ARKIV FOR MATEMATIK Band 5 nr 30

1.64091 Communicated 27 May 1964 by O. FrosTMAN and L. GirpING

On the existence of solutions of differential equations

with constant coefficients

By Mars NEYMARK

1. Intreduction

o
Let P= a.D* |D*=(—-1 ""————)
Izlém ( (=1) oxs ... dxpr
be a linear partial differential operator in R* with constant complex coefficients a,
(« is a multiindex («,, ..., ®,) and | «| = Za;). Consider the equation
Py=f (L.1)

in an open subset Q of B*. Malgrange [3] has given a necessary and sufficient con-
dition on Q for the existence of solutions w of (1.1) for every distribution f with
finite order in €, if the solution u shall also be a distribution of finite order in Q.
Hoérmander [1] has found a corresponding condition for the general case, when f
and » may be arbitrary distributions in Q. This paper deals with the problem of
finding necessary or sufficient conditions for the existence of solutions of (1.1),
when f and the solution % are supposed to be distributions in Q with finite order
on certain given subsets of Q. In particular we should obtain Hérmander’s condi-
tion, when these subsets are compact, and Malgrange’s condition, when they coin-
cide with Q. However, the results are rather incomplete, unless we also require
that the order of the solution u shall depend on the order of f in a certain sense.
The main part of the paper is therefore concerned with this restricted case.

I wish to thank my teacher, Professor Hérmander, for his valuable help and
advice during my work on this problem.

2. Preliminaries

C*(Q) shall be the space of complex-valued functions in Q with continuous deri-
vatives of order <k (k=0,1,... or + o). It is a Fréchet space, if the topology is
defined by all semi-norms f—supg | D*f|, where |a| <% and K is an arbitrary com-
pact subset of Q. If S is a subset of R", then C§(S) shall be the space of functions
@ € C*(R™) with compact support contained in S.

We shall consider distributions in Q, which are continuous linear forms on the
spaces in the following definition.
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MATS NEYMARK, Solutions of differential equations with constant coefficients

Definition 2.1. Suppose that A= (4,)7 is a non-decreasing sequence of relatively
closed subsets of Q such that every compact subset of Q is contained in some A,. If
M= (M) is a non-decreasing sequence of integers =0, then Dy(Q, A) shall denote
the space OF(Q) equipped with the topology that is defined by all semi-norms p of the
form

2(p) =sup sup g,(x)| Dp(x) |, peCF(Q), (2.1)

where every o, is a non-negative function in Q, bounded on every compact subset of €,
and where 0, =0 in Ay, if |a|> M;:

D#(Q, A) shall denote the space CF (Q) with the topology that is defined by all semi-
norms p, which satisfy the above conditions for some sequence M.

If feDXu(Q, A), then f is a distribution in Q with order <M, in A4, for every k.
(’ denotes the topological dual space.) The converse of this implication is not always
true, but we shall prove a somewhat weaker statement:

Lemma 2.2, With A and M given as in Definition 2.1 suppose that | is a distribu-
tion in Q, which has order < M, in an open neighbourhood <, of A, for every k. Then
1€Du(Q, A).

Proof. We choose a sequence (K;){° of compact subsets of Q such that K, 7 7Q
when j—co. [If (8,)7 is a sequence of subsets of a set S < R", we write “S, 7 78
when k—>oco0” to express that §,<8%.; in the relative topology on S for every %
and that U7 S, =8}

We can find functions X, € C{P((K;\K;_2) N (\4:-1)),4,1=1,2, ..., such that
2 %=1 in Q (partition of the unity, see [4], Chap. I, Théoréme II). Here we
have set K_;=K,=A4,=¢. For every compact K <Q we have X;,=0 in K except
for a finite number of indices. It follows that

| Hp) | = Zsafn@) | < 25, Cn' sup sup [DPAu)|, @ECT(Q),

with suitable constants Cj;, because X; ¢ € C3°(€;) and f has order <M, in Q,. Re-
peated use of Leibniz’ formula for differentiation of a product and the inequality
>¥ a,<sup,2%a, for a, >0 then gives the estimate

| )| < D SUP Qi1 | Dp|, @€CF(Q),

where s, is a constant times | DP=%y,|, if | 8| < M, and «<p, and else identically
zero. The estimate can be written

[He) | < Sup sup g, | D*p|, @€CF(Q), (2.2)

where g, = sup;,.501. i8 a continuous non-negative function in Q for every «, be-
cause on every compact subset of () the supremum in the definition of g, need
only be taken over a finite number of indices. If |a|> My, || < M; and a< g, then
Gitpe=0 In Ay, since k<l—1 and X;=0 in a neighbourhood of 4;_;. Hence g,=0
in Ay, if |¢|> M, and the right-hand side of (2.2) defines a continuous semi-norm
on Dy(Q, A). This proves that f € Dy(Q, A).

