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A strong form of spectral synthesis

By INncEMAR WIK

Introduction

The class of sets admitting spectral synthesis has the disadvantage that one
does not know whether or not the union of two such sets is always a set of
the same kind. By imposing more restrictive conditions in the definitions, several
subclasses have been defined that have this desirable property. One way to achieve
this has been pointed out by Calderon in [2], where he introduces strongly reg-
ular sets. A subclass of the strongly regular sets is formed by the Ditkin sets
studied by Rudin [9, pp. 169-171]. (See also Kahane-Salem [6, p. 183].)

In this paper we shall study a proper subclass of the Ditkin sets, which we
call strong Ditkin sets. We are restricting ourselves to sets on the interval [0, 2a]
of the real line. The {first three theorems tell us that finite unions of closed in-
tervals and points are strong Ditkin sets. The rest of the paper is an examina-
tion of arbitrary strong Ditkin sets. Theorems 4-7 prove that such a set has
the property that every accumulation point of it is an accumulation point of
intervals of the set. Still it might be that the strong Ditkin sets are exactly
the sets with finite boundary, although the author has not been able to prove it.

Professor L. Carleson suggested the subject of this paper and I wish to thank
him for his valuable guidance.

Notations
We shall denote by A4 the Banach space of all functions f with period 2,

which have a representation

o0 o0
fwy= 2 ape™, where |f]l= > |a<eoo.
k=—00 k=—c0

We shall frequently use a special function in 4, which we call g,(x, @) and which
is defined by

0 for |z—a|>h, k<=
gn(z,a)=431 for z=a
linear fora—h<x<a and a<z<a+h.

Then gy (, @) = 2%~ by n e *@ . This function has the following properties:
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lgs(x,a)]| =1 for every % and « )
> |bsp.n —bin| <Cp,h where C), depends only on p. 2)
k=—0o0

For the proof of (1) and (2) see e.g. Herz [5, p. 188].

Definitions
Let E be a closed set on [0, 2x].

Definition 1
If for every f€ A, such that f(x)=0 on E and for every £>0 there exists a

g€A such that g(z)=0 on a neighbourhood of E and ||f—g¢|| <& then we say
that E admits spectral synthesis or that E is a regular set.

Definition 2

Tf, in Definition 1, we can further prescribe that g(x)=0 whenever f(z)=0,
then E is called a strongly regular set.

Definition 3

1f, in Definition 1, we can prescribe that g shall be of the form g=u-f where
u(z)=0 on a neighbourhood of B and w €4, then E is called a Ditkin sef.

Definition 4

If, in Definition 3, we can choose a sequence of functions u, {u,};*, where u,
only depends on E, such that [u,f—f]]—=0 as n—>oco, for all f in question,
then E is called a strong Ditkin set.

It is easily seen that a set which satisfies the conditions of one definition
also satisfies those of the previous definitions. A famous example of Malliavin {7]
shows that there are sets which do not admit spectral synthesis. It does not
seem to be known if the first three definitions are equivalent. On the other
hand, the only Ditkin sets that are known are those which directly are obtained
from the following theorem:

{a) Every point is a Ditkin set.
(b) Enumerable unions of Ditkin sets are Ditkin sets.
(¢) If the boundary of E is a Ditkin set so is F.

(a) and (¢) were proved by Rudin [9, pp. 170-171] while (b) was proved by
Calderon [2] for strongly regular sets. The proof for Ditkin sets is similar and
we shall omit it.

If we put v,(x)=1—wu,(x) in Definition 4 we see that E is a strong Ditkin
set if and only if we can find a sequence {v,(x)};° with the properties:

vp(x) €A, v,(x)=1 on a neighbourhood of E and
lvnfll =0, as n-> oo, for every f€ A such that f(x)=0 on E. (3)
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Strong Ditkin sets

We begin by proving three theorems which yield the existence of strong Ditkin
sets. The only sets of this kind, known to the author, are those whose existence
follow immediately from these theorems.

