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A strong form of spectral synthesis 

By INGEMAR WIK 

Introduction 

The class of sets admitt ing spectral synthesis has the disadvantage tha t  one 
does not know whether or not the union of two such sets is always a set of 
the same kind. By imposing more restrictive conditions in the definitions, several 
subclasses have been defined tha t  have this desirable property.  One way to achieve 
this has been pointed out by  Calderon in [2], where he introduces strongly reg- 
ular sets. A subclass of the strongly regular sets is formed by  the Ditkin sets 
studied by  Rudin [9, pp. 169-171]. (See also Kahane-Salem [6, p. 183].) 

In  this paper  we shall s tudy a proper subclass of the Ditkin sets, which we 
call strong Ditkin sets. We are restricting ourselves to sets on the interval [0, 27e] 
of the real line. The first three theorems tell us tha t  finite unions of closed in- 
tervals and points are strong Ditkin sets. The rest of the paper  is an examina- 
tion of arbi t rary  strong Ditkin sets. Theorems 4-7 prove tha t  such a set has 
the proper ty  that  every accumulation point of it is an accumulation point of 
intervals of the set. Still it might  be tha t  the strong Ditkin sets are exactly 
the sets with finite boundary, although the author has not been able to prove it. 

Professor L. Carleson suggested the subject of this paper  and I wish to thank 
him for his valuable guidance. 

Notations 

We shall denote by  A the Banach space of all functions i t with period 2:t, 
which have a representation 

/(x) = ~ ake ex, where II/11= la~l < ~ -  
k = - - z r  k = - o o  

We shall frequently use a special function in A, which we call 9h(x, a) and which 
is defined by  

0 for ]x-al>~h , h<~z 

gh(x ,a )=  1 for x = a  

linear f o r a - h < x < a  and a < x < a + h .  

Then gn(x ,a )=  x:~ b e-tkaete~ / , k - - ~  k.n . This function has the following properties: 
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IIg~(x, a)II = 1 for  every  h and a 

[bk+p.h-bk, hl<Cph where Cp depends only on p .  
k =  

For  the proof of (1) and (2) see e.g. Herz [5, p. 188]. 

(1) 

(2) 

D e f i n i t i o n s  

Let  E be a closed set on [0,27@ 

Definition 1 
I f  for every  / E A ,  such tha t  / (x )=O on E and for every  s > O  there exists a 

g EA such tha t  g(x)=O on a neighbourhood of E and ] l / - g l l  <~  then we say 
tha t  E admits spectral synthesis or tha t  E is a regular set. 

De/inition 2 

If,  in Definition 1, we can fur ther  prescribe tha t  g ( x ) = 0  whenever / ( x ) = 0 ,  
then E is called a strongly regular set. 

Definition 3 
If, in Definition 1, we can prescribe tha t  g shall be of the form g = u -  [ where 

u(x) = 0 on a neighbourhood of E and u E A, then E is called a Ditkin set. 

De/inition 4 

If, in Definition 3, we can choose a sequence of functions u, {un}~ r where u~ 
only depends on E, such tha t  Iluj-/]l--->O as n - - > ~ ,  for all / in question, 
then E is called a strong Ditkin set. 

I t  is easily seen t h a t  a set which satisfies the conditions of one definition 
also satisfies those of the previous definitions. A famous example of Malliavin [7] 
shows tha t  there are sets which do no t  admi t  spectral synthesis. I t  does no t  
seem to be known if the first three definitions are equivalent.  On the other  
hand, the only Ditkin sets t ha t  are known are those which direct ly are obtained 
f rom the following theorem: 

(a) Eve ry  point  is a Ditkin set. 
(b) Enumerable  unions of Di tkin  sets are Ditkin sets. 
(c) I f  the boundary  of E is a Ditkin set so is E.  

(a) and  (c) were proved by  Rud in  [9, pp. 170-171] while (b) was proved by  
Calderon [2] for s t rongly regular sets. The proof for Ditkin sets is similar and 
we shall omit  it. 

I f  we pu t  Vn(X)= 1 -  Un(X) in Definit ion 4 we see tha t  E is a strong Ditkin 
set if and only if we can find a sequence {vn(x)}~ r with the properties: 

v,~(x) E A, v,~(x)= 1 o n  a neighbourhood of E and  

Ilvn/[[->0, as n - +  ~ ,  for every ] E A  such tha t  /(x)=O on E.  (3) 

56 



ARKIV FOR MATEMATIK. Bd 6 nr 3 

Strong D i t k i n  sets 

We begin by proving three theorems which yield the existence of strong Ditkin 
sets. The only sets of this kind, known to the author,  are those whose existence 
follow immediately from these theorems. 

