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Quasi -analyt ic  vectors  

B y  A.  E .  NUSSBAUM 

1. Introduction 

I f  S is a symmetr ic  opera tor  in a Hi lber t  space H and  x is an element in 
H which belongs to N,>~ID(S")(D(A)) denotes  the  domain of an opera tor  A 
act ing in H, then the  sequence of real  numbers  /~, (x )=  (Snx/x), n = O, l, 2 . . . . .  
is of posi t ive type  in the  following sense: Given any  finite sequence of com- 
plex numbers  (a0, ~1 . . . . .  :r then  

i=0/=0 

Hence  the  sequence (/t, (x)) is a Hamburge r  moment, sequence (cf. [9]). That  is, 
there  exists  a bounded posi t ive R a d o n  measure v on the real  line such t h a t  

p . ( x ) = f ~  t"dv(t) for n = O ,  1 , 2  . . . . .  

The moment  sequence is said to  be determined if the  measure v is uniquely 
determined.  Accordingly  we shall  call the  vector  x a vector o/ uniqueness /or S 
or a determining vector /or S in case the  moment  sequence ((S"xlx)), n =  0, l ,  2 . . . .  
i s  determined.  Now, T. Car leman has  shown tha t  a Hamburge r  moment  sequence 
(p.)  is de te rmined  if ~:~ -1/2, z_,=ip2, diverges (cf. [2]). I f  [~,=(S"x]x), this  means 
t h a t  

1 

A vector  x E Nn>~xD(S ~) such t h a t  

~ ~ n l  1/. - c ~  
.=111 If 

will be called a quasi-analytic vector /or S. Thus  a quasi -analyt ic  vector  for S 
is a vector  of uniqueness for S. I n  [7] E. Nelson has in t roduced the not ion of 
an analytic vector /or S. A vector  x in /7 ,~>ID(Sn) is called an  analy t ic  vec tor  
for S if 

. .lls" llt"< ~ for some t>O;  
n! 
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A. E. NUSSBAUM, Quasi-analytic vectors 

t ha t  is, in ease there  exists a cons tant  p > 0  such tha t  HS'xll<~p'n! for n = l ,  
2, . . . .  Since n!<~n ~, i t  follows t h a t  

~r 1 ~ 1 

Thus every  analyt ic  vector  for S is a f o r t i o r i  a quasi -analyt ic  vector  for S and  
hence a vector  of uniqueness for S. 

E. Nelson has shown [7], using Stone 's  theorem, tha t  a closed symmetr ic  
opera tor  S is self-adjoint  if and  only i f  i t  has a dense set of ana ly t ic  vectors.  
I n  w 2 we shall  prove by  complete ly  different  methods  the  following theorem: 
Le t  S be a closed symmetr ic  opera tor  in a Hi lbe r t  space H and  D O the set of 

al l  vectors  of uniqueness for S. Le t  D0 be the  vec tor  space spanned  b y  the  

vectors  {Skx},  k = 0 ,  1, 2 . . . .  ; x E D  o. Then S is self-adjoint  if and  only if D 0 is 
dense in H. As a corol lary we obta in  Nelson 's  theorem and  the  theorem tha t  
a closed symmetr ic  opera tor  is self-adjoint  if and  only if i t  has a to ta l  set of 
quas i -analy t ic  vectors.  

I n  w 3 we der ive various pe rmu tab i l i t y  theorems for symmet r ic  opera tors  and  
in w 4 we app ly  the  results  of w 2-3 to  obta in  var ious  theorems of the  two 
pa rame te r  momen t  problem. F u r t h e r  appl ica t ions  will be considered in another  
publ icat ion.  

2. The main theorem 

Theorem 1. Let S be a closed symmetric operator in a Hilbert space H. Let D o be 

the set o/ all vectors o/ uniqueness/or S and D O the vector space spanned by the vec- 
tors (S%}, k=O, 1, 2 . . . .  ; x e D  o. Then S is sel/-ad]ointi/ and only i /])o  is dense 
in H.(1) 

Proo[. I f  S is self-adjoint ,  then  S has a dense set of ana ly t ic  vectors  and  
hence a dense set of vectors  of uniqueness (and hence also a dense set of 
quas i -analyt ic  vectors).  

B y  a theorem of M. Na imark  (cf. [13] p. 4) S has a self-adjoint  extension in 
the  ex tended  sense. Tha t  is, there  exists  a Hi lbe r t  space H1, which contains  H 
as a Hi lbe r t  subspace and  a seif-adjoint  opera tor  T in H 1 which extends  S 
(i. e. S x =  Tx  for all  x E D(S)) and  which is min imal  in the  following sense: I f  
E(a) is the  canonical  spectra l  measure  of T, then  the  set { E ( a ) x }  where x 
ranges over H and  a over all  the  Borel  sets of the  real  line R, is to t a l  in H 1 
(i .e.  the  vector  space spanned b y  {E(a )x}  is dense in H1). 

