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Analytic propert ies  o f  expansions ,  and s o m e  variants  o f  

Parseva l -P lanehere l  formulas  

By E. M. STEIN and S. WAINGER 

We shall be concerned with the following question. 
Legendre (or other) functions given by 

Consider an expansion in 

F(z) = ~ a(n) Pn (z). (0.1) 

Here, as indicated, the coefficients arise from a function a(s) which is in fact 
assumed to be analytic in an appropriate region of the s plane. The problem 
tha t  occurs is of characterizing the analytic properties of F in terms of those 
of a. More particularly: How do we characterize those F which arise when a 
is an entire function of suitable kind, or when a may  have poles, etc.? One may  
also ask if there is an identi ty of the Parseval-Planeherel type which relates a 
quadratic class of coefficient functions analytic in a right-half plane, with a 
quadratic class of F ' s  so tha t  the corresponding mapping is unitary.  

These questions have some intrinsic merit, but  their answers have additional 
interest for the following two reasons: 

(1) Series of type (0.1), where a(s) is meromorphic have recently a t t racted 
considerable at tention in some problems of physics, see e.g. Regge [10], and 
Khuri  [7]. The classical setting of this problem in connection with physics goes 
back to Poinear~ [9]; see also Watson [14] and Sommerfeld [11], p. 282. 

(2) In  studying such series one may  put  on a solid analytic footing and make 
quite precise the following idea hitherto expressed only heuristically: tha t  
the completeness of the expansion of spherical functions for S0(3) (the com- 
pleteness of the Legendre polynomials on ( -  l, 1)) should lead by  analytic con- 
t inuation to the completeness of the corresponding expansion on SL(2, R). 

Let us describe these things in more detail. I t  can be expected tha t  there 
should be an analogy between the behavior of the series (0, 1), and the corre- 
sponding power series. 

y(~) = Y a(~)~". (0.2) 
n=0 

In  the case of power series it  is well-known tha t  under appropriate assump- 
tion on the function a(s) ~ variety of conclusions about  ~t(z)follow; see e.g. 
LindelSf [8], Bieberbach [3]. The simplest of these, which unlike most  is both 
necessary and sufficient is the well-known theorem of Carlson and Wigert. 
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Theorem A. A necessary and sufficient condition that, up to an additive con- 
stant, ~(z) be representable in the form (0.2) where a(s) is entire and of zero ex- 
ponential type is that ~(z) be an entire function o/ 1 / I - z .  

There is also a modificat ion of this result when finitely m a n y  poles are al- 
lowed to occur, i.e. when a(s) is replaced by  a(s)+ R(s), with R rational. The 
modification is, however, ra ther  drastic because the resulting ~(z) mus t  then 
necessarily be multivalued. For  simplicity let us assume tha t  the poles of R(s) 
are dist inct  and non-integral.  

Theorem A'.  The c~ss o/ ~'s which arise as (0.2) from such a's coincides with 
the class ~'s which may be continued into the complex plane slit along the positive 
real axis from 1 to ~ ,  and so that in this slit plane, vhen I z l> 1, 

y(z) = q~(z) + ~ cn z% (0.3) 

where q~(z) is analytic and single-valued in ] z l > l  (including co); o:n are the poles 
of a(s). 

While this theorem does no t  seem to be s tated in the literature, it is in fact  
an easy consequence of the reasoning given in Lindelhf [8], section 61, combined 
with Theorem A. 

Our first results, combined in section 2, are the analogues of Theorems A 
and  A'  for Legendre series (0.1). The analogue of Theorem A is t h a t  in effect 
F(z) is representable as (0.1) with a(s) of zero exponential  type  if and  only if 

~1-- z F(z) is an  entire funct ion of 1/1 - z. The mat te r  is pu t  in bet ter  perspec- 
tive by  considering, at  this stage, the more general ultra-spherical expansions, 
which contain as the special case 2 = �89 the Legendre polynomials.  An analogue 
of Theorem A '  is also found (see Theorem 2). Here the expression (0 .3) i s  
replaced by  a similar one with the Legendre functions of the second kind 
Q - l - % ( - z )  instead of z ~'. 

We next  consider the case where the coefficient funct ion is analyt ic  in a r ight  
half-plane. I t  is natural ,  in this case, to look for an ident i ty  between a Hi lber t  
space of such analyt ic  functions and a corresponding Hilbert  space of F ' s  ana- 
lytic in the complex plane, slit along the positive axis f rom 1 to ~ .  The re- 
sult obtained here is new even in the case of power series a l though its proof 
is quite simple. More particularly,  the Hilbert  space of coefficient functions 
will be g 2 (Rs > �89 those a which are analytic when R(s) > _1~, with norm H a II = 
sup,> �89 (~_r162 I a(a + it) 12 dr) �89 The class of y ' s  will be denoted b y  H 2 (8), (8 = 
the slit plane); this class will consist of the ~ analyt ic  in S, and  which are 
simultaneously in H a in the upper  and lower half-planes. Equivalent ly,  it is 
those y analytic in S, with limy_~ 0r I y(x § iy) l --> O, and where the jump limy_~0, y >0 
~(x § i y ) -  ~ ( x -  iy) exists in L 2 norm. Our result (Theorem 3, section 2) is then 
t h a t  ~ E H a (S) if and only if a(s) E H 2 (Rs > - �89 with an ident i ty  of corresponding 
norms.  Now the usual Parseval  relation for power series identifies a quadrat ic  
norm of the coefficients ((X [a(n)l~) ~) with a quadrat ic  norm of y,  t aken  on the  
uni t  circle. Theorem 3 might  be considered as a var ian t  of that ,  identifying 
another  quadratic norm of the a's, with a quadratic norm of the values of 
y on (1, oo). 
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To describe the analogue of this for Legendre series it is convenient to change 
the definition of a(s) by setting instead of (0.1). 

