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Analytic properties of expansions, and some variants of

Parseval-Plancherel formulas

By E. M. STEIN and S. WAINGER

We shall be concerned with the following question. Consider an expansion in
Legendre (or other) functions given by

F(z)=2 a(n) P, (z). (0.1

Here, as indicated, the coefficients arise from a function a(s) which is in fact
assumed to be analytic in an appropriate region of the s plane. The problem
that occurs is of characterizing the analytic properties of F in terms of those
of @. More particularly: How do we characterize those ¥ which arise when a
is an entire function of suitable kind, or when ¢ may have poles, etc.? One may
also ask if there is an identity of the Parseval-Plancherel type which relates a
quadratic class of coefficient functions analytic in a right-half plane, with a
quadratic class of F’s so that the corresponding mapping is unitary.

These questions have some intrinsic merit, but their answers have additional
interest for the following two reasons:

(1) Series of type (0.1), where a(s) is meromorphic have recently attracted
considerable attention in some problems of physics, see e.g. Regge [10], and
Khuri [7]. The classical setting of this problem in connection with physics goes
back to Poincaré [9]; see also Watson [14] and Sommerfeld [11], p. 282.

(2) In studying such series one may put on a solid analytic footing and make
quite precise the following idea hitherto expressed only heuristically: that
the completeness of the expansion of spherical functions for SO(3) (the com-
pleteness of the Legendre polynomials on (—1, 1)) should lead by analytic con-
tinuation to the completeness of the corresponding expansion on SL(2, R).

Let us describe these things in more detail. It can be expected that there
should be an analogy between the behavior of the series (0, 1), and the corre-
sponding power series.

F=)= gooa(n) 2" (0.2)

In the case of power series it is well-known that under appropriate assump-
tion on the function a(s) a variety of conclusions about F(z) follow; see e.g.
Lindel6f [8], Bieberbach [3]. The simplest of these, which unlike most is both
necessary and sufficient is the well-known theorem of Carlson and Wigert.
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Theorem A. A wnecessary and sufficient condition that, up to an additive con-
stant, F(z) be representable in the form (0.2) where a(s) is entire and of zero ex-
ponential type is that F(z) be an entire function of 1/1—z.

There is also a modification of this result when finitely many poles are al-
lowed to occur, i.e. when a(s) is replaced by a(s)+ R(s), with R rational. The
modification is, however, rather drastic because the resulting J(z) must then
necessarily be multivalued. For simplicity let us assume that the poles of R(s)
are distinct and non-integral.

Theorem A’. The class of Fs which arise as (0.2) from such a’s coincides with
the class F's which may be continued into the complex plane slit along the positive
real axis from 1 to oo, and so that in this slit plane, vhen |z|>1,

F@) =p(2) + 2 cn 2™, (0.3)

where @(z) is analytic and single-valued in |z|>1 (including oo); «, are the poles

of a(s).

While this theorem does not seem to be stated in the literature, it is in fact
an easy consequence of the reasoning given in Lindelof [8], section 61, combined
with Theorem A.

Our first results, combined in section 2, are the analogues of Theorems A
and A’ for Legendre series (0.1). The analogue of Theorem A is that in effect
F(z) is representable as (0.1) with a{s) of zero exponential type if and only if

Vi—2z F(z) is an entire function of 1/1—z. The matter is put in better perspec-
tive by considering, at this stage, the more general ultra-spherical expansions,
which contain as the special case A=1 the Legendre polynomials. An analogue
of Theorem A’ is also found (see Theorem 2). Here the expression (0.3) is
replaced by a similar one with the Legendre functions of the second kind
Q-1-4 (—2) instead of 2™