Evidently D#(Q, 4)= U » Du(Q, 4). We shall consider two particular cases:

If all A, are compact subsets of Q, we shall write D(Q) instead of D#(Q,4). (We
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observe that we obtain the same topology with every such A.) The dual space
D'(Q) is then the space of all distributions in Q.

When 4,,=Q for all k£, we shall write Dr(Q) instead of Dg(Q, 4). We observe
that D(Q) is the space of distributions of finite order in Q.

For u € D'(Q) the support of  in Q is denoted by supp w. If S is a subset of B",
the space of u€D’'(R"), which have compact supports contained in S, shall be de-
noted by E'(S).

Similarly the singular support of » € D’(Q) is written sing supp , that is, sing supp »
is the complement in  of the largest open subset Q' of Q such that w €C*(Q).

For every u€D'(Q) the distribution Pu in Q is defined by (Pu)(p)=u(By),
@ €03(Q), where P is the adjoint operator of P, that is P =3 <ma( — 1)'*D"

When ¢ is a real number, ¥, shall be the space of temperate distributions u in
R" such that the Fourier transform 4 € LY*(R") and

b
1%l = ((2n)‘" f (1+] &P 4(8) |2d§) <+oo

H is a Hilbert space with the norm u—|[«||¢,. We shall also use the space 35(Q)
of distributions « in Q such that gu € ¥, for every @ € C5°(Q). See [2] Chapters T
and II. Here we mention that Cf(R")< ¥, for every non-negative integer p.
Conversely we have

Lemma 2.3 (Sobolev). If u € D'(Q) and D*u €} (Q) for |a| <p, where p is an in-
teger >0, then u€C"(Q), when r is an integer such that 0<r <t+p—n/2.

A proof of this lemma is implicitly contained in the proof of Lemma 3.6.1 in [2].

3. A sufficient condition!

In this and the following sections let A = (A4,);° be a sequence of relatively closed
subsets of Q such that 4,7 7Q when k—>co (for this notation see the proof of
Lemma 2.2). Then the following theorem gives a sufficient condition for the exist-
ence of a solution € Dx(Q, 4) of the eqation Pu=f for every f € Dz(Q, 4). This
condition, however, also implies that % can be chosen in D(Q, 4), if f€ Du(Q, A)
for some M, N depending only on M.

Theorem 3.1. Suppose that

(@) Q is P-convex, that is, given a compact K <Q there is a compact K' <Q such
that

u€EQ), suppPucK=suppuck’,

(b) fo every integer k>0 there is an integer 1> 0 such that to every inieger j >0 and
lo every infeger r =0 there is an integer s >0 such that

P €CY4)), Ppe ([ Ai) > p€C (G Ay).

1 After the manuscript was written I found that W, Slowikowski has obtained conditions for
the solvability of linear equations in LF-spaces (Bull. Am. Math. Soc. 69: 6, 832-834 (1963)).
They seem to be closely connected with the conditions obtained in this and the following sec-
tion. However, his proofs have not been available to me and I have not been able to determine
to which extent his results can be applied here.
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MATS NEYMARK, Solutions of differential equations with constant coefficients

(Here and in the sequel (} denotes complement in Q.) Then given a non-decreasing se-
quence M = (M )7 of integers >0 there is another such sequence N = (N )Y, for which
the mapping P: Dy(Q, 4)—>Dy(Q, A) has a continuous inverse, which implies that
PDHQ, 4) > Diu(Q, 4).

First we deduce a more convenient condition from (b).

Lemma 3.2, Suppose that (b) in Theorem 3.1 is satisfied. Then given a non-decreas-
ing sequence (r)s° of integers =0 there is another such sequence (sx)s’, for which

REE(Q), PueC™(4,),k=0,1,...,>u€C®04,),k=0,1, ..., (3.1)
where Ay=¢.