I f  x is any  e lement  in nn> lD(S~) ,  then  

< xl <+'xl x ) : / :=  t'dllE<t)xKI 2 

I f  x E Do, then  the  polynomials  are dense in L2(vx), where vz is the  measure  
vz(a) =] lE(a)xH 2 on the  real  line (ef. [8], [9] and  [ l l ]  Theorem 10.40). Le t  now 

(1) If x E Do, 8kx does in general not belong to D 0. (Cf. discussion following Theorem 3.) 
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x be a f ixed element  in D O and  a a Borel set on the  real  line. Let  Z, be the  
Characteristic funct ion of a wi th  respect  to the  real  line and choose a sequence 
of polynomials  (p,)  such t ha t  p ,  ( t ) -+ %o ( t )~ in the  L2-norm of L 2 (~).  Now, 

fT:lp~ (t) - z,, (t) ~ 12d II E(t) x II ~ = II p :  (T)  z - E ( ~ )  T~z  II ~ = 11 p ~ ( S )  �9 - E((r)  Skx II ~. 

Hence Pn (S) x --> E(a) Skx s t rongly  in H 1. Since Pn (S) x E H for all  n, i t  follows 

t ha t  E(~)Skx e H. We have proved  t ha t  E(a ) l )  o c H for al l  Borcl  sets a on the 

real  line. Suppose now tha t  D O is dense in H. Since E(a) is bounded it  follows 
t ha t  E ( a ) H  c H for all  Borel  sets a. Hence H 1 = H and  therefore T is a self- 
ad jo in t  extension of S in H. 

Suppose t ha t  S 4 T ,  then  there  exists  another  self-adjoint  extension T 1 of S 
in H which is different  from T. Le t  E 1 (~) be the  canonical  spectral  measure 
of T r Let  x be a f ixed element  in Do, Then the measures HEI(~)xII  2 and 
[[E(a)x[[ 2= ~:, (a) are identical .  Le t  a be a f ixed Borel  set on the  real  line and  
choose a sequence of polynomials  (pn) such t ha t  p~ (t)--> X, (t)t ~ in the  L2-norm 
of L 2 (~).  Then 

f _ ~  Ip~( t ) -  Zo(t)~*12d IIE~ (t)~ll ~= f _ ;  I p . ( t ) -  Z . ( t ) e l ' d l l E ( t ) g l  2 

= II pn (T1)�9 - E1 (~) TZ �9 II ~ = II P~ (T )  �9 - E ( a )  T~x II 2 

= liP. (S) ~ -  E, (~) S ~  II ~ = liP. (S) ~ - E ( ~ )  S~x II~-+ 0. 

Hence E 1 (a) Skx = E(a) Skx 

and  therefore El(a ) u = E(a) u for all  u e I)0" 

F r o m  this  follows, since /)o is dense in H b y  hypothesis ,  t ha t  E 1 (~)u = E ( a ) u  
for all  u E H. Hence E 1 ( a ) = E ( a )  and  therefore T 1 = T. This contradic t ion shows 
t ha t  S = T. 

Corollary 1. A closed symmetric operator S in a Hilbert space H is sel/-ad~oint if 
and only i / i t  has a total set o/vectors o/uniqueness.  

Since every  quas i -analyt ic  vector  for S is a vector  of uniqueness for S we 
have as an immedia te  corollary.  

Theorem 2. Let S be a closed symmetric operator in a Hilbert space H. Then S is 
eell-ad~oint i/ and only i / S  has a total set o/quasi-analytic vectors. (C]. Corollary 2.) 

Remark. I n  the  proof of Theorem 1 the p rope r ty  of a vector  x to be a vector  
of uniqueness for the  opera tor  S was used only  to  deduce t h a t  the  polynomials  
are dense in L2(~x) , where ~x is the  measure  ~z (~)=  IIE(~)x[[ 2 and  E(a) is the  
canonical  spectra l  measure  of a self-adjoint  extension T in the  ex tended  sense 
as descr ibed in the  proof  of Theorem 1. Now, i t  is not  diff icult  to show t h a t  
a vector x E N n>~l D(S  n) has the property that the polynomials are dense in L n (vx) i/ 
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and only i / the  closed subspace M 0 (x) o / H  spanned by the vectors {Skx}, k = 0, 1 . . . . .  
reduces S to a sel/-adjoint operator. A vector  x with this  p rope r ty  will be called 
an extremal vector /or S. Thus, a closed symmetric operator S in a Hilbert space 
H is sel/-adjoint i/ and only i/ it has a total set o/extremal vectors. Fur the rmore  
we s tate  here wi thout  proof tha t  an ex t remal  vector  x for a closed symmetr ic  
opera tor  S in H is a vector  of uniqueness for S if and  only if the  self-adjoint  
opera tor  SM0(,) to  which M 0(x) reduces S is the  closure of i ts res t r ic t ion to the  
l inear manifold  spanned  by  the  vectors  {Skx}, k = 0 ,  1, 2 . . . . .  

