §
in H which is different from 7'. Let E, (o) be the canonical spectral measure
of T,. Let x be a fixed element in D, Then the measures || E, (¢)z|* and
| E(o)z|[* =7, (0) are identical. Let ¢ be a fixed Borel set on the real line and
choose a sequence of polynomials (p,) such that p,(t)—=> X, (£)#* in the L,-norm
of L,(r,). Then

"1 0-moralE0n= [ - 10 el B0

=||pa(T)x— E, () T{ 2 ||* = || px (T) x — E(0) T*x |
=||p4 (8)x — E, (0) 8%z ||> = || p» (8) x — E(0) Sz |*— 0.

Hence E, (0) 8%z = E(0) S*z
and therefore E(o)u=HE(o)u for all u€ bo-

From this follows, since l~)0 is dense in H by hypothesis, that E, (c)u=E(s)u
for all w €H. Hence E,(0)=E(s) and therefore T, =T. This contradiction shows
that S=17. ‘

Corollary 1. A closed symmetric operator S in a Hilbert space H is self-adjoint if
and only if it has a total set of vectors of uniqueness.

Since every quasi-analytic vector for S is a vector of uniqueness for S we
have as an immediate corollary.

Theorem 2. Let S be a closed symmetric operator in a Hilbert space H. Then S is
self-adjoint if and only if S has a total set of quasi-analytic vectors. (Cf. Corollary 2.)

Remark. In the proof of Theorem 1 the property of a vector = to be a vector
of uniqueness for the operator S was used only to deduce that the polynomials
are dense in L,(y,), where v, is the measure v, (0)=||E(0)z|® and E(0) is the
canonical spectral measure of a self-adjoint extension 7T in the extended sense
as described in the proof of Theorem 1. Now, it is not difficult to show that
a vector x € [}, D(S") has the property that the polynomials are dense in L, (v,) if

181



A. E. NUSSBAUM, Quasi-analytic vectors

and only if the closed subspace M, (z) of H spanned by the vectors {S*z}, k=0, 1, ...,
reduces S to a self-adjoint operator. A vector x with this property will be called
an extremal vector for 8. Thus, a closed symmetric operator S8 in a Hilbert space
H is self-adjoint if and only if it has a total set of extremal vectors. Furthermore
we state here without proof that an extremal vector x for a closed symmetric
operator § in H is a vector of uniqueness for § if and only if the self-adjoint
operator Sy, to which M, (x) reduces S is the closure of its restriction to the
linear manifold spanned by the vectors {S*z}, £=0,1,2, ....

Whether or not a vector x € [, D(S") is a vector of uniquenss for S depends
solely upon the moment sequence ,u,,(x)=(S”x|z), n=0,1,2, ... (cf. proof of
Theorem 3). In contrast, whether or not a vector z € [),.; D(S") is an extremal
vector for S does not only depend upon the moments w,(x)=(S"z|r). In fact,
if x€ MN,>1D(S") is not a vector of uniqueness for 8, there always exists a
self-adjoint operator T in M, (x) (the closed subspace of H spanned by the
vectors {Sfx}, k=0,1,2,...) such that (S"z|z)=(T"x|x) for all n. For this
reason we do not consider extremal vectors in this paper.

Let S be a symmetric operator in a Hilbert space H. Let Dy be the set of
all determining vectors for S, D, be the set of all quasi-analytic vectors for
§ and D, the set of all analytic vectors for S. Then D,=D, <D, D, is a
linear set but D, is not. However, D, and D, are clearly both closed under
the operation x—cx, where ¢ is a scalar. It is possible on the other hand to
construct linear sets of quasti-analytic vectors which will in general contain
properly the analytic vectors D,. For example, the set E of all vectors

€€ =1 D(S™) such that Lim,, . (||S"2||"/n) < co is linear and D,<E < D,.

Theorem 3. If x is a vector of uniqueness for the symmetric operator S in the
Hilbert space H and tf B is a bounded operator in H such that Bx € (), D(S™)
and S"Bx=BS"x for n=1,2,3, ..., then Bx is a vector of uniqueness for 8.
(This condition 1is salisfied in particulav tf BS<8B; i.e. permutes with S.)