We next consider the case where the coefficient function is analytic in a right
half-plane. It is natural, in this case, to look for an identity between a Hilbert
space of such analytic functions and a corresponding Hilbert space of F’s ana-
lytic in the complex plane, slit along the positive axis from 1 to oo. The re-
sult obtained here is new even in the case of power series although its proof
is quite simple. More particularly, the Hilbert space of coefficient functions
will be H?(Rs > — %), those a which are analytic when R(s)> — 4, with norm ||a| =
SuPos 3 (J % | a(o +it) [*dt)t. The class of F's will be denoted by H*(S), (S=
the slit plane); this class will consist of the F analytic in §, and which are
simultaneously in H* in the upper and lower half-planes. Equivalently, it is
those F analytic in §, with lim, _, ., | #(x +iy)| = 0, and where the jump lim,_, ¢ 4-0
FHx+1y) — J(x —ay) exists in L? norm. Our result (Theorem 3, section 2) is then
that 7 € H*(S) if and only if a(s) € H? (Rs> — 1), with an identity of corresponding
norms. Now the usual Parseval relation for power series identifies a quadratic
norm of the coefficients ((3 |a(n)|%?) with a quadratic norm of ¥, taken on the
unit circle. Theorem 3 might be considered as a variant of that, identifying
another quadratic norm of the a’s, with a quadratic norm of the values of
F on (1, o).
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To describe the analogue of this for Legendre series it is convenient to change
the definition of a(s) by setting instead of (0.1).

Fi2)=S 2n+1)am) P, (). (0.4)

The space of a is modified to consist of those ¢ which belong to H2(Rs> —1)
and for which the norm

w ; !
= — 1 Y AN —1__n12
el (Jﬁ B la(—L+it)—a(—} —it)] tank dt)

is finite. This class will be referred to as H2(Rs> —}). We prove then that
F is in H?*(S) if and only if it can be represented by (0.4) with a € H%(Rs> — 1),
and with an identity of norms. ‘

The proof requires the Legendre analogue of the Mellin transform, which
takes the form [{°Q;(x)¢p(2)dx; by considering it, together with the elass H? (),
one can pass by analytic continuation from the completeness of spherical func-
tions an SO(3) to the corresponding completeness for SL(2, R).

Section 1. The case when a(s) is meromorphic in the entire plane

We begin by making some remarks to clarify the results given below.

Let us recall that an entire function a(s) is said to be of zero exponential
type if a(s)=0(e™), as |s| = o, for every £>0. Such functions have a useful
representation: a is in this class if and only if there exists a @(w), which is an
entire function of 1/w, so that

1
a(s) = o fc e p(w) dw.

and with ¢ an arbitrarily small circle centered at the origin. Tt should also be
recalled that such functions are determined by their values at the positive in-
tegers; see [4], Chapters 5 and 9. We should next point out that the series
(0.1) may in general never converge. It will, therefore, be necessary to interpret
the sum as lim,.;> a(n)r"P,(z). But in making this interpretation we must
keep in mind that this limit may be identically zero without @ being so. A simple
exemple of this arises for the “§-function” > (2n+1)P,(x). Finally, in proving
our theorem it will be instructive to consider the more general class of ultra-
spherical polynomials {P% (x)} given by the generating relation (1 —2wxr+ %)%=

wor"Ph(x), (A>0). When A=1, we have the Legendre case, P%(x)=P, ();
while P}, (z)=(sin (n+1)0)/sin 6, x=cos 6. The consine polynomials, cos nf, may
be obtained as a limiting case, A=0. See [12, Chapter 4]. Of course, the
spherical functions for SO(n) arise in the case A=n—2/2.

Theorem 1. Let 1>0. Suppose a(s) is an enfire function of zero exponential
type. If —1<z<]
F(z)=1lim > a(n+A)r" P: (x)
r—>1 0

->1n=
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exists, and (1 — x)* F(x) has an extension into the complex plane as an entire function
of 1/1—z. Conversely, every entire function of 1/1—z arises this way. Finally F
vanishes identically tf and only if a(s) is an odd function of s.

The proof is elementary.
We begin with the generating relation (1—2xr+7%)*=2>% ¢" P% (x), which
obviously extends to complex w of absolute value less than one, i.e.

A—2wax+w?) =3 w"Pi(x), —1<z<1, |w|<l. (1.1)
n=0

The series on the right converges uniformly for w in closed subsets lying in
the interior of the unit disc, because the P%(x) are of at most polynomial
growth in n. Notice also that the expression 1—2xw+w® is not zero for
—1<z<1, |w|<1l. Next, since a(z) is an entire function of zero exponential
type, we know that it can be represented in the form

1

a(s) = o fc e’ p(w) dw,

where @(l/w) is intire in w, and C is any circle about the origin. From this
we get that

F (x) =ngoa(n+z) e " P (x)= 2im . M (1—2e" Fx+ Y2 A gp(w) dw.