F(z) = ~ (2 n § 1) a (n) Pn (z). (0.4) 

The space of a is modified to consist of those a which belong to H~(Rs > -�89 
and for which the norm 

)~ II a II, = ] a (  - 1 + i t )  - a (  - �89 - i t ) ]  2 t d t  
tanh ~t 

is finite. This class will be referred to as H2. ( R s > -  �89 We prove then tha t  
F is in H2($) if and only if it can be represented by (0.4) with aEH2,(Rs> -�89 
and with an identi ty of norms. 

The proof requires the Legendre analogue of the Mellin transform, which 
takes the form SF Q~ (x) qJ (x) dx; by considering it, together with the class H 2 (S), 
one can pass by  analytic continuation from the completeness of spherical func- 
tions an S0(3) to the corresponding completeness for SL(2, R). 

Section 1. The case when  a ( s )  is meromorphic  in the entire plane 

We begin by  making some remarks to clarify the results given below. 
Let us recall tha t  an entire function a(s) is said to be of zero exponential 

type if a(s)=O(e~l~l), as [s[--> c ~  for every s > 0 .  Such functions have a useful 
representation: a is in this class if and only if there exists a ~(w), which is an 
entire function of l /w,  so tha t  

1 fces w a(s) = ~ ~(w) dw. 

and with C an arbitrari ly small circle centered at  the origin. I t  should also be 
recalled tha t  such functions are determined by  their values at  the positive in- 
tegers; see [4], Chapters 5 and 9. We should next  point out tha t  the series 
(0.1) may  in general never converge. I t  will, therefore, be necessary to interpret 
the sum as limr-~l ~a(n)rnp~(z). But  in making this interpretation we must  
keep in mind tha t  this limit may  be identically zero without a being so. A simple 
exemple of this arises for the "S-function" ~ (2n + 1) P~ (x). Finally, in proving 
our theorem it will be instructive to consider the more general class of ultra- 
spherical polynomials {P~ (x)} given by  the generating relation ( 1 - 2 x r +  r2) -~=  
~r  rnp~ n=0 ~ (x), (~t > 0). When ~ = 1 we have the Legendre case, P~ (x) = Pn (x); 
while P~ (x) = (sin ( n §  1) 0)/sin 0, x = c o s  0. The consine polynomials, cos nO, may 
be obtained as a limiting case, ~t=0. See [12, Chapter 4]. Of course, the 
spherical functions for SO(n) arise in the case ~ = n - 2 / 2 .  

Theorem 1. L e t  2 > 0 .  
type. I /  - l <.x < l 

Suppose a(s) is an entire /unction o/ zero exponential 

F(x) = lim ~ a(n + ,~) r" P~n (x) 
r - -> l  n = 0  
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erists, and (1 -x )~F(x )  has an extension into the complex plane as an entire /unction 
o/ 1 / 1 - z .  Conversely, every entire /unction o/ 1 / 1 - z  arises this way. Finally F 
vanishes identically i/ and only i~ a(s) is an odd /unction o/ s. 

The proof is elementary.  
_ ~r r n We begin with the generating relation ( 1 - 2 x r + r 2 ) - ~ - ~ _ o  Pn(x),  which 

obviously extends to  complex w of absolute value less than  one, i.e. 

( 1 - 2 w x + w ~ ) - a = ~  w"P~n(x), - l  < x < a ,  Iwl<l. (1.1) 
n=0 

The series on the  r ight  converges uniformly for w in closed subsets lying in 
the interior of the uni t  disc, because the  P~ ( x ) a r e  of a t  mos t  polynomial  
growth in n. Notice also tha t  the expression 1 2 x w + w  ~ is no t  zero for 
- 1 ~ x ~< 1, I w I < 1. Next,  since a(z) is an  entire funct ion of zero exponential  
type,  we know t h a t  it can be represented in the form 

1 fC esw a(s) = 2 ~i qp(w) dw, 

where q~(1/w) is intire in w, and C is any  circle about  the origin. F rom this 
we get t ha t  

F~(x)=n=o ~- a(n + 2)e ~ P~ (x)= 21 i  f c  e~W ( 1 -  2e ~ ~ x +  e 2~-2~) ~ q~(w)dw. 

Here, and from this point  on, C will be a circle of sufficiently small radius 
about  the origin, and  x will be assumed to lie away  f rom 1. F rom the above 
we get  immediate ly  

e _ ~ a ( l _ x ) ~ F ~ ( x ) = ~ i  1-cOShx_l(W-e) 1 qD(w)dw. 