Proof. According to H. Hamburger ([6 (a)] and [6 (b)]) a necessary and suf-
ficient condition that a moment sequence {u,) be determined is that at least
one of the two equalities

. - n ki
lim [mm > =ZO % oc,~yi+,] =0

n—>»o0 Lay=1 i=0j

n n
lim [min XA +j+2] =0
&, [}

n-»00 Lay=1 {=0j=

is valid where the «; are real numbers. From this follows that a wvector
€Ny D(S™) 1s a vector of uniqueness for S if and only if at least one of
the two equalities

lim [min || (7 + oy 8+ oy 82+ ... + oty ) 2] =0

n—»o0 [}

lim [min || (1 + o, 8+ 0ty 8% + ... + ot 8*) Sz |[F] =0
n-»c0 oy
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is valid where the «; are real numbers. If one of the above equalities holds
for a given vector x € 1,>1D(S") and B is a bounded operator in H and that
Bx € N,> DS and S"Bx=BS"» for n=1, 2, ..., then it clearly also holds
for Bz instead of x, because

[(I+o, 8+ ...+ 2, 8" Be|*=||BUI+ ay S+ ... + 2, S™) ||
<||BIPI(I+ o, S+ ... + o 8™ |

and similarly

(T+ay S+ ... + 0 ) SB| < |[BIE|| (I + oy 8 + ... + 0n 8™) S [

Theorem 3 is not valid anymore if the hypothesis that B is a bounded
operator is dropped. In fact, it is in general false if we take for B the operator
8, because if (u,), n=0,1, ... is a determined moment sequence, then in gen-
eral the moment sequence v,=pu,.2, =0, 1, 2, ... is not determined.

The theorem remains true, however, if we drop the requirement that B is
bounded but assume that z is a quasi-analytic vector for S. More precisely we
have the following.

Theorem 4. If x is a quasi-analytic vector for the symmetric operator S in the
Hilbert space H and if A and A* are two operators tn H which are adjoint to each
other (i.e. they satisfy the relation (Ay|z)=(y|A*z) for every y € D(A) and every
2€D(A7)) and if x€ D(ATA), Ax € N 151 D(S") and S"Adx=AS"x for n=1,2,3, ...,
then Ax is a quasi-analytic vector for S.

Proof.
84z |* = (S"4x| S"Ax) = (8% | A* Az) < || 8>z || 4™ Ax]).

If =0 there is nothing to prove. We may therefore assume that x=+0. Since
a vector z is quasi-analytic for S if and only if cz, ¢=+0, is quasti-analytic for
S, the vector y=(1/||z||)x is quasi-analytic for § and

§ SR SR LI 1 :
n=1 ||SnAx||1/n/n=1“ SZny”1/2n ” ||x“A+Ax|]”2”’

To show that Az is a quasi-analytic vector for S it is therefore sufficent to
show that

e 1
2, Hs2ny||1/2n_ &0

n=1

Now ||8™y||"" is monotonically increasing with n. This can be verified directly,
but it also follows from the well-known fact that if » is a bounded positive
measure on a space X such that »(X)=1, then ||f|l,= (Jx|f(z)]Pdv(2)"? is a
monotonically increasing function of p, p>1, for any v-measurable function f.

If s 1
N

183



A. E. NUSSBAUM, Quasi-analytic vectors

were convergent, then

§ 1

would be convergent by the comparison test dnd it would follow that

2 T

0 1
nél “ S2ny "1/2n

is convergent. Hence

= o0,

Corollary 2. If z is a quasi-analylic vector for S and p(t) a polynomial, then
p(S)x is a quasi-analytic vector for S.

Coroilary 3. A4 vector x € M), D(S") ts quasi-analytic for S if and only if

2 1 . *® 1
2 2a, Jizn . 0 or equivalently 3, onti|2n+r . °° ).
nn1]| S%e || a1}l 8% x|

3. Permutability theorems for symmetric operators

Theorem 5. Let S and T be symmelric operators in a Hilbert space H and let
D, be the set of all vectors x in H which are vectors of uniqueness for both S and T
and which are in the domain of the operators T"S™, S™T'* forn=1,2,...,m=1,2,.
and such that T"S™x=S"T"x for oll n and m. If D, is dense in H then S and
T are essentially self-adjoint and § and T permute. (S denotes the closure of 8.
S and T permute means that their spectral resolutions permute.)