~ rhe the r  or not  a vector  x E n ~>ID(S ~) is a vector  of uniquenss for S depends  
solely upon the moment  sequence t ~ ( x ) = ( S ' x l x ) ,  n = 0 , 1 , 2 ,  . . .  (cf. proof of 
Theorem 3). I n  contrast ,  whether  or not  a vector  x E 17 n~>lD(Sn) is an ex t remal  
vector  for S does not  only depend upon the moments  #~ (x )=  (S~xix). I n  fact., 
if x E [7~>~1D(S ~) is not  a vector  of uniqueness for S, there  a lways  exists a 
self-adjoint  opera tor  T in M0(x ) (the closed subspace of H spanned  by  the  
vectors  {Skx},  k = 0 ,  1 , 2  . . . .  ) such t ha t  (S~xix)=(T~xl  x) for all  n. Fo r  this  
reason we do not  consider ex t remal  vectors  in this  paper .  

Let  S be a symmetr ic  opera tor  in a Hi lbe r t  space H. Le t  D O be the  set of 
all de termining vectors  for S, D 1 be the set of all quas i -analyt ic  vectors  for 
S and D 2 the  set of all ana ly t ic  vectors  for S. Then D 2 c D 1 c D o .  D 2 is a 
l inear set but  D O is not. However ,  D 1 and D O are clearly both  closed under  
the  opera t ion  x-->cx, where c is a scalar. I t  is possible on the o ther  hand  to 
construct  l inear sets of quas t i -analy t ic  vectors  which will in general  contain  
p roper ly  the analy t ic  vectors  D 2. F o r  example ,  the  set E of all  vectors  
x6  ~n>~ID(S n) such tha t  limn_+~c([[Snxl[i/n/n)< oo is l inear and  D z c E c D  ~. 

Theorem 3. I /  x is a vector o/ uniqueness /or the symmetric operator S in the 
Hilbert space H and i/ B is a bounded operator in H such that Bx  E f l n ~ > l . D ( S  n)  

and S n B x = B S n x  /or n =  1, 2, 3 . . . . .  then Bx  is a vector o/ uniqueness /or S. 
(This condition is satis/ied in particulav i/ B S c S B ;  i. e. permutes with S.) 

Proo/. According to H. Hamburge r  ([6 (a)] and  [6 (b)]) a necessary and  suf- 
f icient condi t ion t ha t  a moment  sequence (/~n) be de te rmined  is t ha t  a t  least  
one of the  two equali t ies  

l im min :r ~j/~+j = 0 
n-+Oo L~O~I i = O j = O  J 

l im rain ~ ~. g~gjp~+~+2 = 0  
n-+oo La0=l t = 0 J = 0  

is val id  where the  ~i are real  numbers .  F r o m  this  follows t ha t  a vec tor  
x E  Nn>~ID(S n) ls a vector  of uniqueness for S if and  only if a t  least  one of 
the  two equali t ies  

l im [min ]l (I + ~1 S + ~9. S 2 + . . .  § ~ Sa) x ][ ~] = 0 
n-+OO g|  

lim [min H ( I +  ~ z S +  ohS2 + ... § ~ S n )  SxiI 2] =0 n-*or 
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is val id  where the  zq are  real  numbers .  I f  one of the above  equali t ies  holds 
for a given vector  x E N~>ID(S  n) and B is a bounded opera tor  in I t  and  tha t  
B x E  N~>~ID(S n) and  S ~ B x = B S n x  for n = l ,  2 . . . . .  then it clearly also holds 
for B x  ins tead of x, because 

II ( i  § 6r247 .. .  + cr Bx  112 = IIB(I + ~ S  + .. .  § ~ Sn) / II ~ 

~< [[Bl[2[[ ( I +  ~ , S +  ... + ~n Sn) x[[ ~ 

and  s imilar ly  

II(I+ ~ , s  + ... + ~ S n )  SBxlI2<IIBII21I(z+ ~ s +  . . .  § ~nSn) ~xlI~I 

Theorem 3 is not  va l id  anymore  if the hypothes is  t ha t  B is a bounded 
opera tor  is dropped.  I n  fact ,  i t  is in general  false if we take  for B the opera tor  
S, because if (ten), n = 0 ,  1, ... is a de te rmined  moment  sequence, then  in gen- 
eral  the  moment  sequence Un=#~+2, n = 0 ,  1, 2, . . .  is not  determined.  

The theorem remains  true,  however,  if we drop the requi rement  t ha t  B is 
bounded  bu t  assume tha t  x is a quas i -analyt ic  vector  for S. More precisely we 
have  the  following. 

Theorem 4. I /  x is a quasi.analytic vector /or the symmetric operator S in the 
Hilbert space I t  and i / A  and A + are two operators in It  which are adjoint to each 
other (i.e. they satis/y the relation (Ay] z )=  (yiA+z) ]or every y E D(A) and every 
z E D(A+)) and i / x  E D(A +A), A x  E n n>A D(S  n) and SnAx = A S n x / o r  n = 1, 2, 3 . . . . .  
then A x  is a quasi-analytic vector for S. 

Proo/. 