However  (t - 1 )-~ - ~ :o B ~ ~ ~ n ~ - s  n in, where Bn and the series converges uniformly 
inside the uni t  disc. Thus by  taking e sufficiently small, and C sufficiently 
near the origin we get  

e ~ (1 - x)aF~ (x) = 2 -~ ~ B~n (1 - x) -n C(n, e), 

where C(n,e)=~-~i~i (cosh ( w - e ) -  l)'~ q~(w)dw. 

Thus I C(n, e) l < A~ (e') 2n, for each e' > e. 

Passing to the limit e--~ 0, for 1 ~ x < 1, we get  

(1 - xI~F(x)  = 2 -~ ~ B~  (1 - x / - "  C(n) 
with C(n) = C(n, 0). 
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What  we have said about  the growth of the binomial coefficients B~n and the 
constants C(n,e), makes it clear tha t  (1-x)~F(x) has an extension to an entire 
function of 1 / 1 - z  given by  

�9 -. (1 -z)~F(z)=2 -x ~ Ban (1 -z)-" C(n). 
n = 0  

(L2) 

Now suppose tha t  a(s) is an odd function, a(s)=~dks 2k+1. Then 

~v(w) = ~ (dk(2k+ 1) ! w -2z is even, and C(n) = ~ /  q(w) (cosh w -  1)ndw=O, 
k = 0  

since the integration involves only even (positive and nega t ive)powers  of w. 
Thus (1-z)aF(z)=--0.  Conversely suppose (1 -z)aF(z)~--O. Then since Ban # 0  for 
every n, Sc ~(w) (cosh w - 1) n dw = 0 all n, 

For each integral k, cosh kw is a polynomial in cosh w, and hence is a po- 
lynomial in cosh w - 1 .  Therefore because for all n, ~c~0(w)(cosh w-1)mdw=O, 
it follows tha t  . [c~(W)coshkwdw=O.  Hence (a(k)+a(-k)) /2=O. But  a(s)+ 
a ( - s )  is of zero exponential type; its vanishing at  the integers implies its 
vanishing identically. So a(s) is odd. 

What  remains to be shown is tha t  every entire function of 1 / 1 - z  can be 
obtained this way (that is a (1.2)). Since B~,,,n ~, it suffices to see tha t  when 
ever C~ are the Taylor coefficients of an entire function, there exist a ~(w), 
which is an entire function of 1/w so tha t  

C~ = ~ ~(w) (cosh w - 1) n dw. 

Now make the change of variables (cosh w - 1 )  �89 =z, which is a regular mapping 
of a neighborhood of w - 0  to a neighborhood of z = 0. Then we get 

C~= ~ , ~(z)z2~-ldz, where ~(z) = 2  (cOShsinhW-w 1) ~0(w). 

Now there certainly exists a ~0(z) analytic of z # 0, so tha t  Cn = 1/2 zei S ~v(z) z 2~ 1 dz. 
C z -2n ) (Take yJ(z) = ~ = o  ,~ . Let  

1 { sinh_w 1) yJ(z); 
~0 (w) = ~ \ c o s h  w -  

then ~0(w) is analytic in small disc punctured at  w = 0 ,  and Cn= 1/2~ti 5c~o(w) 
(cosh w-1)ndw.  Finally let q~(w)=q%(w)-q~l(w), where ~l(W) is tha t  par t  of 
the Laurent  development of ~0 (w) which involves positive powers of w. Then 

1 f 
| ~ l ( w )  (cosh w -  1)n dw=O, 

2~ti Jc  

and our conclusion is achieved. 

557 



E. M. STEIN, S. WAINCER, Analytic properties of expansions 

We wish now to indicate the extension of the above theorem when the coef- 
ficient function is no longer assumed to be of zero exponential type. If  we 
assume therefore that  a is of exponential type, its growth in various directions 
in the complex s-plane is best described in terms of a convex set D, the indi- 
cator diagram of a(s); see [4, Chapter 5]. In  the case of zero exponential type 
D is in fact the origin. I t  is important to assume that  the width of the indi- 
cator diagram along the imaginary axis is less than 2z ;  from this it follows 
that  a is completely determined by its restriction to the positive integers. A 
more elaborate argument than the one given for Theorem 1 shows that  under 
these assumptions on a the series (0.1) leads to a function analytic outside the 
set S = {z I z = cosh w, w E/)}, (/9 = complex conjugate of D) including ~ ,  and 
single-valued there; the converse also holds. We shall not prove this here, but 
the reader may consult [3] for the analogue for power series. 

We now consider the extension of the theorem when the coefficient function 
a(s) is allowed to have poles. Thus we shall assume that  a(s)=a0(s ) +R(s), 
where a 0 (8) is entire of zero exponential type and R is rational. For the sake 
of simplicity the poles con of R will be assumed to be simple, non-integral, and 
non-half-integral. These limitations can be dropped by passing to the limit in 
the argument given below. From here on we shall consider only the Legendre 
case, ~t = �89 There is an extension to the general ultraspherical case; but the 
extra complication of details might tend to obscure the main ideas, and so we 
limit ourselves to the Legendre case. 