Here, and from this point on, ¢ will be a circle of sufficiently small radius

about the origin, and z will be assumed to lie away from 1. From the above
we get immediately

Ay H2“’1 1—cosh (w—¢) -
e (1 x)lFE(x)—2—m_fC (T 1) p(w) dw.

However (t—1)"*=3%_¢ B! {*, where B’ ~n* and the series converges uniformly

inside the unit disc. Thus by taking ¢ sufficiently small, and O sufficiently
near the origin we get

e (1= B, (5) =23 Bi(1—2) " Cln, o)

where C(n,e)= %i f (cosh (w— &) — 1)" @(w) dw.
[o}

Thus | C(n, &) | < 4. (¢')*", for each & >e.
Passing to the limit ¢ =0, for 1<z <1, we get

(1—2*F(z)=2"23 B, (1—2)""C(n)
with C(n)=C(n, 0).
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What we have said about the growth of the binomial coefficients B} and the
constants C(n, g), makes it clear that (1 —x)"F(x) has an extension to an entire
function of 1/1—2z given by

---(l—z)’lF(z)=2‘liBﬁ(l—z)‘"O(n). (1.2)

Now suppose that a(s) is an odd function, a(s) = d;s***'. Then
z 1
pw) = 3 (d(2k+1)! w? iseven, and C(n) = -— f @(w) (cosh w—1)"dw =0,
=0 27 Jo

since the integration involves only even (positive and negative) powers of w.
Thus (1-—2)*F(2)=0. Conversely suppose (1 —z)*F(z)=0. Then since B =0 for
every n, [c@(w)(cosh w—1)"dw=0 all n,

For each integral %k, cosh kw is a polynomial in cosh w, and hence is a po-
lynomial in cosh w—1. Therefore because for all n, f¢@(w) (cosh w—1)"dw=0,
it follows that [c@(w) cosh kwdw=0. Hence (a(k)+a(~k))/2=0. But a(s)+
a{—s) is of zero exponential type; its vanishing at the integers implies its
vanishing identically. So a(s) is odd.

What remains to be shown is that every entire function of 1/1—2z can be
obtained this way (that is a (1.2)). Since B ~n', it suffices to see that when
ever (, are the Taylor coefficients of an entire function, there exist a @(w),
which is an entire function of 1/w so that

1

C,= omi fc¢(w) (cosh w—1)"dw.

Now make the change of variables (cosh w— 1)} =2, which is a regular mapping
of a neighborhood of w=0 to a neighborhood of z=0. Then we get

(cosh w—1)

_1_ 2n -1 —_
C, y(z)z dz, where (z)=2 <inh

271 Jo

p(w).

Now there certainly exists a y(z) analytic of 2= 0, so that 0, = 1/27i § y(z)2*" ' dz.
(Take w(z)=2%0C,27%") Let

1 ( sinh w

@ (w) =3 m) p(2);

then g,(w) is analytic in small disc punctured at w=0, and C,=1/27 [ @, (w)
(cosh w—1)"dw. Finally let @(w)=q,(w)— ¢, (w), where @, (w) is that part of
the Laurent development of ¢,(w) which involves positive powers of w. Then

1 n —_
2 Jctpl (w) (cosh w—1)"dw =0,

and our conclusion is achieved.
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We wish now to indicate the extension of the above theorem when the coef-
ficient function is no longer assumed to be of zero exponential type. If we
assume therefore that a is of exponential type, its growth in various directions
in the complex s-plane is best described in terms of a convex set D, the indi-
cator diagram of a(s); see [4, Chapter 5]. In the case of zero exponential type
D is in fact the origin. It is important to assume that the width of the indi-
cator diagram along the imaginary axis is less than 2a; from this it follows
that @ is completely determined by its restriction to the positive integers. A
more elaborate argument than the one given for Theorem 1 shows that under
these assumptions on a the series (0.1) leads to a function analytic outside the
set S={z|z=cosh w, w€ D}, (D= complex conjugate of D) including oo, and
single-valued there; the converse also holds. We shall not prove this here, but
the reader may consult [3] for the analogue for power series.