Proof. If D, is dense in H, § and T are self- adjoint by Theorem 1. Let E(o)
and F(g) be the spectral resolutions of T and S, respectively. Let x be a fixed
element in D, and o and 7 Borel sets on the real line. Then there exist two
sequences of polynomia,]s (p.) and (g,) with real coefficients such that

P.(T)z—> E(0)z and ¢,(S)z— F(7)x
(cf. proof of Theorem 1). Hence
(B(0) 2| F(r)2) = lim (py (T) 2|42 (8) 2) = lim (g1 (9) 2|2, (T) 2 = (F(x) 2| B(0) ).
Therefore ((E(0) F(z) — F(z) E(c))z|2)=0 for all 2 € D,. Since D, is dense in H,
it follows that
((E(c) F(z) ~ F(z) E(0))z|z)=0 for all z€H.

But this implies by the polarization identity that E(o)F(z)— F(z) E(0)=0; i.e.
E(o) F(t)=F(1) E(o) for all Borel sets ¢ and 7.
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Theorem 6. Let T and S be symmeltric operators in a Hilbert space H and D
a set of vectors in M which are quasi-analytic for both T and S and which are
in the domain of the operators T"S™, §"T* for n=1,2, ..., m=1,2, ..., and
such that T"S"x=_S8"T"x for all n and m. If the set {T"S™z}, n=0,1, ...,

m=0,1, ..., x€D 1is total in H, then T and S' are self-adjoint and they permute.

Proof. Let D be the vector space spanned by the set of vectors {T"8™x},
n=0,1,..., m=0,1, ..., x€D. If y€D, then y= Az, where 4 is an operator
of the form A=3;a;T%S™x, x€D. Let A*=>,d,T%8™. Then Theorem 4
applies and shows that y is a quasi-analytic vector for 7' and 8. Thus every

vector y in D is quasi-analytic for 7' and 8 and T"8™y = S"T™y for n=1, 2,...,
m=1,2,.... Hence, if D is dense in H it follows from Theorem 5 that 7' and
S are self-adjoint and that 7 and S permute.

Theorem 7. Let T and S be symmetric operators in a Hilbert space H and D
a set of vectors x which are in the domain of the operators T"S, ST* for n=0,
1,2,... such that T"Sx~=8T"x for n=1,2, ..., and such that (S+il)x is a
vector of wuniqueness for T. Let D be the vector space spanned by the veclors
{T"x, T"Sz}, n=0,1, ..., m=0,1,2, ..., € D. Suppose that D is dense in H,
then T' is self-adjoint and T permutes with S,, where 8, is the restriction of S to

the vector space D, generated by the vectors {T "z}, n=0,1,2, ..., z€D. (T per-
mutes with S, means that E(c)8, <8, E(c) for all Borel sets ¢ on the real line,
where E(o) is the canonical spectral measure of T.) '

Proof. If x €D, then
(TS +il) x| (S +il)x) = (T"8xz|Sz) + (T"x|x), »=0,1,2, ...,

is a determined moment sequence. Hence clearly (T"Sm|§x) and (T"z|z), n=0,

1, ..., are determined moment sequences. Hence, since D is dense in H, T is
self-adjoint by Theorem 1. Let E(s) be the spectral resolution of 7', x be an
element in D, ¢ a fixed Borel set on the real line and k a non-negative inte-
ger. Since

(TS| S) + (T | ) = f od|| B(t) S|P+ f rd||EQ |, n=0,1, ...,

is a determined moment sequence there exists a sequence of polynomials (p,)
such that if X, is the characteristic function of ¢, then

, f : |2a(6) — %o ()¢ d | B(t) S |[* + fi |2 ()~ % ) || E@) |
=||pa (T) Sz — E(0) T*Sz||* + || pa(T) x — E(0) T*2||> — 0
(cf. proof of Theorem 1). That is,
p™(T)x — E(0) T*x
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and 8p,(T)x = p, (T) Sz — E(c) T"Sx = E(0) ST*z.
That is P (T)x— E(0) T and 8, p,(T)—> E(o) 8, TFx.