Theorem 1. [9, p. 49]. Every point is a strong Ditkin sef.

Proof Suppose that E consists of the point a. Let v, (¥) = 2¢a/n (2, @) — g1;n (%, @).
It is sufficient to show that ||g,f|—0 as 2—>0 where f is an arbitrary function
in 4, such that f(a)=0. Since a translation does not affect the norms, we may
assume that a=0. Now put f(z)= %, a;e®. Choose ¢>0, arbitrarily, and an
integer p, such that

S Jayl< (4)

and %, according to (2), so small that

§|b,”,h ben| <oy for  p<p, (5)

2 Ilfll
Sinee 2%, a,=f(0)=0 we have
”!Ihf" = Z |Z apbk—p.hl = Z |2 ap(bk—p.h - bkh)l
kE k p
and by the triangle inequality

lgnfll< 3 lap| 2 |becp.n=benl+ > lan| 2 0= p,n—bic.nl-
Ip|<Pp0 K P>Do K

This is by (1), (4) and (5) less than

AT

and thus ||g,f||—0 as A—>0 q.e.d.

Theorem 2. Every closed interval is a strong Ditkin set.
Proof. Assume that the interval is I=[a,b] and let
0n () = 292/n (%, @) = G1/n (%, @) + 202;0 (%, b) — gain (2, b) + k()
where k,(x)=0 outside I.
Let f be an arbitrary function in A such that f(x)=0 on I. Then f- k,(x)=

and since f(a)=f(b)=0 Theorem 1 gives |[v,f|| 0. Since {v,(x)}i" satisfies (3)
Theorem 2 is proved.

Theorem 3. Finite unions of strong Ditkin sets are strong Ditkin sets.
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Proof. Tt is sufficient to prove the theorem for two sets E, and E,. Assume
that {u,,1(z)}° and {u, s(x)} are sequences satlsfymg Deflmtlon 4 for E, and
E, respectively. We claim that {u, ;(z) . (%)} is a sequence satisfying Deflm-
tion 4 for the set E=E, U E, The fact that {u.,9}7 converges in 4 for every
g € A such that g(z)=0 on El implies, by a theorem of Banach [1, p. 80], that
there exists a constant M such that |[u, .g9]|<M|g| for all » and every g€ 4,
which vanishes on E,. For an arbitrary f€ A4, such that f(x)=0 on £ we thus
obtain

oy tn o f | < Mot temof = wn s fll + N wn 1 f =l < M of = Fll+ Nwmaf = £l

The last two ferms tend by assumptions fo zero when n tends to infinity. Since
obviously %, 1(x) %, 2(x) is in 4 and is zero on a neighbourhood of E, we have
proved that E is a strong Ditkin set.

For a closer examination of strong Ditkin sets, the following theorem will be
of great importance.

Theorem 4. Let E be a closed set on [0,2x] and {v,(x)}}° a sequence of func-
tions in A with the following properties:

(1) vo(x) =1 on E for every n.
(2) vn(x) =0 when n—co for every x¢ E.

Then ||v.| tends to infinity with n if E is nol a finite set or the whole of [0,27).

The proof is partly analogous to Cohen’s [3] approach to Littlewood’s Con-
jecture, later modified by Davenport [4]. To make the paper self-contained, we
give a complete proof although Lemma 2 is identical with Davenports’s Lemma 1
and Lemma 3 is a slight modification of his Lemma 2.