II S'Ax II 2 = (S~A~ISnAx) = (S2~xl A+Ax) < II S2"xll IIA+AxII- 

I f  x = O  there  is nothing t o  prove.  We m a y  therefore assume tha t  x~=O. Since 
a vector  x is quasi -analyt ic  for S if and  only if cx, c~O,  is quas t i -analyt ic  for 
S, the vector  y=(1 / i l x l I ) x  is quas i -analyt ic  for S and 

1 o~ 1 I 

ii SnAxll ,~ >~ ~1~111'~" l[ I lx l lA+Axl t  1~2~' 

To show tha t  A x  is a quas i -analyt ic  vector  for S i t  is therefore sufficent to 
show t h a t  

oo 1 

 ilis2.;ll ,2.- 
Now IlSnyll 1+~ is monotonica l ly  increasing with n. This can be verified direct ly,  
b u t  i t  also follows from the well-known fact  t ha t  if ~ is a bounded  posi t ive 
measure  on a space X such t ha t  v ( X ) = l ,  then II[I]~=(]xI/(x)lpdv(x) 1in is a 
monotonica}ly increasing funct ion of p ,  p>~ 1, for any  v-measurable funct ion [. 

If 
n=l  
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were convergent, then 

would be convergent by  the comparison test and it would follow tha t  

is convergent. Hence 

"1 

Corollary 2. I /  x is a quasi-analytic vector for S and p(t) a polynomial, then 
p(S) x is a quasi-analytic vector for S. 

Corollary 3. A vector x fi f),>>,ID(S ~) is quasi.analytic for S if and only if 

~ 1 = c~ (or equivalently 1 cr 

3. Permutabilit~ theorems for symmetric operators 

Theorem 5. Let S and T be symmetric operators in a Hilbert space H and let 
D O be the set of all vectors x in H which are vectors of uniqueness for both S and T 
and which are in the domain o I the operators T~S m, SaT"  for n = 1, 2, .. . ,  m = 1, 2, ... 
and such that T~Smx = SaT"x  /or all n and m. I f  D O is dense in H, then S and 
T are ~_sentiaUy sdf-ad~oint and ~q and T permute. (,,q denotes the closure of S. 

and T permute means that their spectral resolutions permute.) 

Proof. If  D o is dense in H, ~q and T are self-adjoint by  Theorem 1. Let  E(a) 
and F(a) be the spectral resolutions of T and ~q, respectively. Let  x be a fixed 
element in D O and a and ~ Borel sets on the real line. Then there exist two 
sequences of polynomials (p.) and (q.) with real coefficients such tha t  

p .  (T) x -+ E(a) x and q. (S) x -+ F(x) x 

(cf. proof of Theorem 1). Hence 

(E(a) x IF(y) x) = lim (pn (T) x lq ~ IS) x) = lim (q. (S) x [Pn (T) x = (F(~) x lE(~ ) x). 

Therefore ( ( E ( a ) F ( l r ) - F ( l r ) E ( a ) ) x ] x ) = 0  for all x s D 0. Since D O is dense in H, 
it follows tha t  

((E(a) F(~') - F(lr) E(a)) x ] x) = 0 for all x 6 H. 

Bu t  this implies by  the polarization identi ty tha t  E(~v)F(T)-  F( lr)E(a)= 0; i.e. 
E(zv)P(~) = F ( z ) E ( a )  for all Borel sets a and lr. 
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Theorem 6. Let T and S be symmetric operators in a Hilbert space H and D 
a set o/ vectors in H which are quasi-analytic /or both T and S and which are 
in the domain of the operators T. nS m, S~T n /or n = l ,  2 . . . . .  r e = l ,  2, . . . ,  and 
such that TnSmx=~mT'x  /or all n and m. I f  the set {TnSmx}, n = 0 ,  1, . . . ,  
m = 0, 1 . . . . .  x E D is total in H, then T and ~ are sel/-ad~oint and they permute. 

Proo/. Let  I )  be the  vec tor  space spanned b y  the set of vectors (TnSmx }, 

n=O,  1, . . . ,  re=O, 1, . . . ,  x E D .  I f  y E D ,  then  y = A x ,  where A is an opera tor  
of the  form A=~a iT '~Sm~x ,  x E D .  Le t  A+=~jd~Tn~S m~. Then Theorem 4 
applies and  shows t ha t  y is a quas i -analyt ic  vector  for T and  S. Thus every  

vec tor  y in D is quasi -analyt ic  for T and  S and  T~Smy = SmT'y  for n = 1, 2, . . . ,  

m =  1, 2, . . . .  Hence,  if D is dense in H i t  follows from Theorem 5 t h a t  T and 
are self-adjoint  and  t ha t  T and  ~q permute .  