We now consider the extension of the theorem when the coefficient function
a(s) is allowed to have poles. Thus we shall assume that a(s)=a,(s)+ E(s),
where a,(s) is entire of zero exponential type and R is rational. For the sake
of simplicity the poles &, of B will be assumed to be simple, non-integral, and
non-half-integral. These limitations can be dropped by passing to the limit in
the argument given below. From here on we shall consider only the Legendre
case, A=1. There is an extension to the general ultraspherical case; but the
extra complication of details might tend to obscure the main ideas, and so we
limit ourselves to the Legendre case.

Our theorem requires the consideration of the Legendre functions of the cecond
kind, @, (z). This function is jointly annalytic in z and s, when z lies in the
complex plane cut along the real axis from — oo to 1, and when s is not a
negative integer. This function is related to the Legendre function P (z) (which
is the continuation of P, (z)) by

Qs (z) — Q_1_ (2) =7 cot ms P, (z); see [2] p. 140. (1.5)

Theorem 2. A necessary and sufficient condition that F(x) defined on —1 <z <1
be given as
F(z)=1lim > a(n)7" P, (), (1.6)

r—>1

ts that F(x) be analytically continuable info the complexr plane slit from 1to -+ co
along the real axis; and that in this slit plane, when |z|>1

F)=(z—1)7F ¢(z)+ 2 4 Q-1-0, (—2); (L.7)
where @(z) ts analytic in |z|>1 (including o) and single-valued there.

The following clarifying remarks are in order here. In the previous treatment
of related problems using the Watson-Sommerfold transform, see e.g. [11], p.
282 et seq. and [7], the contributions due to poles were given in terms of the
function P, (—z) instead of @ 1, (—2). The latter form is compatible with

the right asymptotic behavior at oo, only when R(x,)> — 3§, since
Qe (—2) = [2[ 7, as 2] = oo,
and the relation (1.5) holds. Moreover, the form (1.7) has the advantage of
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separating the ‘‘single-valued” part g(z) due to the regular part of a{s), and the
multiple valued part > ¢, @1 x,(—2) due to the poles of a(s). It should be

noticed that (1.7) could equally Well be written as F(z) =z Yy(z) + > ¢, Q1 (—2)

where y(z) is analytic and single-valued for |z|>1 (including oo). However the
form (1.7) makes the compatibility with theorem 1 evident.

Proof. Suppose first —1<x<1. Then

F(x)=lim—if ”fif)—“Ps(w)ds:ff U) p,(~) ds,
c 2 Je

r>12 sin 7zs sin 78

where € is an infinite loop surrounding the positive x-axis in the negative
direction (i.e., beginning below the axis at -+ oo, and ending above the axis at
+ o0}, contalnmg none of the poles of a(s), and all the non-negative poles of
1/sin ws. P,(—z) is the analytic extension of P,(—z) given by, e.g.

0
P (cos 0) =f (cos r—cos ) ¥ cos [(s+3)r]dr, x=cos 0

0

which is clearly the only extension of P, (x) of exponential type < = in s.
In view of the growth of P, (— ) and the assumed growth of a{s) we can write

F(x)=§f ) payis—n S L p (~w),

¢, 8in 7Ts R@pe—} Sin 7oy

where f; are the residues at the poles s=a; of a(s), and C, is the axis R(s)= — 1},
taken with increasing ¢, (s=o0+1), except for an indentation so that all poles
o, of a(s), for which R(a,)> —}, are to the right of ¢t. Now the formula

2 s

P —aT e+

f (2 + cos £)7°7! (sinh t)2**1 dt,

[2, p- 155] shows that P,(—=z) is analytically continuable in the slit plane
when, —1<R(s)<0, and for fixed z is of exponential type s, in the strip
—1<R(s)<0. This of course shows that F(z) is also so analytically continu-
able, and then using identity (1.5) we can write

- a(s) B ) a(s)
Pl = 27 fc2 cos 7S Po(—2)ds— 2x fcz cos s’

XQ-1_g(—2)ds—m> P P, (~2)

o 8in oy, !

where the contour C, is like C), except that now all poles «;, and s= — 1, lie
to the right of C,. Let us consider the integral involving @;(—z) first. De-
forming the contour C, back to C again we get
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Qa (’—Z)

if Ao o (—zpds=" [ ) LACCLIED b

2n Jc, cos ms 2n Jo cos s cOos 7oLy

We have used the fact that ,(—=z) behaves favorably in the half-plane
R(s)= — %, which can be read of the identity

Q(2)= 2_3'1f (z+cos t)° ! (sin ¢)2°* 1 dt, (1.8)
0
[2, p. 155]. However,

A )]

27 Jo cos ms

Qs (—2)ds= Z — )" an—}) Qu-y (—2).