Hence E(o)T*x€D(S,) and S, (E(o)T*r=E(o)S, T*x since §, is closed. From
this follows that E(o‘)yED(S) and E(c)S,y==8,E(o)y for all y€D(S,); i
E(0)8, =8, E(o).

Corollary 4. If every wector in D1 is also a wvector of uniqueness for S, then S
is self-adjoint and T and S permute.

Proof. If every vector in b1 is a vector of uniqueness for 8, then § is self-
ad301nt by Theorem 1. D is then also a dense set of determining vectors for

. Hence 8, is self- adJom‘c But S; <8 and hence S,=§.

Corollary 5. Let T and S be symmetric operators in a Hilbert space H and D
a set of wectors x which are in the domain of the operators T"S, ST" for n=0,
1, 2, ... such that T"Sx=8T"x for n=1, 2, ..., and such that x is quasi-analytic

for T Let D be the vector space spanned by the vectors { Tz, T"Sz}, n=0, 1,
m=0,1, ..., x €D. Suppose that D is dense in H, then T is self- adjoint and T

permutes w@th S,, where S 18 the restriction of S to the wvector space D1 generated
by the vectors {T"x}, n=0,1,2, ..., x€D.

Proof. The Corollary is an immediate consequence of Theorem 4 and Theo-
rem 7.

4. Two parameter moment problems

Let (u(n,m)), n,m=0,1,2, ..., be a two parameter sequence of real num-
bers. We wish to find sufficient conditions so that the sequence (u(n, m)) be a
moment sequence; that is, may be represented by an integral

,u(n,m):f f t"s"dy(t,s), n,m=0,1,2, ...,

where v is a bounded positive Radon measure on R% (Cf. [9] and [4].) An
obvious necessary condition is that (u(n,m)) be of positive type, denoted by
p(m, n)>0, in the following sense: Given any finite sequence ((n;, my)), 1=1, 2,
3, ..., k of pairs of non-negative integers and a seéquence (o), 1=1,2, ..., k,
of complex numbers, then

k k
121 '21 0t & u(m; + g, my +my) = 0.
=P

R. B. Zarhina [14] has shown (using the well-known theorem of Hilbert that
not every non-negative polynomial in two variables can be written as a sum
of squares of polynomials) that this condition is not sufficient.
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In this section we shall apply the results of § 3 to obtain various sufficient
conditions for a two parameter sequence (u(n,m)) of positive type to be a
moment sequence. These conditions had previously been obtained by A. Devi-
natz [4] and G. I. Eskin [5] by different methods. All the results of this sec-
tion can be extended to n-parameter sequences for »>2. The proofs are identical
with those for n=2.

Let (u(n,m)) be a two parameter sequence of positive type. We associate
with (u(n, m)) a reproducing hernel space H in the well-known fashion (cf. [1]):
Let H, be the linear space which consists of all functions f(n, m), n, m=0, 1,
2, ... of the form f(n, m)=2F ou(n+n, m+m). If g(n, m) is another such
function, ie. g(n, m)=2]_,p;u(n+%,; m+m,;), we introduce into H, a bilinear
form by setting (flg)=2>F,>}, o B u(n; + 7y, my+ ;). It is not hard to verify
that (f|g) is well defined; i.e. independent of the particular representations of
f and g and that is actually it an inner product on H, H, can be completed
to a Hilbert space H such that the elements in H are also double sequences
(h(n, m)), n,m=0,1,2, ..., of complex numbers and such that (u(n,m)) is a
reproducing kernel for H. That is, if 2 €H then

h(?‘, 8) = (hllu(r s)):

where u, 5 is the function w5 (%, m)y=pn+r,m+s), n,m=0,1,2, ... (for
details cf. [1] and [3]).

Let T,(T;) be the linear operator in H whose domain D(T',) (D(T,)) consists
of all h€H such that Ay, g (ke 1,) belongs to H. (If R €H, we denote by A,
the double sequence i, 4 (n,m)=h(n+r, m+s).) Then T, and 7, are closed
operators and T =T} and S=75 are symmetric operators in H. Furthermore,
T(S) is the closure of its restriction to H, (for details ¢f. [1], [3]). If 7' and S
have self-adjoint extensions H, and H, respectively, which permute, then (u(n, m))
is a moment sequence. Indeed, let E, (o) and E,(c) be the spectral resolutions
of H, and H, respectively and u,= o, then

)= G, )= By )= [ [ im0 B, 0 ol

=f J t"s"dy(t, s).