Lemma 2. Let N, A, and B be real numbevs satisfying N>3, A> —}N and
A*+ B*< N*/4. Then

2 A+iB| 1
|l—~— +NgN+2Aﬁ<1

N N3

Proof. The expression on the left is

2 A\* B* 1
{(l“ifzv‘s) Ws} Ty 24y
2\2 2\ 4 1 }*
_ _ Ul Wil S ¥
{(1 NZ) 2(1 NZ)N3+4N2} @24

- -} += ¥ _————

+ 2
=1_{(N+2A) 1} 1 <1 qed.

aNt N| T an®
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Lemma 3. Let N >3 be a positive integer and ,,x,, ..., vy be distinct real num-
bers, 0<uz;<2m. Suppose {b}%. s a sequence of complex numbers such that
|bx| <1 for every k. Let

2 1 ii(zy—zy) 1 & ik
= by 1- 27 > e -I-N%Ze i

>u y=1

Then |cy| <1 for every k.

2

N
Proof. We have > el

eanef 3 o)

v=1 v<g
Putting > ¥ 0 — 4 4B, where A and B are real
v<p
v 2
we obtain >ef =N+2420
y=1

_1vi2 wd

and A+ B < [W] < %{—.

The conditions of Lemma 2 are satisfied, hence

2 _AtiB <1 ged.

N N3

(N+2A4)
+ 3

<|1-—
Jexl ‘1 T

Lemma 4. Let E be a closed set on [0, 27] with Lebesgue measure zero and with
zero as a point of accumulation. Let N be an arbitrary positive integer. Then we
can construct sequences {P;}° and {T;}y of sets, where T; and P, have the fol-
lowing properties

(@) P,={x,}<E, T,CE for every j.

(b) For every =1, T, consists of N points from E, T,={xy;>x;>...>xy}
such that p+x,;,—2,;¢ E if p€P; and v<p.

{c) Pyyy =the union of P;, T; all and points p+x,;— ., where p€P; and
v<pu.

Proof. We choose the numbers z,, among the left endpoints of the comple-
mentary intervals of E. Suppose that P; has been constructed. It then consists
partly of points from E that are left endpoints of the complementary intervals
of E, partly of points situated in the complement of E. Thus the points of P,
have a least distance d to the nearest point to the right that belongs to E.
We choose as T a sequence {z,;})., where z; ;<d so that (b) is fulfilled. This
is possible because zero is an accumulation point of E. The construction of T
and, with it, that of P;,; is now complete, which proves Lemma 4.
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Proof of Theorem 4 in case mE =0

By studying sequences {v,(— )} we see that —E={—=z|z€E} is a strong
Ditkin set if and only if £ is a strong Ditkin set. Therefore, without loss of
generality, we may assume that zero is a point of accumulation.

We give an indirect proof. Suppose we have a sequence {v,(z)};° satisfying
the conditions of the theorem and

o0 o
Vo= D @, e", where > |ay.|<M for every n. (6)
—oo k=—00

Choose an integer N>9M? and construct the sets P, P, ... and T, T,,...
according to Lemma 4. We also construct sequences {bk_,},‘?’:_w 7=1,2,... as
follows:

bk, 1= eikz;
2 1 : 1 & . .
bk,j:bk,jkl 1 —“1\472_]73' Z exp{ik(x,,),—xﬂ,,-)} '+‘ﬁ‘%vglexp (Z’Cx,,_j) fOI' 7> l

y<ph

Each element of the sequence {b; ;}7-_. will then be of the form

— ikz,
bi,;= 2. otm,; €%,
m

where z,, € P;,;. The cofficients a,, ; are bounded by a constant C(j, N), depending
only on j and N. By Lemma 3 |b, ;| <1 for every j =1 and every k. Now define

Ij'":kﬁz ak'nbk.j. (7)
We have L= 2 a e =v,(x)=1

by condition (1) in the theorem and

(=]

2 1 X . .
Ij.n=(1—-1~vé)fj_1.n+jv—%z 3y exp (k) — 3 diny.s S g 0xp (ikon,).
k= -0 p k

v=1k=

From the construction of {P;}* it follows that {am,} is a subset of P;,,, which
is disjoint from E.
By condition (1) in the theorem the second term is