Proof. For every k>0 we choose I=1I; according to (b) and set A=A, We
can assume that (I,) is strictly increasing. With sy=7,_1+n+1 we can then suec-
cessively choose integers s, so that s;<s,<... and

@ ECYAk+r2), Ppe O Ai)=p€C(( 4L), k=1,2,..., (3.2)

where Ry =max (1, ,-1, k-1 +m). .

Assume that u € E'(Q) and that Pu€C*({ 4,) for k=0,1, .... Now u=Ex Py,
if ¥ is a fundamental solution of P (% denotes convolution). £ can be chosen as a
distribution of order <»-+1 in R"™ ([2], Theorem 3.1.1). Hence it follows that
u€C™R"™) for k<1, because r,+n+1<s, for these k (see the remark after Théo-
réme XI in [4], Chap. VI). Assume that pu€C™((Ax) for some k>1 and choose
A €CF(Aks1) with X=1 in a neighbourhood of A N supp . It follows that P(xu)€
C%*-1((} Ax-1), because Yu € C*-1+7(( 4;) and P(Yu)= Pu in a neighbourhood of 4.
Hence (3.2) gives that Xu € C?*~1(( A%_1), which implies that u € C™*-*(§ A)_1), since
p€C"1([ Ay) and Xu = u in a neighbourhood of Ay. If we observe that supp pu < 4y
and therefore u€C*(( A4x) for some k, we can now use induction on decreasing k
to conclude that u€C™((A4y) for k=1,2,.... The proof is complete, because
TI<71k+1_1<Rk and GAICGA;C, if I, <l<lyiy. o

Proof of Theorem 3.1. P is one-to-one on £'(R™) so the mapping P: Dy(Q, 4)—
Dx(Q, A) has always an inverse. Continuity of the inverse means that for every
continuous semi-norm p on D,(Q, 4) there is a continuous semi-norm g on Dy(Q, 4)
such that

pp)<q(Pp), 9ECF(Q). (3.3)

If we have proved this and if f € Du(Q, 4), we can use the Hahn-Banach theo-
rem to extend the linear form Pop—f(p), ¢ € CF(Q), to a continuous linear form u
on Dy(Q, A), that is, u € Dy(Q, 4) and (Pu) (¢p) = u(Pp) = f(¢), ¢ € CF (Q). Therefore
it remains to prove the continuity of the inverse of P: Dy(Q, 4)—>Dn(Q, 4) with a
suitable choice of N.

Given M we set r,=M;.2,k=0,1, ..., and we choose a non-decreasing sequence
(sk)s° of integers >0 so that (3.1) is valid, which is possible according to Lemma
3.2. We now define N by Ny=s, 1 +1,k=1,2,....

Let p be a continuouns semi-norm on Dy(Q2, 4). We assume that p is given as in
Definition 2.1, which is sufficient when we want to prove an estimate of the form
(3.3). To obtain ¢ in (3.3) we shall use a method of successive extensions (cf. the
proof of Theorem 4.5 in [1]).
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Q shall be the set of semi-norms ¢ on Dy(Q, 4), which have the form

9(p) =supsup g, |Dp|, @€CFQ), (34)

where every g, is a continuous function in Q, satisfying

0.>0 in Q, if |a|<N, (3.5)
whereas, if N, <|a|< Ny.1, we have
0.=0 in A4, and ¢,>0 in (4 (3.6)

Uz(x) lx—yl) . _ ;
0,(y)<1+0(d——(x,Ak) , if |x—y|<d(x,4)/2 and z,y€EKN(4 (3.7)

and o) =0 (x, 4,)**Y), if =z€K, (3.8)

when K is a compact subset of Q.
Q is not empty. To see this it is sufficient to observe that o.(x) = c.(x)d (z, 4;)™**
satisfies (3.6)—(3.8), if ¢, is an arbitrary positive continuous function in Q.
According to (a) we can choose sequences (K;)¢° and (K;)3® of compact subsets
of Q so that Kg=K,=Ko=Ki=4¢, K;/ 7Q and K; 7 /Q when j->co and

p€E(Q), supp Puc K;=suppu<K;,j=0,1,.... (3.9)

The main step in the proof is the following lemma, (cf. Lemma 4.1 in [1]).

Lemma 3.3. With the previous notations let g be a semi-norm € Q such that for some
integer § >0

p(p) <q(Pgp), @ECF(K;). (3.10)

Then given £> 0 one can find a semi-norm ¢’ € Q such that

g} <q'(Pp), @€CFK;.1)
and ¢ = (1+¢&)q on CF(K;_4).