If the operators T and S are both self-adjoint and permute, then the se-
quence (u(n, m)) is a determined moment sequence; i.e. the measure ¥ repre-
senting (u(n, m)) is uniquely determined (cf. [4] p. 487).

The following lemma will be needed.

Lemma 8. Let S be a closed symmetric operator in a Hilbert space H and T a
self-adjoint operator in M which permutes with S and suppose that T and S are
both- real with respect to a conjugation J in H (cf. [11] p. 360). Then S has a

self-adjoint extension S in M which permutes with T.

Proof. If x€H we denote the element Jx by #. Let E(c) be the spectral
resolution of T. If x is any element in H we denote by M(x) the closed sub-
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space of H generated by the vectors {E(c)z}, where o ranges over all the
Borel sets on the real line. M(x) is the set of all elements y of the form y=
f(T)x, where f€L,(»;) and v, is the measure v,(0)=||E(o)z|* (cf. [11] p. 243).
Let H; and H_; be the deficiency spaces of §; i.e. H;(H_;) is the set of vectors
z in D(S*) such that §*x=<¢x(S*x= —ix). Since § is a real transformation with
respect to J, the mapping xz — % is an isometric mapping of H, onto H ;. Now
choose a family (@);e; of distinet vectors in H; such that H=>2,./%M(p:) (®
denotes orthogonal direct sum). Then H_;=2,;.,®M(@). Let U be the mapping
on H; which maps the element x=2;.;z;, % € M(g;), «;=f;(T)p; onto the ele-
ment X fi(T) @ Now,

l@ali= [ rolalEoel [~ LordEsE=IAmalr,

since E(c)@; = E(c)p; (this is true because T is real with respect to J cf. [11]
p- 362). Hence U is an isometric mapping of H; onto H_;. Since each M(¢;)
reduces E(o) (cf. [11] p. 243) it follows that E(0) U=UE(o) for all Borel sets o.
Finally, let D(S)=D(S)+ (I — U)H, (4 denotes direct sum) and define S as the
operator whose domain is D(S) and which maps the element =x+(I—U)gp,
z€D(S), p €H; into the element 8*z=Sz+i(I+ U)gp. S is a self-adjoint exten-
sion of § which permutes with 7 (for details on the Cayley transform of a
symmetric operator cf. [11] and [12]).

Theorem 9. (G. L. Eskin [5]). Let (u(n, m)), n,m=0,1,2, ..., be a two para-
meter sequence of real mumbers such that u(n, m)>0. Suppose that for every fized
my the one parameter moment sequence

(u(n, 2(my+ 1)) + p(n, 2my)), 7=0,1,2, ...,

is determined, then (u(n,m)) is a two parameter moment sequence. If in addition
the moment sequence (u(2my, m)), m=0, 1,2, ..., is determined for each m,, then
the moment sequence (u(n, m)) is determined.

Proof.

p(n, 2(mg + 1)) + p(n, 2me) = (T"S™ g | 8™ pag) + (™8™ g | 8™ pto)
= (T™(8 +1I) 8™, | (8 + 1) 8™ puy).

Let D={8™u,}, my=0,1, 2, ..., and apply Theorem 7. Since the vector space D
spanned by the vectors {7"S™u,}, n,my=0, 1, 2, ..., is precisely H,, it follows
that T is self-adjoint and that 7' permutes with S. Since 7 and § are real
operators with respect to the conjugation J which maps an element of H into
its complex conjugate, it follows from Lemma 8 that S has a self-adjoint ex-
tension S which permutes with 7', This proves the first part of the theorem.
If u(2ng, m)=(S™T™uy| T™u,), m=0,1,2, ..., is a determined moment sequence,
then the set {7™u,}, n,=0, 1, ..., is a set of determining vectors for S and §
is self-adjoint by Theorem 1.
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J. A. Shohat and J. D. Tamarkin have proved the following theorem in their
book [9] p. 21: Let (u(n,, n,, ..., m)) be a k-parameter sequence of real numbers
of positive type and suppose that (u(n,, n,, ..., n)) is a k-parameter moment
sequence. Let

A2n)=u(2n, 0, ..., 0)+pu(0, 2n, 0, ..., 0)+... +u(0, 0, 0, ..., 2n)
and suppose that § A2n) 12" = oo,
n=1

then the moment sequence (u(n,, n,, ..., 7)) is determined.