1 X 1
Ni 2, vn(xv,j)zﬁg

y=1

for every n. By condition (2) we have
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oo

k_zw @, €70 = v, (%,) >0  when n—> oo,

Since |en,. ] <C(j, N) we obtain

2 s .
I]-,n = (1 *37—2) Ij_l,n-i-N_f-l-s(n) 01(7,N),

where &(n)—0 as n—co and O,(j, N) is a constant depending only on j and N.
We sum this equality for =2,3,... N* and obtain

2 N2-1

Ty + fi > I ,=1+Nt—N"¥+g(n) Cy(N),
j=1

where O,(N) depends on N only, and &(n)—0, n—> co. For n sufficiently large,
we obtain
9 N2-1

> Iin >VN.

Iy —
N,n+N2 et

From this inequality we deduce that

sup |IM|>V—N>M since N> 9M>
1SN 3

By (7) |2 @k, n by 5| > M for some § in 1<j<N2
k

Since |by, ;| <1 we have ||vn||=>7-_c|a.|>M which is a contradiction to (6).
This completes the proof in case mHE=0.

Proof of Theorem 4 in case m¥E >0

From the conditions (1) and (2) of the theorem it follows that v, (x) converges,
when 7 tends to infinity pointwise to the characteristic function of £, which
we call v(x). This is discontinuous if E is not [0,2n] and therefore it cannot
belong to 4. Put

o0 o«
v, () = . > . n €™ and  o(x) ~ > ap e
=—00 ==

Then by dominated convergence
2

24 ) 1 2
lim a; ,= lim L vp () e dr=-— f v(x) e dx = ay.
' 27 0 2n 0

N—>eQ n—00

Since 27 o |a|= oo it follows that lim, . ||#,]| = oo for mE > 0. This concludes
the proof of Theorem 4.
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We shall use this theorem to prove that the only strong Ditkin sets with
Lebesgue measure zero are the finite sets. It then follows that the strong Ditkin
sets form a proper subclass of the Ditkin sets. We need two lemmas.

Lemma 5. Let E be a closed set with period 27 and Lebesgue measure zero and
N an arbitrary positive integer. Then there exists an open set O <[0,2xr] where

mO =27, such that
2np
“Zlp=12, ... E,.=
{N lp=1,2, N}n ¢

for every x €0, where E,={y—=z|y€E}.
Proof. Put U Eonpin=17F.
p=1

Then F has period 2n/N and mF =0. Further 2 €F if and only if Z; contains
some of the points 27/N, p=1,2,...N. We let O be the complement of F with
respect to the interval [0, 2x]. Then mO =27 and x€0 if and only if

{2np|p»1 2,. N}nE1=¢ q.ed.

Lemma 6. Let E be a closed set on [0, 27t] with Lebesgue measure zero. Suppose
we have a sequence of functions {v,(x)}?* where v,(x)€A and {v,f}7° converges in
A for every f€A such that f(x)=0 on E. Then there exists a constant M such
that ||v.]] <M for every m.

Proof. Put v, (x)= D %-_ a4 » €™ and choose N(n) so large that > s yom |k ] <
t|lva]l. In the sequel we write N instead of N(n). By making a suitable trans-
lation of £ we may, by Lemma 4, assume that E does not contain any of the
points 2zp/2N, p=1,2,...,2N. The translation does not affect the absolute
values of the Fourier-coefficients of f and v,.

Let d27n/N be the distance from E to the set {2mp/2N, p=1, ... 2N}
Let g be an arbitrary function in A, not identically zero and with support on
[~ 2nd, 2nd]. Then ¢(2Nz) vanishes on E.