The integral involving Q_,_, is deformed into a loop similar to C, but sur-
rounding the negative axis from — oo to —1. In this case there is no contri-
bution due to the poles of a(s), and we get

-2

Lf ) Q1 s (—2)ds= — Zl(“1)"”1‘1(””-%)@"“%)(_%)'

27 J¢, cOS s

However, @, ,(—2)=@Q_,_, (—2) (n integral, see (1.5)).
Combining the above we get

Fi)=a(-3) Q-4 (—2)+ gl[a(n—%)Jra(—n—%)]Qn—;('z)

pi
_ o (~ 1.9
zcosmx,Ql (—2). (L.9)
Finally by (1.8) and the fact that
_.2
Lmwll o2 5 221, —1<us<l,
ztu | |z

we get that
|Qu-y (—2)|<4|z] "} 2=0,1,2,..., |z|>1.

This with the fact that a(+n—1)=0("), for every £>0, n>0 assures the
convergence of the series in (1.9) uniformly in |2]>1+4, 6>0. Since as is
easily seen from (1.8) (z—1)*Q,_; (—=2) is also single valued in |z|>1, our
representation (1.7) is proved.

The converse can now be proved as follows. Suppose we are given an F(2)
in the slit plane, which for |z| >1 has the representation (1.7). Let

¢ o8 7oy
s—a;

F, (z)—hm 2.a,(n)r" P, (z), where ay(s)= -2

Then by what we have just proved, when |z|>1
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Fo2)=(—1) 7 gy () + 2 cn @-1-0, (—2).
Hence F(z)—Fy ()= (z— 1) ¥ [p(z) — @, (2)]-

This shows that (1—z)* {F(z) — Fy(z)} has a single valued analytic continua-
tion into the extended complex plane with only singularity z=1; i.e., (1—2)}
{F(z)—F, (z)} is an entire function of 1/1—2. Thus by Theorem 1,

F(x)—Fy(x)=lim 2 a, (n)1" P, (x), —1<z<]1,
r—>1

where a, (s) is entire of zero exponential type. Now we need only take a(s)=
ay (8) +a, (s).

2. Case when a(s) is given in a half-plane; variants of Parseval-Plancherel

formula

As before, we shall denote by § the complex plane slit along the positive
real axis from 1 to oo. HZ%(S) will denote the class of functions F(z), analytic
in §, for which sup,.o [*.|F(z+iy)|[*dx< oo. Then as is well-known, F, ()=
limy ¢, , -0 F(x T iy) exists in L? norm. We then define the norm by

||F||2:f_ |F+<x>|2dx+f_ P (@) da.

Of course, this makes HZ(S) into a Hilbert space. These functions may be
characterized in another way. While the boundary values F. (x) and F_(z)
exist (and agree for— oo <x<1), they do not agree on the cut. However, the
jump across the cut, F, (x)— F_(x) completely determines this function. In fact,
if f(x}y=F,(x)—F_(x), then

_ 1 [ flw)du .
F(z)_27m' fl u—z '’ @1)
and ||F||2:fw|f(u) |? du.

1

Conversely, if f(u) is an arbitrary element of L?(1, oo), the Cauchy integral
(2.1) is in H*(S), and F, (z)— F_(®)=f(x). This follows from the fact that if
y=>0, F(x+iy) T F(x—1ty) are essentially the Poisson and conjugate Poisson in-
tegrals of f; and that as y— 0 they converge respectively to f and if with f
the Hilbert transform of f. The mapping f->f is a unitary mapping on
L*(— o0, o). (For all these facts concerning the Hilbert transform see [13],
Chapter 5.) Thus the Cauchy integral (2.1) gives a unitary equivalence hetween
H2(S) and L%(1, oo).