Theorem 1. [9, p. 49]. Every point  is a strong Ditkin set. 

Proo/. Suppose tha t  E consists of the point a. Let  v, (x) = 292/~ (x, a) - g ,  (x, a). 
I t  is sufficient to show tha t  ]]gh/ll-->0 as h-->0 where / is an arbi t rary function 
in A, such tha t  / (a)= 0. Since a translation does not affect the norms, we m a y  

_ _  ~0 e i k X  assume tha t  a = 0 .  Now put  / ( x ) - ~ _ ~  ak . Choose s > 0 ,  arbitrarily, and an 
integer P0 such tha t  

~: la,,l< 7 (4) 
Ipl>po 

and h, according to (2), so small tha t  

k 2 ] ~  for P~Po .  

Since ~ a~ =/(0) = 0 we have 

II g,,/ll = ~ I~; a.b,,_..,, I = 5 I~; a v ( b k - v , u  - -  bk.,,) I 
k p k p 

(5) 

and by  the triangle inequality 

Ilgh/ll< Y la~l~lb~-~.~-bk, hl+ Y la~lYlbk-~-b~,~l. 
I P I < P o  v > p o  ~ ' 

This is by  (1), (4) and (5) less than 

2il-il~ ~7211g~11=~ 

and thus IIg~lll-+0 as h -~0  q.e.d. 

Theorem 2. Every closed interval is a strong Ditkin set. 

Proo/. Assume tha t  the interval is I =  [a, b] and let 

Vn (X) = 2921n (x, a) -- glln (x, a) + 2921n (x, b) - g21n (X, b) + kn (x), 

where kn (x) = 0 outside I .  
Let  ] be an arbi t rary function in A such tha t  ](x)= 0 on I .  Then 1. kn(x )=O 

and since ] (a)=l (b)=O Theorem 1 gives IIv=r Since {v~(x)}~ satisfies (3) 
Theorem 2 is proved. 

Theorem 3. Finite unions o/ strong Ditkin sets are strong Ditkin sets. 
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Proo/. I t  is sufficient to prove the theorem for two sets E 1 and E~. Assume 
that  {un,~(x)}~ and {u,.~(x)}~ are sequences satisfying Definition 4 for E~ and 
E~ respectively. We claim that  {un. ~(x). u~.2(x)}~ r is a sequence satisfying Defini- 

U ~r /ion 4 for the set E = E l U  E~. The fact that  { ~.1g}1 converges in A for every 
g E A such that  g(x)= 0 on E 1 implies, by a theorem of Banach [1, p. 80], that  
there exists a constant M such that  JJu~.,gJJ ~<MJJgJJ for all n and every 9EA, 
which vanishes on E r For an arbitrary /EA,  such that  /(x)=O on E we thus 
obtain 

+ + I l u . . # - t l [ .  

The last two terms tend by assumptions to zero when n tends to infinity. Since 
obviously Un.I(X)'Un.2(X) is in A and is zero on a neighbourhood of E, we have 
proved that  E is a strong Ditkin set. 

For a closer examination of strong Ditkin sets, the following theorem will be 
of great importance. 

Theorem 4. Let E be a closed set on [0, 27r] and {vn (x)}~ r a sequence o/ /unc- 
tions in A with the /ollowing properties: 

(1) vn(x)= 1 on E /or every n. 
(2) v~(x)-->O when n-->oo /or every x ~ E .  

Then IIv.[I tends to infinity with n i t E is not a [inite set or the whole o/[0, 2~]. 

The proof is partly analogous to Cohen's [3] approach to Littlewood's Con- 
jecture, later modified by Davenport [4]. To make the paper self-contained, we 
give a complete proof although Lemma 2 is identical with Davenports's Lemma 1 
and Lemma 3 is a slight modification of his Lemma 2. 

Lemma 2. Let N, A, and B be real numbevs satis/ying N>~3, A ~ - � 8 9  and 
A s + B e < N4/4. Then 

1 2  A + i B  +~--- 1 N2 Na (N+  2A)~' < 1. 