Theorem 7. Let T and S be symmetric operators in a Hilbert space H and D 
a set o/ vectors x which are in the domain o/ the operators TnS, S T  n lot n = O, 
1 , 2  . . . .  such that T ' S x = S T ~ x  /or n = l ,  2, . . . ,  and such that ( S + i I ) x  is a 
vector o/ uniqueness /or T. Let D be the vector space spanned by the vectors 
{ T ' x , T m S x } ,  n = O, 1, . . . ,  m = 0, 1, 2 . . . . .  x E D. Suppose that [) is dense in H, 
then T is sel/-ad(oint and T permutes with ~ql, where S 1 is the restriction o/ S to 
the vector space D 1 generated by the vectors { T ' x } ,  n = O, 1, 2, . . . ,  x E D. {T per- 
mutes with ~ql means that E(q)~qic~qlE(a ) for all Borel sets (~ on the real line, 
where E(q) is the canonical spectral measure o/ T . )  

Proo/. If  x E D, then  

( T ~ ( S + i l ) x l ( S + i I ) x ) = ( T ~ S x l S x ) + ( T ' x l x ) ,  n = 0 ,  1, 2 . . . . .  

is a de te rmined  moment  sequence. Hence clearly (TnSxl Sx) and  (T ' x l x ) ,  n = O, 

1 . . . . .  " are de te rmined  moment  sequences. Hence,  since D is dense in H, T is 
self-adjoint  b y  Theorem 1. Le t  E(a) be the spectral  resolut ion of T ,  x be an 
e lement  in D, a a f ixed Borel  set on the  real  line and  k a non-negat ive  inte- 
ger. Since 

( T " S x l S x ) + ( T " x l x ) =  t"d[IE(t)Sxl l '+ t"dllE(t)xll  2, n = 0 ,  1, . . . ,  

is a de te rmined  moment  sequence there  exists  a sequence of polynomials  (Pn) 
such t ha t  if :~  is the  character is t ic  funct ion of a, then 

�9 Ip (t)-xo(t)el dll (t)s ll'§ I p . ( t ) -  zo(t)el'dllE(t) ll 

= 11 p .  (T)  II + II p . ( T )  �9 - II 0 

(cf. proof of Theorem 1). Tha t  is, 

p" (T) x -> E(a) Tkx 
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and Spn ( T) x = pn (T) Sx  --> E(~) TkSx  : E(er) STkx.  

That  is p n ( T ) x - + E ( a ) T k x  and ~qlp,~(T)--~E((~)SiTkx. 

Hence E((~) Tkx E D(S1) and ~qi (E(a) Tkx = E((~) ~'1 Tkx since ~ql is closed. From 
this follows tha t  E((~)yED(S1) and E((~)S ly=S1E( ( I ) y  for all yED(~ql); i.e. 
E(a) S~ = $1 E(a). 

Corollary 4. I /  every vector in 1)1 is also a vector o/ uniqueness /or S, then 
is sel/-ad]oint and T and S permute. 

Proo/. I f  every vector in D1 is a vector of uniqueness for S, then S is self- 
adjoint by  Theorem 1. 1)1 is then also a dense set of determining vectors for 
~ql. Hence ~ql is sclf-adjoint. But  $1 = ~  and hence $1 = ~- 

Corollary 5. Let T and S be symmetric operators in a Hilbert space H and D 
a set o/ vectors x which are in the domain o/ the operators TnS, S T  n /or n = 0, 
1, 2, ... such that T ~ S x =  ST~x /or n =  1, 2, . . . ,  and such that x is quasi-analytic 
/or T. Let 1) be the vector space spanned by the vectors { T=z, TmSx}, n = 0 ,  1 . . . . .  
m = O, 1 . . . . .  x E D. Suppose that D is dense in H, then T is sel/-adjoint and 
permutes with ~ql, where S 1 is the restriction o/ S to the vector space ])1 generated 
by the vectors { T~x }, n = 0 ,  1, 2 . . . . .  x E D. 

Proo]. The Corollary is an immediate consequence of Theorem 4 and Theo- 
rem 7. 

4. Two parameter moment problems 

Let  (re(n, m)), n, m = O, 1, 2 . . . . .  be a two parameter  sequence of real num- 
bers. We wish to find sufficient conditions so that  the sequence (tt(n, m)) be a 
moment  sequence; tha t  is, m a y  be represented by an integral 

# ( n , m ) = f ~  f~ctnsmdv(t ,s ) ,  n , m = O ,  1 ,2  . . . . .  

where v is a bounded positive Radon  measure on R 2. (Cf. [9] and [4].) An 
obvious necessary condition is tha t  (~t(n, m)) be of positive type, denoted by  
#(m, n)>>O, in the following sense: Given any  finite sequence ((n~, m~)), i = 1, 2, 
3 . . . . .  k of pairs of non-negative integers and a sequence (~t), i =  1, 2 . . . . .  k, 
of complex numbers, then 

k k 

~. ~ ~,59~t(ni+nj, mi+mr >~0. 
J = l  i = l  

R. B. Zarhina [14] has shown (using the well-known theorem of Hilbert  tha t  
not  every non-negative polynomial in two variables can be written as a sum 
of squares  of polynomials) tha t  this condition is not  sufficient. 
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I n  this  section we shall  app ly  the  results  of w 3 to ob ta in  various sufficient 
condit ions for a two p a r a m e t e r  sequence (/~(n,m)) of posit ive type  to be a 
moment  sequence. These condit ions had  previously  been ob ta ined  by  A. Devi- 
na tz  [4] and  G. I .  Eskin  [5] by  different  methods.  All  the  results  of this  sec- 
t ion can b e  ex tended  to n -pa rame te r  sequences for n > 2. The proofs are identical  
wi th  those for n = 2 .  