Using the results of § 3 (specifically Theorem 6) we can prove the following
very much stronger sesult.

Let (u(n,, n,, ..., n)) be a k-parameter sequence of real numbers of positive
type and suppose that

S A@n) =00 for i=1,2, ...,k
n=1

where A, (n)=pu(n, 0,0, ...), L,(n)=u(0,n,0, ..., 0), ..., A(r)=u0,0,0, ..., n)
then (u(n,, ny, ..., n)) is a determined k-parameter moment sequence.
We shall prove the theorem for k=2.

Theorem 10. Let (u(n,m)), n,m=0,1,2, ..., be a two parameter sequence of
real numbers such that u(n, m)>0. Suppose that

< 1

2 @, 0y~ )

then (u(n, m)) is a two parameter moment sequence. If in addition

b 1
2 0,y

then the moment sequemé (u(n,m)) is determined.

Proof. u(n, 0)=(T"u,| o). (1) implies that u, is a quasi-analytic vector for T.
Hence 8™u, is a quasi-analytic vector for T for m=0, 1, 2, ..., by Theorem 4.
Let D={8™u,}, m=0,1,2, ... and apply Corollary 5. It follows that T is
self-adjoint and that T permutes with S. The remainder of the proof is iden-
tical with the proof of Theorem 9.

Theorem 11. (A. Devinatz [4]). Let (u(n, m)), n,m=0, 1,2, ..., be a two para-
meter sequence of real numbers such that u(n,m)>0 and such that (u(2n,, m)),
m=0,1,2, ..., is a delermined moment seguence for each n,. Suppose furthermore
that the one parameter moment sequence

(pe(n, 2mg) + pu(n, 0)), ==0,1,2, ...,
is determined. Then (u(n,m)) is a determined moment sequence. '
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Proof. pln, 2mg) + p(n, 0) = (T"S™uy | S™ug) + (T™ug | to)-

Since (2) is determined for each m,, it follows that 8™y, is a vector of uni-
queness for 7' for every m,. Hence 1’ is self-adjoint by Theorem 1. The assump-
tion that u(2n,, m)=(S™T™u,| T™u,), m=0, 1, 2, ..., is determined for each n,
implies that 7™u, is a vector of uniqueness for § for each ny. Hence § is self-
adjoint by Theorem 1. Let E(c) be the spectral resolution of 7, ¢ a fixed Borel
set on the real line and m, and k two fixed non-negative integers. Since

a0 S ol + [ rallB ol

(T™8™ | 8™ ) + (T g | o) =f

n=0,1,2,..., is a determined moment sequence, there exists a';'sequence of
polynomials (p,) such that ’

fmlpn(t)—xu(t)t"|2d||E(t)S'"°uoll2+ fiIpn(t5~xa(t>t’°lzdllE(t>uoll2
= |24 (1) ™10~ B(0) T*S™ |[* + | 2 (T) o — E(0) Tt | -0
That is, D (T) o E(0) Ttq
and 8™, (T) o= P (T) 8™ g — E(a) TS .
8™ is self-adjoint and hence closed. Therefore
E(0)T*u, € D(S™) and S™E(o) T uy=E(c) T¥S™u,

for my,=0,1, 2, ....
From this follows that

B(0) T*S™u, = S™E(c) T 1, € D(S)
and SE(a) TFS™uy = 8™ E(0) T ue = E(0) T*S™  uy

for k, my=0,1, 2, ....

Hence E(c)g € D(S) and SE(c)g=E(c)Sg for all g € H,.

From this follows, since S is the closure of its restriction to Hy, that E(s)g € D(S)
and SE(o)g=E(c)Sg for all g € D(S). That is,

E(s) S SE(o)
for all Borel sets o.
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