For the coefficient function a(s) we will take the space H?(Rs> —}), i.e., the
a(s) will be assumed to be analytic in
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o0

R(s)> —1, and up f

6>~% J-o0

|a(o‘+it)|2dt=f la(—%+dt) Pdt = al]*< .

— o0

It should be remarked that if a(s) € H*(Rs> —}), then it is automatically
bounded in any half plane R(s)> —3-+6, >0, (see (2.2) below), and hence is
uniquely determined by its values on the positive integers. Our theorem for
power series can be formulated as follows:

Theorem 3. Suppose F(z)= > oa,z". Then F € H?(S) if and only if a,=a(n),
where a € H* (Rs > —}). Moreover, |F|*=2x| ol

Proof. Suppose, to begin with, a(s) € H® (Rs> —1). Then according to the
Paley—Wiener representation in the context of Mellin transforms

a(s)= fw uw”  p(u) du, (2.2)

1

where @ €L*(1, ), and |a|*= nf | () |? du.
Now if [z|<1,

F(z)=2a(n)2"= i;o flwu’"_lzntp(u)du=fw ?) 4

1 U—z

Since if w>1, and |2] <1, z fixed, the series converges, its partial sums bounded
in absolute value by A/u. Thus F(z)= {7 @(u)/(u—2)dw in the slit plane and
F e H?(S). Finally, as pointed out above, IIIf’”z—éLn2 I | p@) P du=2x || a]

Conversely, suppose F(z) € H?(S). Then

f(u) A 2
2mf L, with |FIP= [ 170 du.
Expanding 1/(z—z) again as > 2"« "', we get with

|z] <1, u=1, F(z)= > a(n)2z", where a(s)= Lf uw  p(u) du

n=0 27” 1
and lall =2 [ “lgp du=g- | FI"
1 2w

For the analogue of Theorem 3 for Legendre expansions we need to consider
a modification of the space H®(Rs> —14) of coefficient functions. For this pur-
pose we define Hi(Rs> —}) the space of functions a(s) which are analytic on
Rs> 1, belong to H®(Rs> —1%) and for which in addition, the norm squared
lall3= f=w |a(—} +4t) —a(— § — it) |* (¢ d¢/tanh at) is finite.
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Let us make a few simple remarks about this space. Since

>c¢>0 then ||a||i>cf la(—3+it)—a(— 3 —it)[*dt

— o0

t
tanh it

= f la(—§+it)+(@a—§—t) |2 dt.
The latter fact follows since for functions in H2(Rs> — }), a(—} +it) +a(— 1 —it)
is (except for a factor of i) the Hilbert transform of a(—}+it) —a(—3% —it).
Hence |[a|3>2c|al®>. Thus the norm of HZ%(Rs> —1) essentially dominates
the norm of H?(Rs> —}), and this domination shows easily that H% (Rs> —})
is then a complete (Hilbert) space. We shall also prove below that if o€ HZ%
(Rs> —1%) then 27 o(2n-+1)|a(n)|*< oo, and so the series

F@)=3@2n+1)an)P,(x) —l<z<l (2.3)

converges in the L?*(—1,1) norm.
Our result is as follows:

Theorem 4. F(z) is in H*(S) if and only if for —1<x<1 we have the develop-
ment (2.3), where a(s) € Hy(Rs> —1%). Moreover, ||F|>=2x | al3.

Proof. We begin by showing that under our hypotheses on a(s), > (2n+1)
la(n)[?< co. In fact, since a(s) belongs to H2(Rs> —1}) it can be represented
either in terms of the Poisson integral or the conjugate Poisson integral of its
boundary values. Because of the oddness of the conjugate Poisson kernel the
latter form is more convenient here. Thus

a(c=lfw a(—§+)t 1 [ (a(—f+it)—a(——it)tdt
i ) o (0+3) + 1 2mi ) o (o+3)"+1°
hence |a(n)|<A{n"1f la(— 3 +it) —a(— 4 —it)| dt
ltl<n
+f |a(—%+it)—a(—%—it)|dt} n>1.
It1>n H

The result then follows by well-known arguments, see ([5], Chapter 9.)
The main part of the proof of the theorem is based on an analogue of the
Mellin representation (2.2).