Let  (#(n, m)) be a two pa ramete r  sequence of posi t ive type.  We associate 
wi th  (g(n, m)) a reproducing hernel  space I t  in the  well-known fashion (cf. [1]): 
Le t  I t  0 be the  l inear space which consists of all functions /(n, m), n, m -  0, 1, 
2 . . . .  of the  form /(n, m)=Z~_lai /~(n+n~,  m+m~). I f  g(n, m) is another  such 
function,  i.e. g(n, m) = ~1= 1 flj#(n + ~j, m + ~hj), we int roduce into I t  0 a bi l inear 
form by  set t ing ( / I g ) = ~ : l ~ : a ~ f i ~ l u ( n , + ~ j ,  m,+~hj). I t  is no t  ha rd  to ver i fy  
t h a t  ([Ig) is well defined; i.e. independent  of the  par t icu la r  representa t ions  of 
/ and  g and  tha t  is ac tua l ly  i t  an  inner  p roduc t  on H 0. H 0 can be completed 
to a Hi lbe r t  space H such t ha t  the  elements  in H are also double sequences 
(h(n, m)), n, m = 0 ,  1, 2 . . . . .  of complex numbers  and such t ha t  (/~(n, m)) is a 
reproducing kernel  for H. Tha t  is, if h E H then 

h(r, s ) =  (h I/~<r ' s)), 

where /~(r.s) is the function / Z ( r . s ) ( n , m ) = / ~ ( n + r , m + s ) ,  n , m = 0 ,  1, 2, . . .  (for 
deta i ls  cf. [1] and  [3]). 

Let  T 1 (T2) be the l inear  opera tor  in H whose domain  D(T1)(D(T2) ) consists 
of all h E H such t ha t  h(a. 0)(h<0.1)) belongs to H. (If h E H ,  we denote  by  h(r.s) 
the double sequence h~r . s ) (n ,m)=h(n+r ,m+s ) . )  Then T 1 and  T 2 are closed 
operators  and  T =  T* and  S =  T~ are symmetr ic  opera tors  in H. Fur the rmore ,  
T(S) is the  closure of i ts res t r ic t ion to H o (for detai ls  cf. [1], [3]). I f  T and  S 
have  self-adjoint  extensions H 1 and H 2 respectively,  which permute ,  then (#(n, m)) 
is a moment  sequence. Indeed,  let  E 1 (a) and  E 2 (a) be the  spectral  resolutions 
of H 1 and H 2 respect ively and /~0 =/~(0. 0), then 

,u(n, m) = (,U(n, m, t /~O) = (Hr Hr,u o ]/~0) = tnsmd ]l E1 (t) E 2 (s) ~o H z 

If  the operators  T and  S are both  self-adjoint  and  permute ,  then the se- 
quence Qz(n, m)) is a de te rmined  moment  sequence; i.e. the  measure v repre- 
senting (/~(n, m)) is uniquely  de te rmined  (el. [4] p. 487). 

The following lemma will be needed. 

Lemma 8. Let S be a closed symmetric operator in a Hilbert space H and T a 
sel/.ad]oint operator in H which permutes with S and suppose that T and S are 
both real with respect to a conjugation J in H (c/. [11] p. 360). Then S has a 
sel/.adjoint extension S in H which permutes with T. 

Proo/. I f  x E H  we denote  the  e lement  Jx  b y  ~. Le t  E(a) be the spectra l  
resolut ion of T. I f  x is any  element  in H we denote  b y  M(x) the  closed sub- 

187 



A. E.  NUSSBAUM, Quasi-analytic vec tor s  

space of H generated by  the vectors {E(a)x},  where a ranges over all the 
Borel sets on the real line. M(x) is the set of all elements y of the form y =  
/ (T)x,  where /EL~(vx) and vx is the measure v~(a)=llE(~)xH 2 (ef. [11] p. 243). 
Let  Hi and H- t  be the deficiency spaces of S; i.e. H~ (H-t) is the set of vectors 
x in D(S*) such tha t  S*x = ix (S 'x= - i x ) .  Since S is a real t ransformation with 
respect to J ,  the mapping x--> ~? is an isometric mapping of Ht onto H-i .  Now 
choose a family (q~)t~l of distinct vectors in Ht such tha t  Hi=~.t~1(~M(qt) (~  
denotes orthogonal direct sum). Then H- i=~ i~ lGM(~ t ) .  Let  U be the mapping 
on Ht which maps the element x=~i~ix i ,  xtEM(~t), x~=/ i (T) r  onto the ele- 
ment  ~i~Ifi(T)~i.  Now, 

II/,(T) ,II I/,(01dllE(0 ,ll I/,(t)l dllE(0' itt =ll/i(T)' tll 

since E(a)~i=E(a)q~f (this is true because T is real with respect to J cf. [11] 
p. 362). Hence U is an isometric mapping of lit onto H-i .  Since each M(~i) 
reduces E(a) (cf. [11] p. 243) it follows tha t  E(a) U = UE(a) for all Borel sets a. 
Finally, let D(S) = D(S) -~ ( I -  U) I I t (  + denotes direct sum) and define S as the 
operator whose domain is D(S) and which maps the element �9 = x §  ( I - U ) ~ ,  
x E D(S), r E Hi into the element S*x = Sx + i(I  + U) ~. S is a self-adjoint exten- 
sion of S which permutes with T (for details on the Cayley transform of a 
symmetric  operator cf. [11] and [12]). 