Our theorem requires the consideration of the Legendre functions of the cecond 
kind, Qs (z). This function is jointly annalytic in z and s, when z lies in the 
complex plane cut along the real axis from - ~  to 1, and when s is not a 
negative integer. This function is related to the Legendre function P~ (z) (which 
is the continuation of Pn (z)) by 

Qs(z ) -Q_ l_s ( z )=~  cot ztsP~(z); see [2] p. 140. (1.5) 

Theorem 2. A necessary and su//icient condition that F(x) defined on - 1 < x < 1 
be given as 

F(x) = lim ~ a(n) rnPn (x), (1.6) 
r-->l 

is that F(x) be analytically continuable into the complex plane slit /rom 1 to § c~ 
along the real axis; and that in this slit plane, when t z l>  1 

F(z) = (z -- 1) -�89 ~v(z) + ~ cn Q-1-% ( - z ) ,  (1.7) 

where qJ(z) is analytic in [z l>  1 (including ~ )  and single-valued there. 

The following clarifying remarks are in order here. In the previous treatment 
o f  related problems using the Watson-Sommerfold transform, see e.g. [11], p. 
282 et seq. a n d  [7], the contributions due to poles were given in terms of the 
function P ~ , ( - z )  instead of Q- l_~ , ( - z ) .  The latter form is compatible with 

the right asymptotic behavior at or only when R(an)~>- �89 since 

Q:.(_~)_~I:I_.<:.) 1, a s  I:l-+ ~ ,  

and the relation (1.5) holds. Moreover, the form (1.7)has  the advantage of 
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separating the "single-valued" par t  ~(z) due to the regular par t  of a(s), and the 
multiple valued pa r t  ~ c ~ Q l _ % ( - z )  due to the poles of a(s). I t  should be 

noticed t h a t  (1.7) could equally well be wri t ten as F(z) = z- �89 ~p(z) + ~ c~ Q1-% ( - z), 
where ~(z) is analyt ic  and single-valued for l z l>  1 (including ~ ) .  However  the 
form (1.7) makes the compatibi l i ty  with theorem 1 evident. 

Proo/. Suppose first - 1 ~< x < 1. Then 

F ( x ) = l i m  / / ' | a ( s ) r ~ P s ( - x ) d s  i |[" a(s) P s ( - x )  ds, 
r-~l 2 J c  sin 7cs = 2  Jc  sin us  

where C is an infinite loop surrounding the positive x-axis in the negative 
direction (i.e., beginning below the axis at  § ~ ,  and ending above the axis at  
§ c~), containing none of the poles of a(8), and all the non-negative poles of 
1/sin ~8. P~ ( - x )  is the analyt ic  extension of Pn ( - x )  given by,  e.g. 

P ~ ( c o s 0 ) ~  (cos r - c o s 0 )  - �89  [(8+�89 x = c o s 0  

which is clearly the only extension of P~ (x) of exponential  type  < 7~ in 8. 
I n  view of the growth  of P~ ( - x) and the assumed growth of a(s) we can write 

i f c  a(8) P~(x) d s - ~  ~ fl~ F(x) = ~ , sin x~8 n(~)>~ �89 sin ~ j  P~i( - x), 

where flj are the residues at  the poles 8 = ~j of a(8), and C 1 is the axis R(8) - 1 2 :  

taken with increasing t, (8 = a +  it), except for an  indentat ion so tha t  all poles 
~,t of a(8), for which R(an)>~- �89 are to  the r ight  of it. Now the formula 

P s ( z ) - p ( _ s ) F ( s §  ) (z+cost)-s- l (s inh t) 2s+ldt, 

[2, p. 155] shows t h a t  P s ( - x )  is analyt ical ly continuable in the slit plane 
when, - l < R ( s ) < 0 ,  and  for fixed z is of exponential  type  7~, in the strip 
- 1  < R(8)< 0. This of course shows t h a t  F(z) is also so analyt ical ly continu- 

able, and then  using ident i ty  (1.5) we can write 

1 f c  a(8) F ( x ) - - ~  ~ cos ~8 i f c  a(s) - -  qJs( - z) d s -  S T  ~ cos  s s '  

• Q-l-s (-z) d s - ~  ~J - -  P~j( - z) 
a i sm 7 ~ )  

where the contour  C 2 is like C1, except  t h a t  now alI poles ~j, and s = - � 8 9  lie 
to the r ight  of C 2. Let  us consider the integral involving Qs ( -  z) first. De- 
forming the contour  C 2 back to C again we get  
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i f c  a ( s ) Q s ( - z ) d s  i fc  2~ ~ cos ~ - - s  = ~  
~ta,sl Q, ( _ z) ds + ~_ F~R Q~J ( _ z). 
c os  798 ~i c o s  7I~] 

We have  used the  fact  t h a t  Q: ( - z )  behaves  f avorab ly  in the  half-plane 
R(s) >~- 1, which can be read  of the  iden t i ty  

Q, ( z ) = 2  -~-I  ( z + c o s  t) -~ 1 (sin t)zS+ldt, 

[2, p. 155]. However ,  

(1.8) 

i fc  a(s) Q~(-z)ds= ~ (-1)=+aa(n-�89189 
c o s  ~ .~o 

The integral  involving Q-I-~ is deformed into a loop similar to C, bu t  sur- 
rounding the  negat ive  axis f rom - c o  to - 1 .  I n  this case there  is no contri- 
but ion due to the  poles of a(s), and  we get  

i fo a(s) 
2 ~  ~ COS 9/'8 

- -  O_a_~(-z) ds = -  ~ ( - 1 ) - n + a a ( - n - l ) Q - . - � 8 9  

However ,  Q,_�89 ( - z ) = Q _ , _ � 8 9  ( - z )  (n integral,  see (1.5)). 
Combining the above  we get  