Proo/. The expression on the left is 

{( 2 A )  2 B~I ~ 1 
1 iv 

{( 2)2 ( 2 ) A  l 1 , ,  
< 1 - ~  --2 1 - - ~ i  ~ + ~ i  I + ~ , ( N + 2 A )  t 

<(1._3 A) ~ 1 3 A 1 
N2 ~ + ~ ( N + 2 A ) ~ < I  2N ~ 2 N a ~ - ~ ( N + 2 A ) t  

~(N+2A)�89 ~}2_  1 
= l - [  ~ - ~  ~ < l  q.e.d. 
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Lemma 3. Let N >1 3 be a positive integer and xl, x~ . . . . .  XN be distinct real num.  
bers, 0<x~<27~. Suppose (bk}T~ is a sequence o/ complex numbers such that 
I bkl <. 1 /or every ]r Let 

c z = b  1 N2 1 3 ~ e  ~(~-x~) ~- 1 ~'~kx~ 
k . . . .  ~u J - -  - ~  t '  ~'~1 ~ " 

Then I ck[ <~ 1 /or every k. 

Proo/. We have 
v=l L~<p ) 

Putting 

we obtain 

e~k(z~-~')=A+iB, where A and B are real 
v<~u 

i~ e~k~ ~ 2 = N + 2 A  ~>0 

and 
4 

The conditions of Lemma 2 are satisfied, hence 

< 2 A §  ( N +  2A)t--< 1 q.e.d. 
I ckl 1 N2 N3 ~ N~ 

Lemma 4. Let E be a closed set on [0, 27e] with Lebesgue measure zero and with 
zero as a point  o/ accumulation. Let N be an arbitrary positive integer. Then we 
can construct sequences (P j )~  and (T j }~  o/ sets, where T s and Pj  have the /ol- 
lowing properties 

(a) P l  = (xl} c E,  T~ c E /or every ]. 

(b) For every ~>~ 1, Tj  consists o/ N points /rom E,  T j =  (xl.~ > x2.j > ... >xzc.j} 
such that p + x~.~ - x,.j  (~ E i/  p 6 Pj  and v < ~. 

(c) Pj+I = the union o/ P~, Tj  all and points p + x v . j - x ~ . j ,  where p E P j  and 
v < /~. 

Proo/. We choose the numbers x~.j among the left endpoints of the comple- 
mentary intervals of E. Suppose that  Pj  has been constructed. I t  then consists 
part ly of points from E that  are left endpoints of the complementary intervals 
of E, part ly of points situated in the complement of E. Thus the points of Pj  
have a least distance d to the nearest point to the right that  belongs to E. 
We choose as Tj a sequence {x~.j}~=l where xl.j < d so that  (b) is fulfilled. This 
is possible because zero is an accumulation point of E. The construction of Tj 
and, with it, that  of Pj+I is now complete, which proves Lemma 4. 
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Proo/ o/ Theorem 4 in case mE = 0 

By studying sequences { % ( - x ) } ~  we see tha t  - E =  { - x  I x e E }  is a strong 
Ditkin set if and only if E is a strong Ditkin set. Therefore, without loss of 
generality, we may  assume tha t  zero is a point of accumulation. 

We give an indirect proof. Suppose we have a sequence {Vn(X)}~ satisfying 
the conditions of the theorem and 

v~ = ~ a~,n e ~k~, where ~ la~.~l < M for every n. (6) 
Oo k =  oO 

Choose an integer N >  9M 2 and construct the sets P1, P2 . . . .  and T1, T, z . . . .  
according to Lemma 4. We also construct sequences {bk.j}k%-~r ] =  1,2 . . . .  as 
follows: 

bk. 1 ~ e~kX~ 

b k , j = b k , j - l ( 1 - - -  
2 1  ) 1 

iV 2 - / V  a �9 ~ exp (ik(x~,t - xt~,~)} -Jr ~ exp (~kxv,i) for ? '>1. 

Each element of the sequence {bk.j}k~ ~ will then be of the form 

bk, j = ~ O~m.i e~kXm, 
m 

where xm E Pj+I. The cofficients ~m.j are bounded by  a constant C(j, N), depending 
only on ] and iV. By Lemma 3 Ibk, jl ~<1 for every j~> 1 and every k. Now define 

Ij .n= ~ ak, nbk, j. (7) 
k =  Oo 

We have Ii.n = ~ ak.neJkX'=V~(Xl)= 1 
k =  or  

by condition (1) in the theorem and 

2 )  l N 
I~.n= 1 - - ~  ]J-l'n'~-~v~-i k=-:r ~ ak"~exp(ikxv'J)-hctmP'J~ak'nexp(ikx'u k 

From the construction of {Pj}• it follows that  {xmp} is a subset of Pj+I, which 
is disjoint from E. 