Lemma. Suppose a(s) € Hx (Rs> —1), then

)= o f CQ@e@dn, B> -, (2.4)
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where 27% ||a||3 = ¥ | @) P du; such a ¢ is unique. Conversely, if ¢ € L*(1, oo),
then a(s) given by (2.4) belongs to Hi(Rs> —1). Thus (2.4) gives a unitary
correspondence between L*(1, o) and Hi (Rs> —1).

Proof of the lemma. Let us first make a remark about the space Hi(Rs> —}).
By its definition, if a(s) € Hx (Rs> —1), then the function f(t)=a(—}+it)—
a(—3%—1t) belongs to L?(— oo, oo, (tdt)/tanhmt). We claim that, conversely,
every odd function f(f) which belongs to L?(— oo, oo, (tdt)/tanh nt) arises in
this way. In fact such a function belongs automatically to L?(— oo, co)dt).
We let u(s) and v(s) denote respectively the Poisson integral and conjugate Poisson
integral of f(t). Thus o(s)=wu(s)+iv(s) belongs to H?(Rs> —1), and wu(s) and
v(s) are respectively odd and even in ¢. Hence o — % -+4t) —a(—% —if)=2f(f),
and therefore «(s) € Hi(Rs> —4}). In this way the space Hi(Rs> —3}) is uni-
tarily equivalent with the space of odd functions in L*(( — oo, o0,) (¢dt)/tanh xt).

Next, let us notice that formula (1.8) shows that |@(z)|<dx °'s=g+if,
#>1. This shows that whenever @ € L?(1, =), a(s) given by (2.4) is analytic in
R(s)> —1%; if in addition ¢ €L'(l, o), then a(s) is analytic and bounded in
R(s)> — 1, and vanishes as R (s) - + co.

At this stage we invoke the Plancherel formula for the Legendre functions
on the interval (1, o). (See Bargmann [1], Harish Chandra [6]; also Bateman
[2] p. 175.) As was pointed out, this is the analogue of the discrete Legendre
expansion on (—1,1); except that here we are dealing with the Poincare upper
half-space, and the group SL(2, R), instead of the surface of the sphere and the
group SO(3). For our purposes this result may be stated as follows: Whenever

@€L'(1,0)NL*(1,0) and D)= fwP‘,H”(x)tp(x) dz,

then 1 f | @) |* ¢ tanh nt dt = f | () ? da. (2.5)

2 —0o0 1

Moreover, the ®(¢) which arise this way are a dense subspace among the even
functions of ¢ which belong to L*((— oo, o), t tanh nt dt). This, of course, is
another way of saying that the transform ¢ — @ extends to a unitary mapping
from L?(1, o) to the even functions on L?{— oo, oo, ¢ tanh st dt).

Finally we should recall the relation (1.5).

In proving the lemma, let us begin with a given ¢ € L'(1, o) NL*(1,00). If
a(s) is defined as in (2.4) then as pointed out before, @ is analytic and bounded
in R(s)= —1. Moreover,

. .. tanh mt
o~} +it) —a(—§ ~it) = ——= B(0).
Thus according to (2.5)
4 J‘[2 =] t £
il ~laiB—al—1—i? = 2
2 | . |a(— % +it) —a(— % —it)| tanh ot di J; | p(x) [* de.

In order to conclude that a € H%(Rs> —}), we must therefore show only that

564



ARKIV FOR MATEMATIK. Bd 5 nr 37

a €H? (Rs> —}). However, the function a(o + it) — a(¢ — it) is harmonic and bounded
in 0> —%. It is therefore the Poisson integral of its boundary value, which by
assumption certainly belongs to L?(— oo, oo). Hence the conjugate harmonic
function which equals (a(o + i) +a{c — 4t ¢))/i +c, has the same property, if it is
normalized to vanish as ¢—> oo,

This arises when ¢=0, since a(s) itself vanishes as ¢ — co. Thus a(s) is the
Poisson integral of an L* function and hence belongs to H?(Rs> —}%). Sum-
marizing all the above, we see that whenever @ € L'(l, oo) N L*(1, o), then a(s)
given by (2.4) belongs to HZ(Rs> —1), 2at ||a||2 I7 | @(x)|* dz, and the a(s)
s0 represented are a dense subset of H2(Rs> —1). From this we see that the
mappmg (2.4) gives a unique (abstract) extension to all of L*(l, oo) onto
H;(Rs> —1) so that 2x|al:= | @(z)[*dv. However, an arbitrary element
(pGLZ(l oo) could be approx1mated in the L* norm by a sequence

@n € L1 (1, 00) n L2 (1, oo).