F(z) = a ( - -  �89 Q_�89 ( - z ) +  ~ [a(n- �89 + a ( - n -  �89 Qn-�89 - z )  

t~J Q 1 ~,( -z) .  
- - ~  COS Yl:0fj 

Final ly  by  (1.8) and  the  fact  t h a t  

(l.9) 

I I - u  2 .< 2 ,  
~iz]~ if [ z l ~ > l , - l < u < l ,  

we get  t h a t  
IQ._ �89  -~-�89 n = O , l , 2  . . . . .  Iz l~>l .  

This wi th  the fact  t h a t  a( + n - �89 = O(e~n), for every  e > 0, n > 0 assures the  
convergence of the  series in (1.9) uni formly  in ]zl~>l +(~, 0 > 0 .  Since as is 
easily seen f rom (1.8) ( z - 1 ) � 8 9  � 8 9  is also single valued in ] z ] > l ,  our  
representa t ion  (1.7) is proved.  

The converse can now be proved  as follows. Suppose we are given an F(z) 
in the slit plane,  which for I z] > 1 has the  representa t ion  (1.7). Le t  

F 0 (z) = lira ~ a o (n) r n Pn (z), where a 0 (s) = - ~ cj cos ~aj 
r- - ) . l  s - a  1 

Then  by  wha t  we have  jus t  proved,  when ]z I >  1 
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S 0 (z) = ( z -  1) -~ ~0 (z) + ~ c~ Q-1-% ( - z). 

Hence F(z) - S o (z) = (z - 1) -�89 [~(z) - r (z)]. 

This shows that  ( 1 - z ) � 8 9  has a single valued analytic continua- 
tion into the extended complex plane with only singularity z =  1; i.e., ( 1 - z )  �89 
{ F ( z ) -  S o (z)} is an entire function of 1 / 1 -  z. Thus by  Theorem 1, 

F ( x ) - F  o ( x ) = l i m ~ a  l(n) r nPn(x),  - l < x < l ,  
r - - > l  

where a 1 (s) is entire of zero exponential type. Now we need only take a(s)= 
a 1 (s) + a 0 (s). 

2. Case w h e n  a(s) is g iven  in  a hal f -plane;  var iants  o f  P a r s e v a l - P l a n c h e r e l  

f o r m u l a  

As before, we shall denote by $ the complex plane slit along the positive 
real axis from 1 to ~ .  H 2 (S) will denote the class of functions F(z), analytic 
in S, for which supy.0 ~ r  oo. Then as is well-known, F •  
limy_,0, y>0F(x+_iy) exists in L ~ norm. We then define the norm by  

Of course, this makes H2(S) into a Hilbert  space. These functions may  be 
characterized in another way. While the boundary values F+ ( x ) a n d  F_ (x) 
exist (and agree f o r - c o  < x <  1), they do not agree on the cut. However, the 
jump across the cut, S+ (x) - F  (x) completely determines this function. In  fact, 
if /(x) = F+ (x) - F_ (x), then 

1 ~:r du (2.1) F(z)=~j1 u-z '  

and IIslP = f ~  I 1(~)I ~du. 

Conversely, if /(u) is an arbi t rary element of L 2 (1, ~ ) ,  the Cauchy integral 
(2.1) is in H2(S), and F+ ( x ) -  F_  (x)= /(x). This follows from the fact tha t  if 
y~>0, F ( x + i y ) - T  F ( x - i y )  are essentially the Poisson and conjugate Poisson in- 
tegrals of /; and tha t  as y - ~  0 they converge respectively to / and i] with ] 
the Hilbert  transform of /. The mapping /-->] is a uni tary  mapping on 
L2( - ~ ,  o~). (For all these facts concerning the Hilbert  transform see [13], 
Chapter 5.) Thus the Cauchy integral (2.1) gives a unitary equivalence hetWeen 
H 2($) and L 2 ( 1 , ~ ) .  

For the coefficient function a(s) we will take the space H 2 (Rs > - �89  i.e., the 
a(s) will be assumed to be analytic in 
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R ( s ) > - � 8 9  and->-�89 f:Ja(~+it)]'dt=fTJa(-�89 
I t  should be remarked that  if a(s)E H 2 ( R s > -  1), then it is automatically 

bounded in any half plane R ( s ) > - � 8 9  + 8, (~ >0,  (see (2.2) below), and hence is 
uniquely determined by its values on the positive integers. Our theorem for 
power series can be formulated as follows: 

- ~:r a z n Then F E H e (S) i / and  only il  an = a(n), Theorem 3. Suppose F ( z ) -  ~n=0 n �9 
where a eHe (Rs > - �89 Moreover, IIFlle= 2=  I[aH e. 

Proo/. Suppose, to begin with, a(s )EH e ( R s > - � 8 9  Then according to the 
Paley-Wiener representation in the context of Mellin transforms 

a(s) = f :  u -s-1 q)(u) du, (2.2) 

where ~ e L e ( 1 ,  oo), and Ilall =2  I~(u)[edu. 