By condition (1) in the theorem the second term is 

1 N 1 

for every n. By  condition (2) we have 
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%, ~ e ~:'~p = vn ( xmp) --> 0 when n--> oo. 
k=--o0  

Since la~,,j-[ < C(?, N )  we obta in  

Ij,~ = (1 ~-2) Ij_l,,~+N-'~+e(n) c~ (j, 2% 

where e(n)-->O as n--> c~ and  C1( j, N) is a cons tan t  depending only on j and  N.  
We  sum this equal i ty  for  ?'= 2, 3 . . . .  N ~ and obta in  

2 N~ 1 

j = l  

where Ce(N) depends on N only, and e(n)-->0, n - ~  co. 
we obta in  

IN2, n -[- 2 N~-I I 
I 

3=1 

For  n sufficiently large, 

F rom this inequal i ty  we deduce t h a t  

B y  (7) 

sup IIJ.~l > > M  since N > 9 M  e. 
I ~ ] < < . N  z 

I~%.~bk.~l>M for  some ] in I < ] < ~ N  2. 
k 

Since [bk, jl ~< 1 we have  Ilv~l] = ~ - - ~  lak..I > M which is a contradic t ion to (6). 
This completes  the proof  in case mEmO. 

Proo/ o/ Theorem 4 in case mE > 0 

F r o m  the conditions (1) and  (2) of the theorem it follows t h a t  vn(x) converges, 
when n tends to infini ty pointwise to the character is t ic  funct ion of E,  which 
we call v(x). This is discontinuous if E is not  [0, 2~] and  therefore it  cannot  
belong to A. P u t  

vn(x) ~ a e 'kz and  v(x)"~ ~ a~e 'kx 
k S c,o k ~ - ~  

Then  b y  domina ted  convergence 

1 ; ~ e-i~Xdx= 1 ; ~  lim ak.~ = l im ~ v~(x) ~ v(x) e-tkXdx=ak. 
n - ~ - o r  n - ->  oo  

Since ~ _ _ ~  [%[ = oo it  follows t h a t  lim._~:r II v . l l  = oo for m E  > 0. This concludes 
the  proof  of Theorem 4. 
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We shall use this theorem to prove that the only strong Ditkin sets with 
Lebesgue measure zero are the finite sets. I t  then follows that  the strong Ditkin 
sets form a proper subclass of the Ditkin sets. We need two lemmas. 

Lemma 5. Let E be a closed set with period 2~ and Lebesgue measure zero and 
N an arbitrary positive integer. Then there exists an open set O ~  [0, 2~] where 
m O = 2 z ,  such that 

for every x E O, where Ez = { y -  x I Y E E}. 

Proof. Put  U E2,vig = F .  
p - 1  

Then F has period 2zt /N and 
some of the points 2z~/N, p = 
respect to the interval [0, 2~]. 

mF = 0. Further x E F if and only if Ez contains 
1, 2 . . . .  N. We let 0 be the complement of F with 
Then m O = 2 ~  and xEO if and only if 

{~P- - IP=I ,2  . . . .  N}NEx=<~ q.e.d. 

Lemma 6. Let E be a closed set on [0, 27t] with Lebesgue measure zero. Suppose 
we have a sequence o/ functions {v~(x)}~ where v~(x)eA and {v,/}~ converges in 
A /or every / E A  such that f(x)=O on E. Then there exists a constant M such 
that If v~ ]] < M /or every n. 

Proof. Put  vn(x) = ~.~=_~ a~., e ~x and choose N(n) so large that Zk>~N(n)]ak.n] < 
�89 [Ivnl[. In  the sequel we write N instead of N(n). By making a suitable trans- 
lation of E we may, by Lemma 4, assume that  E does not contain any of the 
points 2zp /2N,  p =  1, 2 . . . . .  2N. The translation does not affect the absolute 
values of the Fourier-coefficients of [ and v,. 

Let d 2 z / N  be the distance from E to the set { 2 zp /2 N ,  p =  1 . . . .  2N}. 
Let g be an arbitrary function in A, not identically zero and with support on 
[ -  2~d, 2z~d]. Then g(2Nx) vanishes on E. 

Put  /(x) = g(2Nx) = ~.~ b~ e '2N~. Then H f ]] = I[ g [[ < oo, / = 0 on E and 

II/11.211v ,ll 
- :lb l k~>N 3 

II/11 "dllvnll 1 
- 3 II/1111v,,l[. 

The first inequality follows from the triangle inequality and the fact that  every 
sum of the form ~b~ak-2~n contains just one term, av, with an index p, such 
that  Ipl < N .  