Theorem 9. (G. I. Eskin [5]). Let (p(n, m)), n, m = 0, l,  2 . . . . .  be a two para- 
meter sequence o/ real numbers such that p(n, m)>>0. Suppose that/or every fixed 
m o the one parameter moment sequence 

(p(n, 2(m0+ 1) )+p(n ,  2too)), n=O, 1, 2 . . . . .  

is determined, then (p(n, m)) is a two parameter moment sequence. I /  in addition 
the moment sequence (p(2n0, m)), m = 0, 1, 2, . . . ,  is determined /or each no, then 
the moment sequence (/~(n, m)) is determined. 

Proo/. 

2(m0 + 1)) + 2too) = (T"Sm'+l 01Sm'+l o) + (T"Sm' 01Sm' 0) 

= (T"(S + iI) Sm'po I (S + iI) S'~po). 

Let  D =  {S~~ m 0 = 0  , 1, 2 . . . . .  and apply Theorem 7. Since the vector s p a c e / )  
spanned by  the vectors { T"Sm'/~o}, n, m o = 0, 1, 2 . . . . .  is precisely Ho, it follows 
tha t  T is self-adjoint and tha t  T permutes with S. Since T and S are real 
operators with respect to the conjugation J which maps an element of H into 
its complex conjugate, it follows from Lemma 8 tha t  S has a self-adjoint ex- 
tension S ~vhich permutes with T, This proves the first par t  of the theorem. 
I f  p(2no, m) = (SmTn'p01Tn'p0), m = 0, 1, 2 . . . . .  is a determined moment  sequence, 
then the set { T~p0}, n o = 0, 1, . . . ,  is a set of determining vectors for S and S 
is self-adjoint by  Theorem 1. 
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J .  A. Shoha t  and  J .  D. Tamark in  have proved the  following theorem in thei r  
hook [9] p. 21: Le t  (p(nl ,  n2 . . . . .  nz)) be a k -pa ramete r  sequence of real  numbers  
of posi t ive type  and  suppose t ha t  (~u(nx, n~ . . . . .  nk)) is a k -paramete r  moment  
sequence. Le t  

~t(2n) = p(2n, 0 . . . . .  O) + p(O, 2n, 0 . . . . .  O) + . . .  + p(O, O, 0 . . . .  , 2 n )  

and  suppose t h a t  ~. ~(2n)-1/2" = oo, 
n=l 

then  the moment  sequence (p(n v n 2 . . . . .  nk)) is de termined.  
Using the  results  of w 3 (specifically Theorem 6) we can prove  the following 

ve ry  much s tronger  sesttlt. 
Let (p(nl, n~ . . . .  , n~)) be a k.parameter sequence o/ real numbers o/ positive 

type and suppose that 

2~ (2n) -1/2n = ~ for i = 1, 2 . . . . .  k, 
n=l 

where 2 l (n)=p(n ,  O, 0 . . . .  ), ~t2(n)=p(O, n, 0 . . . . .  0), . . . ,  J lk(n)=p(O, O, 0 . . . . .  n) 
then (p(np ne . . . . .  nk)) is a determined k-parameter moment sequence. 

We shall  p rove  the theorem for k = 2. 

T h e o r e m  10. Let (p(n, m)), n, m =  0, 1, 2 . . . . .  be a two parameter sequence o/ 
real numbers such that la(n, m)~.O. Suppose that 

,=1~(2n, O) cr (1) 

then (p(n, m)) is a two parameter moment sequence. I /  in addition 

21 1/2m m=l/M(O, m) oo, 

then the moment sequence (p(n, m)) is determined. 

ProoJ. p(n, 0)=(Tnp0lP0) .  (1) implies t ha t  P0 is a quas i -analy t ic  vec tor  for T. 
Hence Smpo is a quas i -analyt ic  vec tor  for T for m = 0, 1, 2 . . . . .  b y  Theorem 4. 
Let  D={Smpo},  m = 0 ,  1, 2 . . . .  and  app ly  Corol lary 5. I t  follows tha t  T is 
se l f -adjoint  and  t ha t  T permutes  wi th  S. The remainder  of the  proof is iden- 
t ica l  wi th  the  proof of Theorem 9. 