Row if I zl < 1, 

•(z) = : a(n)zn= n=0 ~ f :  U n-1 Z n ~(U)du= f :  u--z~9(u) du. 

Since if u > l,  and I z] < 1, z fixed, the series converges, its partial sums bounded 
in absolute value by A/u .  Thus F(z)= .f~ q~(u)/(u- z)du in the slit plane and 
F EH=(S). Finally, Was pointed out above, ][FHe=4~z = ~ ]cf(u)]edu=2~Ha]l ~. 

Conversely, suppose F(z) E H e (S). Then 

1 l(u) I du, with llFll =ll/(u)l'du. 
F(z )  = ~ j ~  u -  z .]1 

Expanding 1 ~ ( u - z )  again as ~ z = u  -~-1, we get with 

1 f : U  s 1 ] z [ < l ,  u>~l, F(z)= ~ a(n)z  ~, where a ( s ) = ~  i cf(u) du n=O 

and f l  ~ 1 I]al]2=2oz I~l 2 d u = ~  ]lF]] 2. 

For the analogue of Theorem 3 for Legendre expansions we need to consider 
a modification of the space H 2 ( R s > -  �89 of coefficient functions. For this pur- 
pose we define H2, (Rs > -  1) the space of functions a(s) which are analytic on 
Rs > �89 belong to H 2 (Rs > - �89 and for which in addition, the norm squared 
H a I]2, = S-~ ]a( - �89 § it) - a( - �89 - it)12 (t dt / tanh ~t) is finite. 
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Let  us make  a few simple remarks about  this space. Since 

t a n h ~ t ~ c > 0  then ]]a]]2,>~c -r162 ]a( -- �89 + it) - a( - �89 -- it)I s dt 

= c  f ~  l a ( - � 8 9 1 8 9  

The lat ter  fact  follows since for functions in H 2 (Rs > - �89 a( - �89 + it) + a( - �89 - it) 
is (except for a factor  of i) the t t i lber t  t ransform of a( - �89 + it) - a( - �89 - it). 
Hence Ilal]2,~2c Ila[I 2. Thus the norm of H~, (Rs> - � 8 9  essentially dominates  
the  norm of H e ( R s > -  �89 and this dominat ion shows easily t h a t  H2, ( R s > -  �89 
is then a complete (Hilbert) space. We shall also prove below tha t  if a E H2, 
(Rs > - �89 then ~ = 0  (2 n + 1)]a(n)[2 < ~ ,  and  so the series 

F(x) = ~ (2 n + l) a (n) P~ (x) - 1 < x < 1 (2.3) 

converges in the Le( - 1, 1) norm. 
Our result  is as follows: 

Theorem 4. F(z) is in H ~ ($) i/ and only i / / o r  - 1 ~ x <~ 1 we have the develop- 
ment (2.3), where a(s) e H2. (Rs > - �89 Moreover, I] F [[2 = 2 7~ H a [[2.. 

Pro@ We begin by  showing t h a t  under  our  hypotheses  on a(s), ~ ( 2 n + l )  
[a(n) [2< c~. I n  fact, since a(s) belongs to H z ( R s >  - �89 it can be represented 
ei ther  in terms of the Poisson integral  or the conjugate Poisson integral of its 
boundary  values. Because of the oddness of the conjugate  Poisson kernel the 
lat ter  form is more convenient  here. Thus 

1 (~r a ( - - � 8 9  1 f~_:r ( a ( - � 8 9 1 8 9  
a(a) = iT J _ ~  ~ + ~ ~ dt = 2 ~ i  ((r § �89 + t 2 

hence ] a ( n ) l < A  { n - i l l  l a ( - � 8 9 2 4 7 1 8 9  
t[~n 

§ f l  ] a ( - � 8 9 2 4 7 1 8 9  } 
tl>~ It[ d r ,  n>~l .  

The result then  follows by  well-known arguments,  see ([5], Chapter  9.) 
The main  pa r t  of the proof of the theorem is based on an  analogue of the 

Mellin representat ion (2.2). 

Lemma.  Suppose a(s) E H2. (Rs > - �89 then 

a(s) = 2~ i  Qs (x) q~ (x) dx, R(s) > - �89 (2.4) 
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where 2 ~  3 Ilall~, = f~ [~(u)[3du; such a q) is unique.  
then a(s) given by (2.4) belongs to H 2 , ( R s > - � 8 9  
correspondence between L2(1, c~) and H2, ( R s  > - �89 

Conversely,  i /  q~ EL~(1, ~ ) ,  
T h u s  (2.4) gives a un i t a ry  

Proo/  o/ the lemma.  Let  us first make a remark about  the space He,(Rs > - � 8 9  
B y  its definition, if a(s) E H2. (Rs  > - 1), then the funct ion /(t) = a( - �89 § it) - 
a( - �89 - it) belongs to L ~ ( - ~ ,  ~ ,  (t d t ) / t anh  ~t). We claim that ,  conversely, 
every odd function /(t) which belongs to L 2 ( -  ~ ,  ~ ,  (t d t ) / t anh  ~t) arises in 
this way. I n  fact  such a funct ion belongs automat ica l ly  to L 2 ( -  ~ ,  ~ ) d t ) .  
We let u(s) and v(s) denote respectively the Poisson integral and conjugate  Poisson 
integral of /(t). Thus :r = u(s) + iv(s) belongs to H 3 (Rs > - �89 and u(s) and  
v(s) are respectively odd and even in t. Hence a( - �89 + it) - ~( - �89 - it) = 2 ](t), 
and  therefore ~(s) E H2, (Rs > - �89 I n  this way  the space H2, (Rs  > - �89 is uni- 
tar i ly  equivalent  with the space of odd functions in L 3 ( ( -  ~ ,  ~ , )  (t d t ) / t anh  xet). 