Proof of Theorem 3.1, continued. Suppose for a moment that Lemma 3.3 is proved.
We then choose numbers ¢,>0,7=1,2, ..., such that [[°(1+¢;) < + oo, For any
4, €Q we have p(p) < ¢,(Pp), when ¢ € 03°(K}), since K;=¢. Using Lemma 3.3 we
can therefore successively find semi-norms ¢;€Q such that (3.10) is fulfilled with
g=¢; and g¢.;=(l+¢)g; on CF(K;_1) for every j>O0. It follows that g(p)=
lim;, gj(p) exists for every @€CF(QQ), because g;(p)=T1I71(1+ ) ginlp), if
supp ¢ € K; and §> 4+ 1. It is obvious that ¢ is a continuous semi-norm on Dy((2, 4),
satisfying (3.3). Thus it only remains to prove Lemma 3.3. .

Proof of Lemma 3.3. Let F be the space of u € E'(K;.1) such that Pu € CH( 4y)
for every k>0. F is a Fréchet space, if the topology is defiried by all semi-norms
pu—>supg | D*Pu|, where K is an arbitrary compact subset of Q such that K <( 4,
for some k with |«|<s,. From (3.1) it follows that u € C™({ 4;) for every k>0, if
#€ZF. In this way natural mappings F—C™(( 4,) are defined, and they are conti-
nuous for every k>0 in virtue of the closed graph theorem.

Now assume that the lemma is not true. This means that we can find a sequence
(@s)° in OF(Kj+1) such that

437



MATS NEYMARK, Solutions of differential equations with constant coefficients
plp)>1+¢ and g¢Pp,)<1, »=12,..., (3.11)
and By,—~0 in C°0K;.;) when y—>oo. (3.12)

For to every compact K< K;_; and every constant C we can find a semi-norm
q'€Q such that ¢'>(l+¢)g with equality on C°(K;_1) and ¢'(p)>Csupg|e],
P ECT(Q).

¢ has the form (3.4), where every o, is continuous and satisfies (3.5)-(3.8). Using
the continuity of o, and (3.5) or (3.6) we conclude from the second inequality in
(3.11) that (Pg,) is a bounded sequence in C™*+1((} 4,) for every k>0. Hence Asco-
li's theorem gives a subsequence (1,);° from (g,) such that (Py,) converges in
oM+1-Y(3 4,) for every k>0 when y—>oco, But Ni,;—1=s, so this means that
(,) is a Cauchy sequence in F, hence that it converges to an element v in F. Then
the continuity of the natural mappings FJ—C™(( 4x) shows that y,—y in O A4x)
for every k>0 when y—>oco., Now 151p=lim pr,=0 in § K;_; in view of (3.12), so
(3.9) gives that supp y < K;_;.

With a non-negative function X €C§(R") such that X(x)=0, when Ix] =1, and
fxdz=1 we set Xs(x)=0""x(x/8) for 6>0. We have g * X €CF(K;) and y,* X5 €
CF(Kj4e) for all ¥, when § is sufficiently small. Furthermore y % X;—>p in C™(( 4,),
k=0,1,..., when 6— +0. Since supp g, N K;,1 (with g« given in Definition 2.1) is
a compact subset of Q, when |a| < M,=r,, and of § 4y, when M1 <|a|< Myi2=ry,
we obtain therefore

Jim p(yp % %) = lim sup sup g. | Dp % %o| = sup Sup  €el2) | D*p(a) |
= lim sup sup o, | D%, | >1+e (3.13)
Y00 @ x

because we need only take the suprema over those finitely many « for which
supp g« N Kj.1%+ ¢. The last inequality in (3.13) follows from (3.11).
We shall also prove that

i <1, 3.14
lnan; sup a(Py* 15) (3.14)

which together with (3.13) contradicts (3.10), since 1% @ € CF(K;) for all suffi-
ciently small d > 0. This will complete the proof of the lemma.