T h e o r e m  11. (A. Devina tz  [4]). Let (p(n, m)), n, m = 0, 1, 2 . . . . .  be a two para- 
meter sequence o/ real numbers such that p ( n , m ) ~ O  and such that (p(2no, m)), 
m = 0, 1, 2 . . . . .  is a determined moment sequence /or each no. Suppose [urthermore 
that the one parameter moment sequence 

(p(n, 2too) + p(n, 0)), n = O, 1, 2 . . . . .  

is determined. Then (p(n, m)) is a determined moment sequence. 
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Proo/. #(n,  2m0) § 0) = ( T'Sm~ o I Sm~ § ( T~/zo lifo)" 

Since (2) is de te rmined  for each too, i t  follows t ha t  sm~ is a vector  of uni- 
queness for T for every  mo. Hence T is self-adjoint  by  Theorem 1. The assump- 
t ion t ha t  /~(2n0, m ) =  (SmT~O/~oiT~~ , m =  0, 1, 2 . . . . .  is de te rmined  for each n o 
implies t ha t  Tn'~0 is a vector  of uniqueness for S for each n 0. Hence S is self- 
ad jo in t  by  Theorem 1. Le t  E(a) be the spectral  resolut ion of T, a a f ixed Borel  
set on the real  line and m o and  k two fixed non-negat ive integers.  Since 

( TnSmo/zo i s~~ + ( T~o i ~o) = f _~ t~ d i[ E( t) Sm~ II2 + f~_:c t~ d li E( t ) ~o ]t ~, 

n = 0 ,  1, 2, . . . ,  is a de te rmined  moment  sequence, there exists  a sequence of 
polynomials  (Pn) such t ha t  

= II p~ (T)S~~ - -E(a )  TkSm'#o It 2 § ]l Pn (T)/~o - E(a)  Tk#o II 2 -~ 0. 

Tha t  is, Pn (T)#0 -+ E(a) Tk/ao 

and  S'~~ ( T) /z o = Pn ( T) Sm~ --> E(a) TkSm~ . 

S m" is sel f -adjoint  and  hence closed. Therefore 

E(a) Tk/~o E D(S  ~*) and  S~~ Tk#o = E(a) TkSm'/~o 

for m o = 0 ,  1 ,2 ,  . . . .  
F r o m  this follows tha t  

and  

E(a) T~Sm'/zo = Sm~ T~/~o E D(S) 

SE(a) TkSm~ o = sm~ lE(a) Tk/~o = E(a) TkSa~ 

for k, m 0 = 0 ,  1, 2, . . . .  
Hence E(a) g E D(S) and  SE(,~) g = E(a) Sg for all g E H 0. 
F r o m  this follows, since S is the  closure of i ts res t r ic t ion to H0, t h a t  E(a)9 E D(S) 

and  S E ( a ) g = E ( a ) S 9  for all g ED(S).  Tha t  is, 

for all  Borel  sets a. 

E(a) S c SE(a) 

A C K N O W L E D G E M E N T  

This work was in par t  suppor ted  by National  Science Foundat ion  Grants  N.S.F.  GF-2089 

and G-17932. 

Department of Mathematics, Washington University, St. Louis, Missouri, U.S.A. 

190 



ARKIV FOR MATEMATIK. B d  6 n r  10  

R E F E R E N C E S  

1. ARO-'~SZAJ.'~, N., Theory o] reproducing kernels, Transactions of the American Mathematical 
Society, vol. 68, 337-404 (1950). 

2. CARLEMA~, T., Les/onetionz quasi-analytiques, Gauthier-Villars, Paris (1926). 
3. DEVINATZ, A., Integral representations ol positive de]inite ]unctions, Transactions of the 

American Mathematical Society, vol. 74 56-77 (1953), Errata,  p. 536. 
4. DE~NATZ, A., Two parameter moment problems, Duke Mathematical Journal,  vol. 24, 481- 

498 (1957). 
5. ESKI~, G. I., A su]/icient condition /or the solvability o / a  multidimensional problem ol mo- 

ments, Dokl. Akad. Nauk SSSR 133 540-543 (1960). (Russian); translated as Soviet 
Math. Dokl. 

6. HAMBURGER, H. L., ~ber eine Erweiterung des Stielt]esschen Momentenproblems, Mathema- 
tische Annalen, (a) vol. 81 (1920), pp. 235-319, (b) vol. 82, 120-164 (1921). 

7. NELSOI~, E., Analytic vectors, Annals of Mathematics,  vol. 70, 572-615 {1959). 
8. RIESZ, M., Sur le probl~me des moments et le thdor~me de Parseval correspondant, Acta Litte- 

rarum ac Scientiaxum (Szeged) vol. 1, 209-227 (1922 23). 
9. SHOHAT, J. A., and T A ~ K I N ,  J. D., The Problem o/Moments,  New York (1943). 

10. NAIMARK, M., Sell-ad]oint extensions ot the second kind o] a symmetric operator, Bulletin 
(Izvcstiya) Acad. Sci. USSR, math.  series vol. 4, 53-104 (1940). 

l l .  STO,~E, M. H., Linear trans]ormations in Hilbert space, New York (1932). 
12. Sz. NAGY, B. v., Spektraldarstellung linearer Trans/ormationen des Hilbertschen Raumes, Ber- 

lin (1942). 
13. Sz..-~AGY, B. v., Prolongements des trans]ormations de l'espace de Hilbert qui sortent de cet 

espace, Appendix to the book "Legons d 'analyse fonctionelle", Budapest  (1955). 
14. ZARHINA, R. B., On the two-dimensional problem o/moments, Dokl. Akad. Nauk SSSR 124, 

743-746 (Russian) (1959). 

Tryekt  den 27 juli 1965 

Uppsala 1965. Almqvist & Wiksells Boktryckeri AB 

191 