Next,  let us notice tha t  formula (1.8) shows tha t  [ Qs (x) [ <~ A x  -~-1 s = (~+i t ,  
x >  1. This shows t h a t  whenever  ~ EL2(1, ~ ) ,  a(s) given by  (2.4)is  analyt ic  in 
R ( s ) > - � 8 9  if in addi t ion ~ E L I ( 1 , ~ ) ,  then a(s) is analyt ic  and bounded in 
R(s)  ~> - l,  and vanishes as R (s) --> + ~ .  

A t  this stage we invoke the Plancherel  formula for the Legendre funct ions 
on the interval  (1, ~ ) .  (See Ba rgmann  [1], Harish Chandra  [6]; also Ba teman  
[2] p. 175.) As was pointed out,  this is the analogue of the discrete Legendre 
expansion on ( - 1 ,  1); except t h a t  here we are dealing with the Poincare upper  
half-space, and the group SL(2 ,  R) ,  instead of the surface of the sphere and the  
group S O  (3). For  our purposes this result m a y  be s ta ted  as follows: Whenever  

~ e L I ( 1 , ~ ) N L 2 ( 1 ,  cr and ~ P ( t ) = f ~ P _ ~ + ~ t ( x ) q ) ( x ) d x ,  

then ~ [(I) (t)13 t t anh  ~t  dt = i q)(x) [2 dx.  (2.5) 
1 

Moreover, the (I)(t) which arise this way  are a dense subspace among  the even 
functions of t which belong to  L2(( - ~ ,  ~ ) , t  t anh  xetdt). This, of course, is 
another  way  of saying t h a t  the t ransform q~--> (]) extends to a un i t a ry  mapping  
from L3(1, ~ )  to the even functions on L2( - ~ ,  ~ , t  t anh  ~ td t ) .  

Final ly we should recall the relation (1.5). 
I n  proving the lemma, let us begin with a given ~ L I ( 1 ,  ~ ) ~ L 2 ( 1 , ~ ) .  I f  

a(s) is defined as in (2.4) then as pointed ou t  before, a is analyt ic  and  bounded 
in R(s)  >/ - 1. Moreover, 

a( -- �89 + it) -- a( -- �89 -- it) - 

Thus according to (2.5) 

4~3 f ~  t 
2 ]a( - �89 + it) - a( - �89 - it) ]2 t anh  7et 

t anh  ~t 
2 ~i r  

- -  dt = f ;  l~(x)13 dx. 

I n  order to  conclude t h a t  a E H2. ( R s > -  �89 we must  therefore show only tha t  
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a EH 2 (Rs > - �89 However, the function a(a + it) - a(r - it) is harmonic and bounded 
in a >~ - � 8 9  I t  is therefore the Poisson integral of its boundary value, which by  
assumption certainly belongs to L 2 ( -  ~ ,  ~ ) .  Hence the conjugate harmonic 
function which equals (a((~ + it) + a((~ - itqo))/i + c, has the same property, if it is 
normalized to vanish as ~--> ~ .  

This arises when c =  0, since a(s) itself vanishes as a - +  co. Thus a(s) is the 
Poisson integral of an L ~ function and hence belongs to H2(Rs  > -  �89 Sum- 
marizing all the above, we see tha t  whenever ~ E L l ( l ,  ~ ) f 3  L2(1, co), then a(s) 
given by  (2.4) belongs to H 2 , ( R s > - � 8 9  2~2[[a][~,=~F [q~(x)[2dx, and the a(s) 
so represented are a dense subset of H~, ( R s > -  �89 From this we see tha t  the 
mapping (2.4) gives a unique (abstract) extension to all of L~(1, co) onto 
H~ (Rs > - �89 so tha t  2 7t ]1 a ]12, = ~F ]~0(x)p dx. However, an arbi trary element 
(pEL2(1, c~) could be approximated in the L 2 norm by a sequence 

~n E L l ( l ,  ~ )  N L2(1, ~ ) .  