To prove (3.14) we observe that D*Py,—D*Py in the weak topology of D'(R")
for every o when y—>oco. This implies that for fixed x €£)

ao(x)| D*(Py % Xs) ()| = E)Ig 0u(2) | (D*Py, % %) ()|
< lim inf o‘,,,(x)f | D*Py,(y) Xs(x — y) | dy

.. 0y(x) 0‘,,(1‘)
< lim inf AN | D Py (y)| < ,
s oy) P @) DPy0)| o< Ga(y)

(3.15)

because f|Xs|dy=f Zsdy=1 and ¢(Py,) <1. If Ni <|a| < Nis1, then (3.15) is valid
only when d(z, 4,)> 4.
If |a| < N,, it follows from the continuity of o, and from (3.5) that
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Gi(i)—ﬂ uniformly for z€K; when &—>+0. (3.16)
1z~ 31<6 Ou(Yy)
When N, <|a|<Ny,1, we obtain from (3.7) an estimate
0a(?)
sup —— <1
1o 41<0 0a(y)
for sufficiently small 4> 0 with C independent of 6 and ¢, whereas (3.8) gives (with
¢’ independent of & and ?)

+§, if x€Kj,d(x,4)>t6 and t>2, (3.17)

0x(@) | (DB 15) (@) | < o) f | Ptz —9) D%l) | dy

= 0afx) 01" j | Py(x — 8y) D(y) | dy < C" #1779,
if z€K; and d(z, 4)<16. (3.18)

We now take the supremum of o,(z)|D*(Py* 2s)(x)| over all € K; and over
those finitely many o« for which supp o, N Kj=¢. Then (3.14) follows, if we use
(3.15)—(3.18). The proof is complete.

Corollary 3.4. If (a) and (b) in Theorem 3.1 are satisfied, then the mapping
PDHQ, A)>D:(Q, A) has a continuous inverse and PD#(Q, A) = D#(Q, 4).

Applying this corollary to the case when 4,=Q for every k we obtain Mal-
grange’s existence theorem, if we observe that condition (b) is always satisfied in
this case:

Corollary 3.5. (Malgrange [3].) If Q is P-convex, then PD%(Q) = Dr(Q).

We observe that in this case the proof of Theorem 3.1 is essentially the proof
of Theorem 5.4 in [1].

4. Some necessary conditions

In this section we shall show that the sufficient conditions in Theorem 3.1 are
also necessary for the conclusions to be true.

Theorem 4.1. Suppose that for every non-decreasing sequence M of integers =0
‘there ts another such sequence N for which PDy(Q, A)> Dyu(Q, A). Then (a) and (b)
in Theorem 3.1 are true.

Proof. {a) follows from Theorem 3.5.4 in [2], since the hypothesis implies that
PD'(Q)>C*(Q).

To prove (b) we observe that given a non-decreasing sequence M = (M;)7° of in-
tegers >0 we can define a distribution f € Di(Q, 4) by f(p) = D*p(x), ¢ € C§°(€Y), if
x€0A4; and |a|<M,,; for some I. From the hypothesis it follows that Dp(x) =
(Pu) (p) = u(Pyp), ¢ €C5(Q), for some distribution u € Dy(Q, 4), where N = (N,)7 is
a non-decreasing sequence of integers >0, depending only on M. Hence we obtain

| Dop(x) | < q(Pp), @E€CF(Q), (4.1)
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MATS NEYMARK, Solutions of differential equations with constant coefficients

if z€( 4, and |a|<M;,,, with a continuous semi-norm ¢ on Dy(Q, 4), possibly
depending on z and «.

Assume that (b) is not true. This means that there is an integer k>0 such that
for every integer I >0 there are integers j,> 0 and r;>0 such that for every integer
8§20 we can find functions ¢, satisfying

@i €CY4;) and P, €C((Ar) but @i €CYG A,
1=1,2,..., s=0,1,.... (42)
We choose functions % € C§°(A%.1) with %=1 in a neighbourhood of 4, N supp ¢:s
and open balls w;; with centers at the origin such that
sUpp Xis + wis < Aws1 4.3)
and SUpp @is + 01, < Ay i1 (4.4)
We observe that ¢, % ¢ €C3°(4ji+1), if ¢ €CF(wis), according to (4.4). Hence (4.1)
gives an estimate
| (D% % ) (2) | < g(Popis % )
<0, Dby, iy DPys x|, ECY , (4.5
= ,Sup sup| Diyisx @]+ O 5P Sup | DPyrs % 9|, pE€OF(wi), (4.5)
where ;s = X1s Pg;; and gis = P — /s and where we have used that yj; % ¢ €05 (Ax+1)
in view of (4.3). Now ;5 € O)(R™) < H,o), 50 we have DPyis € Hem—ne i1, if | B| < Niesa.
Furthermore y;; € C5(R") < H,s,, which implies that DPypi, € His-ni+1 © Hem—mesp, if
]ﬁf<N,-,+1 and s> Nj.1—m— Ny, For such s we can therefore obtain the fol-
lowing estimate from (4.5)

| (D15 % @) (2) | < Coz || @ loms we s P €CT(e0rs), (4.6)

because H, and H_: are dual spaces. Now we can use the same argument as in
the proof of Theorem 3.6.3 in [2] to prove that (4.6) implies