By a general theorem of Banach [1, p. 80] on convergence of operators there 
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exists a constant  M,  such tha t  Ilvnfll ~<M111/ll for every  n and e v e r y / e A  such 
tha t  / (x)= 0 on E. We thus obtain for the special / above 

i l l  v ll I [ / l l -< I lv, / l l  <M1 I I / l l .  

Henee IIv, II = M for every n q.e.d. 
We now turn  to the proof of 

T h e o r e m  5. Suppose E is a strong Ditkin set with Lebesgue measure zero. Then 
E is /inite. 

Proo/. Since E is a s trong Ditkin set there exists a sequence (v,(x)}F with 
the properties (3). This sequence then satisfies the conditions of Lemma 6. Hence 
there is a constant ,  M,  such tha t  Ilvnll < M  for every  n. Now the conditions 
of Theorem 4 are fulfilled and from it we deduce tha t  E is finite. 

Nex t  we investigate the strong Ditkin sets with positive Lebesgue measure. 
We begin by proving 

Lemma 7. Suppose a closed set E with period 2~ has the property that every 
translation o] it contains at least one o/ the points (2ztk/N~ k - 1 ,  2, ... N.  Then 
E contains an interval. 

Proo/. 
assumption,  

Thus  

Define E z = { p - x l p E E } .  For  an a rb i t ra ry  x E [ 0 , 2 z ]  we have, by  

k �9 27I 
x + --N--  e E for some k, 1 ~ k ~< N i.e. x E some Ek2,/~r 

N 

U E ~ / ~  = [0, 2:t]. 
k ~ l  

Let  k 1 ~<N be the least integer such tha t  

kx 

U Ek2~IN = [0, 2~] 
1 

k l ' - I  

and pu t  U Ek~/N = F.  
1 

Then F is closed and the complement  of $'  with respect to (0, 2g) is open 
and thus a sum of intervals. Since this sum is a subset of Ek2./N it follows 
tha t  E contains at  least one interval. 

Theorem 6. Suppose E is a strong Ditkin set with positive Lebesgue measure. 
Then E contains at least one interval. 

Proo/. That  E is a s t rong Ditkin set implies the existence of a sequence 
(vn(x)}~ r with the properties (3). E v e r y  translat ion of E then contains at  least 
one of the points {2~k/N},  k = 1, 2 . . . .  N, for each N > N o (E); otherwise we would 
have a sequence Nv tending to infinity such that ,  for every ~, some translat ion 
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of E does no t  conta in  any  of the points  {27~k/N~}, k =  1, 2 . . . .  N~. Using the 
method  of proof in Lemma 6 we conclude tha t  IlVn[[ < M  for every n which is 
false by  Theorem 4. The theorem now follows from Lemma 7. 

Theorem 7. Let E be a strong Ditk in  set on [0, 2z] and E 1 = E N I,  where I is 
an interval (a, b) such that a (~ E and b ~ E. Then E 1 is a strong Ditk in  set. 

Proo/. Let 2d be the m i n i m u m  of the distances from a and  b to E.  Define 
a(x) as the cont inuous  func t ion  in A, which is zero outside I ,  one in  the in te rva l  
a § d ~< x ~< b - d and  l inear on the remain ing  intervals.  Since E is a s trong Di tk in  
set there exists a sequence {vn(x)}F satisfying (3). Obviously  v ~ ( x ) ' a ( x ) =  1 in  
a neighbourhood of E r Now let  g be an  a rb i t r a ry  func t ion  in  A such t h a t  
g(x)=O on E 1. Then  

Ilv. gll when 

since a g = 0  on E. Hence {Vna}T has the properties (3) implying  tha t  E 1 is a 
s t rong Di tk in  set. 

Corollary. A strong Ditkin set E consists o/ (i) a union o/ closed intervals, (ii) the ac- 
cumulation points o/ these intervals and (iii) a countable set o /points  clustering at the 
endpoints o / the  intervals (i) or the points (ii). 

Proo/. Suppose t ha t  x is an  accumula t ion  point  of E tha t  does no t  belong 
to any  in terva l  of E. Then  we can, for every ~ > 0, f ind points  a a nd  b of the 
complement  of E such tha t  a < x < b  and  b - a < e .  Theorem 7 implies t h a t  
E 1 = (a, b) N E is a strong Di tk in  set. If  m E  1 = 0 we conclude by  Theorem 5 t h a t  
E 1 is f inite and  so x is an  isolated point  of E which is a contradict ion.  Thus  
m E  1 > 0. This implies by  Theorem 6 tha t  E 1 contains  an  in terva l  and  we con- 
clude t ha t  x is an  accumula t ion  point  of intervals.  This proves the corollary. 
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