I f  an (8) = 2 z i  Q~ (x) cfn (x) dx, 

the sequence an (s) converges uniformly in compact sub-domains of R(s) > = 1 ; thus 

a(s) = ~ Q~ (x) q~ (x) dx,  17(8) > - �89 

This concludes the proof of the lemma. 
We now conclude the proof of the theorem. Consider the class of ~(x)E L ~ (1, ~ ) ,  

and  which vanish near x =  1 and outside a bounded interval. This class is 
clearly dense in L2(1, c~). For each such % define its Cauchy integral, i.e., 

1 f ~  q~(u) du F ( z )  = ~ u -  z " 

Then according to what  was said earlier, the F so defined belong to H~($), 
] l F l l 2 = ~  IqD(u)12du, and these F form a dense subspace of H~($). Each such 
/~ belongs, of course, to L 2 ( -  1, 1;dx). I t  therefore has a Legendre polynomial 

2 development,  F(x) ~ ~n=0 ( n + 1) an Pn (x). What  is it ? 
In  order to find out we shall use the expansion of the Cauchy kernel in 

Legendre polynomials, i.e., 

1 
- Z (2 n + 1) Pn (x) Qn (u). (2.6) 

g - - X  

As is known (see [12] p. 244) the series converges uniformly in l<~x<~l, as 
long as u is restricted to lie in a proper subinterval of (1, c~). This gives 

F ( x ) = ~ ( 2 n + l ) a ( n ) P , ~ ( x ) ,  where a ( s ) = ~  i Q~(u)cf(u)du,  

the series for F converging uniformly. However, by the lemma 
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a(s) E H~, (Rs > - �89 and  2:r II a I1 , = I (u)I d u  = 11-  II 2. 
J 1  

Moreover,  the  class of such a (corresponding to  ~v whose suppor t  is res t r i c ted  to  
lie in a p rope r  sub- in te rva l  of (1, oo)) forms a dense set  in H2,(Rs> _ 1 ) .  This 
gives the  requi red  iden t i f ica t ion  of a dense subspace of H2(S) wi th  the  cor- 
responding  dense subspace  of Ha. ( R s > -  �89 The extens ion  of the  ident i f ica t ion  
to  the  full  spaces is now a s t r a igh t - fo rward  ma t t e r .  

As a f inal  point ,  we shall  expla in  how the  " 'completeness r e l a t ion"  in the  non- 
c ompac t  case can be deduced  f rom the  completeness  re la t ion  of the  Legendre  
po lynomia l s  over  ( -  l ,  t ) .  To m a k e  m a t t e r s  precise, and  s t r ipped  of a n y  tech-  
nical  difficulties,  we shall  assume t h a t  ~vELl(1 ,  oo )NLz(1 ,  oo), and  i ts  t rans-  
form vanishes,  t h a t  is 

(P(t) = f /  P-�89 (x) ~ (x) dx~O.  

W e  w a n t  to  show t h a t  ~ 0 ,  w i thou t  using any th ing  l ike t he  lemma.  W e  
shall  however  m a k e  use of the  Legendre  series expans ion  of the  Cauchy kernel  
(2.6), which, of course,  is an  expans ion  arising f rom the  compac t  case. Now le t  
a ( s ) = ( 1 / 2 ~ i )  S ~ Q s ( x ) ~ ( x ) d x .  As was po in ted  ou t  ear l ier  (and th is  depends  
only on the  a sympto t i c  behav ior  of the  Q's) a(s) is bounded  and  cont inuous  in 
the  r igh t  ha l f -p lane  R(s) >~ - �89 and  tends  to  zero as (T -~  ~ .  However ,  a( - �89 + it) - 
a( - �89 - it) = - �89 t a n h  z~t (b(t), since Q~ - Q 1-~ = zr co t  ~s  P~. Thus  a(s) - a( - 1 - s) 
vanishes  when R ( s ) = -  �89 and  hence a(s) is ent i re  and  a ( s ) = a ( - 1 -  s). Thus  a 
is bounded ,  hence a cons tan t ,  and  f inal ly  a ( s ) = 0 ,  since a ( a ) - + 0 ,  0--> oo. Now 
let  F(z) be the  Cauchy  in teg ra l  of ~0. Then  res t r i c t ed  to  [ - 1 ,  1] F(x) is in 
L 2 ( - 1 ,  1), and  because of the  deve lopmen t  (2.6) as we have  seen, F (x)~-  

(2 n + 1) a (n) P~ (x). Thus  F(x) = O, in - 1 < x < 1, and  therefore  everywhere .  
B u t  ~(x) = limy~0, ~ 0  F(x  + iy) - F ( x -  iy). This shows ~ = 0. 

The whole m a t t e r  can  be r e s t a t ed  and  summar ized  in ano the r  way.  Le t  ~v(x) 
be an  a r b i t r a r y  L 2 func t ion  on (1, oo). Then there  exis ts  a un ique  func t ion  
F(z) ana ly t i c  in the  complex  p lane  slit  a long the  in te rva l  (1, oo), which  vanishes  
a t  c~ (in an  app rop r i a t e  sense) and  whose j u m p  across t he  cut  in the  L ~ sense 
is ~(x). This  F is t hen  a u t o m a t i c a l l y  in L 2 on [ - 1 , 1 ] .  Le t  F ( x ) ~ ~ ( 2 n + l ) .  
a=P~ (x), be i ts  Legendre  series deve lopmen t  there.  Then again  t he re  exis ts  a 
unique  func t ion  a(s) which is ana ly t i c  in Rs > - � 8 9  and  hounde d  a t  ~ so t h a t  
a= = a(n). Fina l ly  

a ( -  �89 + i t ) - a ( -  � 8 9  - �89 t a n h  7d f l  P-�89 +it (x)c f (x)dx .  
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