Du(Pls € y}o—cm—Nk.{.l) (x + (Dls).
Since this is valid for z€( 4, and |« |< M},1, Lemma 2.3 shows that
P ECHx+ ) for z€( 4, 4.7

if <M1 —m—Niyy—n/2, which is fulfilled for sufficiently large I, if we have
chosen M so that M, ;—r,— + co. But (4.7) contradicts (4.2}, so the assumption
is false and (b) is true.

By the same argument we can also prove

Theorem 4.2. Suppose that P: Dx(Q, A)—D#(Q, A) has a continuous inverse. Then
(a) and (b) in Theorem 3.1 are satisfied.

Proof. (a) follows in the same way as in Theorem 4.1, if we observe that the
hypothesis implies that PD#(Q, 4) = Dx(Q, A) (cf. the proof of Theorem 3.1).

To prove (b) we shall show that given a non-decreasing sequence M = (M;)7 of
integers >0 there is another such sequence N for which (4.1) is valid, if z€0 A,
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and |«|< M;,,, with some continuous semi-norm ¢ on Dy(Q, 4). Therefore we de-
fine a continuous semi-norm p on Dy(Q, 4) by

P(p)=supsup o | D°pl|, @ €CF(Q),

where g,=1in Q, if |«|< M,, and where g,=01in 4, and =1in (4, if M,<|«|<
M;.,. By the hypothesis we can find a continuous semi-norm ¢ on Dx(Q, 4) such
that p(p)<gq(Pp) for €0 (Q). Hence (4.1) follows with this ¢, if x€( 4, and
|| <M.y for some 1. But g is also continuous on Dy(€2, 4) for some non-decreasing
sequence N of integers >0. Thus we can use the rest of the proof of Theorem 4.1
to prove (b) here too.

It has not been possible for me to decide whether (b) in Theorem 3.1 is necessary
also for PD#Q, A)=D#Q, A) to be valid. We only have the following weaker
theorem. It is a simple extension of Theorem 3.6.3 in [2] and it can be proved by
the same argument as in [2] with only slight modifications and re-arrangements.

Theorem 4.3. Suppose that PD#(Q, A) = D#(Q, A): Then
(@) Q 15 P-convex,
(b} to every integer k>0 there is an integer 1 >0 such that
w € E'(Q), sing supp Pu < 4, = sing supp u < 4,.

On the other hand, I have not been able to see if (a) and () in the 1ast theorem
are also sufficient for PD#(Q, 4) = D#(Q, 4). In particular cases, however, a some-
what stronger form of these conditions is in fact sufficient because they imply the
conditions of Theorem 3.1. This will be studied in the next section.

5. Existence theorems in the spaces Dr(2; »)
With a relatively open subset w of the boundary 9Q of Q we make the following

Definition 5.1. Dx(Q; w) shall be the space Dr(Q, A), if A= (47 s a sequence of
relatively closed subsets of Q such that A, is compact for every k and A,/ 7QU w
when k—> oo,

We observe that every such sequence A gives the same topology on Dx(Q; w), so
the definition has a sense. We also see that D#(Q; w) is the space of distributions
in Q with finite order in Q N K for every compact K <Q U w.

With the notations of Definition 5.1 we obtain the following particular case of
Theorem 4.3:

Theorem 5.2. Suppose that PD#(Q; w) = D#(Q; ). Then

(a) Q is P-convex,

(b) to every compact K <QU w there is a compact K' <Q U w such that

p € E'(Q), sing supp Py < K = sing supp u < K.

To obtain sufficient conditions we strengthen condition (b)::
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MATS MEYMARK, Solutions of differential equations with constant coefficients

Theorem 5.3. Suppose that
(@) Q 78 P-conxex,
(b) to every compact K <Q U o there is a compact K' < QU w such that

u€E'(QU w), sing supp Pu < K =singsupp u < K'. (6.1)
Then PD#(Q; w) = D#(Q; w).