It n (5) = f 0, (&) ga (@) d,

; thus

Nl?—‘

the sequence a, (s) converges uniformly in compact sub-domains of R(s) >
—1.
a(s =S f Qs (x) g (x) de, R(s)>

This concludes the proof of the lemma.

We now conclude the proof of the theorem. Consider the class of ¢(x) €L*(1, o),
and which vanish near x=1 and outside a bounded interval. This class is
clearly dense in L?(1, oo). For each such ¢, define its Cauchy integral, i.e.,

Flo)= L. 1 J o)

27 u—z

Then according to what was said earlier, the F so defined belong to H?(S),
I F|[*= % |p(w) [du, and these F form a dense subspace of H*(§). Each such
F belongs, of course, to L?*(—1,1;dx). It therefore has a Legendre polynomial
development, F(z)~>5%_0(2n+1)a, P, (x). What is it?

In order to find out we shall use the expansion of the Cauchy kernel in
Legendre polynomials, ie.,

L S @nt1)Py(2) Q). (2.6)

u—x

As is known (see [12] p. 244) the series converges uniformly in 1<z<1, as
long as u is restricted to lie in a proper subinterval of (1, co). This gives

F@) =3 20+ 1)a(n) Pale), where a(s)=5 f Qg du,

the series for F converging uniformly. However, by the lemma
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a(s) € H: (Rs> —1), and 2x|a|%= J; |p) > du=| F|>

Moreover, the class of such a (corresponding to ¢ whose support is restricted to
lie in a proper sub-interval of (1, o)) forms a dense set in H%(Rs> —3}). This
gives the required identification of a dense subspace of H?(S) with the cor-
responding dense subspace of HZ(Rs> —1). The extension of the identification
to the full spaces is now a straight-forward matter.

As a final point, we shall explain how the “‘completeness relation” in the non-
compact case can be deduced from the completeness relation of the Legendre
polynomials over {—~1,1). To make matters precise, and stripped of any tech-
nical difficulties, we shall assume that @ € L*(1, o) N L*(1, c0), and its trans-
form vanishes, that is

O(t) = J"’ P_y.it (2) p (2) dx=0.

1

We want to show that @=0, without using anything like the lemma. We
shall however make use of the Legendre series expansion of the Cauchy kernel
(2.6), which, of course, is an expansion arising from the compact case. Now let
a(s)=(1/2m) [ Q;(x)p(x)dx. As was pointed out earlier (and this depends
only on the asymptotic behavior of the @’s) a(s) is bounded and continuous in
the right half-plane R(s) > — 1, and tends to zero as ¢ — co. However, a( — 4 +1t) —
a(— % —#t)= —§ tanh #t (), since @, —Q_1-;=mx cot ws P,. Thus a(s) —a({—1—3)
vanishes when R(s)= — 1, and hence a(s) is entire and a(s)=a(—1—3s). Thus a
is bounded, hence a constant, and finally a(s)=0, since a(c) >0, o — co. Now
let F(z) be the Cauchy integral of ¢. Then restricted to [—1,1] F(z) is in
L*(—1,1), and because of the development (2.6) as we have seen, F(x)~
>@2n+1)a@n)P,(x). Thus F(x)=0, in —1<=z<1, and therefore everywhere.
But g(z)=limy_ ., 4.0 F(x +iy) — F(x —1iy). This shows ¢=0.

The whole matter can be restated and summarized in another way. Let ¢(x)
be an arbitrary L? function on (1, o). Then there exists a unique function
F(z) analytic in the complex plane slit along the interval {1, oo}, which vanishes
at oo (in an appropriate sense) and whose jump across the cut in the L? sense
is @(x). This F is then automatically in L* on [—1,1]. Let F(x) ~>2n+1)-
a, P, (z), be its Legendre series development there. Then again there exists a
unique function a(s) which is analytic in Bs> —$ and bounded at oo so that
a,=a(n). Finally

a{—L+i)—a(—3%—it)= —% tanh mt J‘ Py (@) p(x)de.
1
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