Put f(z)=g(2Nz)=>,b, €% Then |f||=|g|l <o, f= 0 on E and

lonfll =2 | 2 bar—zon| = 2 |0s| 2 |
kv v {kl<N

_Z|b|z| |>“f“ 2”'”1:" ”f” ”Un“ ”f“"” ”

The first inequality follows from the triangle inequality and the fact that every

sum of the form >,b,a;_s,y contains just one term, a,, with an index p, such
that |p|<X.
By a general theorem of Banach [1, p. 80] on convergence of operators there
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exists a constant M, such that ||v.f|| <M, | f|l for every n and cvery f€ A such
that f(x)=0 on E. We thus obtain for the special f above

Hloall 1 < llvafll < 2y |1 £]]-

Hence [|v.|| <8M,=M for every n q.e.d.
We now turn to the proof of

Theorem 5. Suppose E is a strong Ditkin set with Lebesgue measure zero. Then
E is finite.

Proof. Since E is a strong Ditkin set there exists a sequence {v,(z)}{° with
the properties (3). This sequence then satisfics the conditions of Lemma 6. Hence
there is a constant, M, such that ||v,]| <M for every n. Now the conditions
of Theorem 4 are fulfilled and from it we deduce that E is finite.

Next we investigate the strong Ditkin sets with positive Lebesgue measure.
We begin by proving

Lemma 7. Suppose a closed set E with period 2m has the property that every
translation of it contains at least one of the points {2nk/N} k=1,2,...N. Then
E contains an interval.

Proof. Define E,={p—=z|p€E}. For an arbitrary x€[0,2x] we have, by
assumption,

k-2
x+——NEEE for some k, 1<k<N ie. z€some Eyony.

N
Thus U1 Eyenn = [0, 27t].
™
Let &, <N be the least integer such that

Ky
lij Eyonn =0, 2n]

ky-1

and put . U E,eny=7F.
1

Then F is closed and the complement of F with respect to (0,2r) is open
and thus a sum of intervals. Since this sum is a subset of Ep.,x it follows
that E contains at least one interval.

Theorem 6. Suppose E is a strong Ditkin set with positive Lebesgue measure.
Then E contains at least one interval.

Proof. That E is a strong Ditkin set implies the existence of a sequence
{va(2)}° with the properties (3). Every translation of £ then contains at least
one of the points {2nk/N}, k=1,2.... N, for each N > N, (E); otherwise we would
have a sequence ¥, tending to infinity such that, for every », some translation
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of E does not contain any of the points {2nk/N,}, k=1, 2, ... N,. Using the
method of proof in Lemma 6 we conclude that ||v,|| <M for every » which is
false by Theorem 4. The theorem now follows from Lemma 7.

Theorem 7. Let E be a strong Ditkin set on [0,27] and E,=E 01, where I is
an interval (a,b) such that a ¢ E and b¢ E. Then E, is a strong Ditkin set.

Proof. Let 2d be the minimum of the distances from a¢ and b to E. Define
o(x) as the continuous function in 4, which is zero outside I, one in the interval
a+d<x<b-d and linear on the remaining intervals. Since E is a strong Ditkin
set there exists a sequence {v,(2)}{" satisfying (3). Obviously v,(x)-a(z)=1 in
a mneighbourhood of E,. Now let ¢ be an arbitrary function in 4 such that
g(x)=0 on E,. Then

|lvnag|| =0 when n—>co,

since xg=0 on K. Hence {v,a}y has the properties (3) implying that E, is a
strong Ditkin set.

Corollary. A strong Ditkin set E consists of (i) a union of closed intervals, (ii) the ac-
cumulation points of these intervals and (iii) @ countable set of points clustering at the
endpoints of the intervals (i) or the points (ii).

Proof. Suppose that z is an accumulation point of E that does not belong
to any interval of E. Then we can, for every £>0, find points a and b of the
complement of E such that a<x<b and b—a<e Theorem 7 implies that
E,=(a,b)NE is a strong Ditkin set. If mE, =0 we conclude by Theorem 5 that
E, is finite and so x is an isolated point of E which is a contradiction. Thus
mH, >0. This implies by Theorem 6 that E, contains an interval and we con-
clude that z is an accumulation point of intervals. This proves the corollary.
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