Proof. Dr(Q; w)=Ds(Q, A), if A is chosen as in Definition 5.1. We shall show
that (b) in Theorem 3.1 is satisfied with this sequence 4. Hence the theorem follows
from Corollary 3.4.

Given k& we choose a compact K’ < < w such that (5.1) is fulfilled with K =4,
and after that I so that K’ is contained in the interior of 4, in the relative topology
on QU w.

Now let j be a positive integer and let F be the space of functions y € C3(4;.1)
for which sing supp Py < K. F is a Fréchet space with the topology defined by the
semi-norm y—sup |y| and the semi-norms yp—sup, | D*Py|, where L is an arbitrary
compact subset of B"\ K. Now (5.1) implies that p € C*(R*\ K'), if p €F, and the
closed graph theorem shows that this natural mapping of F into C*(R"\ K') is con-
tinuous. Hence given an integer r>0 and a compact L' B*\ K’ we can find an
integer >0, a compact L< R"\ K and a constant C so that

sup sup| Dy | < C(sup sup| D"Py|+supy]), yeF. (5.2)

Assume that ¢ €09(4,) and Pype€ ([ 4,). With ¥, defined for >0 as in the
proof of Lemma 3.3 we form the regularizations ¢ % 5. Now @ Xs—¢ in C°(R")
and Py x Xs—Pgp in C*(R"\K) when d— +0. Since % Xs€C& (A1) for all suffi-
ciently small §> 0, we can therefore use (5.2) with =@ % X5 — @ % Xs to prove that
@ % Xs—@ in C"(L"°) when 6— + oo. But this shows that ¢ €C"([ 4,), if we have
chosen L’ so that 4;\ 4, L. Hence (b) in Theorem 3.1 is satisfied and the proof is *
complete.

Remark. In the proof we have only used that (5.1) is valid for u € C3(Q U w).

We shall consider two particular cases of these theorems.

First we observe that Dr(Q; ¢) = D(Q). Therefore we obtain the following corol-
lary from Theorem 5.2 and Theorem 5.3.

Corollary 5.4 (Hérmander [11). A necessary and sufficient condition for PD'(Q)=
D'(Q) 1s that Q is strongly P-convex, that is,

(a) Q is P-convez,

(b) to every compact K < there is another compact K’ <£) such that

u € E'(Q) sing supp Pu < K =sing suppu < K'.

Our proofs, however, give somewhat more. For if 4= (d44)i° is a sequence of
compact subsets of Q such that 4,7 7 Q when k— oo, we have proved that (a) and
(b) in Corollary 5.4 imply that PDy(Q, 4)> Du(Q, 4), where M is an arbitrary
non-decreasing sequence of integers >0 and N another such sequence, depending
only on M. But the proofs do not show any exact dependence.

Another particular case is obtained with = 8. Then (b) in Theorem 5.3 is al-
ways satisfied, for the convex hulls of sing supp # and sing supp By are identical
for every u€ E'(R™) ([2], Theorem 3.6.1). Hence we get
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Corollary 5.5. A necessary and sufficient condition for PD#(Q; 8Q) = D»(Q; 2Q) is
that Q is P-convez.

Here we observe that Dr(Q; Q) is the space of distributions in Q, which have
finite order in every bounded subset of Q (cf. the remark after Lemma 4.2 in [1]).

Finally we give some geometric conditions corresponding to conditions in [2],
section 3.7.

We suppose that Q has a C®-boundary, that is, to every ° €2Q there is an open
neighbourhood U of z° and a real-valued function g €C?*U) such that UnQ=
{x € U;p(z) <0} and grad =0 in U. Then 2Q is said to be strictly pseudo-convex
at z° with respect to P, if

Steer s ¥ () PO &) PE @) >0
J k=1 axj a.’l:k m m >
when 0%+EER", Py(§)=0 and 7} Z—Zi (=) PY (&) =0,
7

where Pp(&) =D gam x5 ... &x" and PP (&) =0Pn(£)/0& (m is the order of P). In
particular this condition implies that P has no multiple real characteristics, and if
P,(£) has real coefficients, it means that &Q has a positive outer normal curvature
at 2° in every tangential direction, which is bicharacteristic with respect to P.

Using the same arguments as in the proofs of Theorems 3.7.6 and 3.7.5 in [2]
one can then prove

Theorem 5.6. If 9Q is strictly pseudo-convexr at x° with respect to P for every
2° €0Q \ w, then (b) in Theorem 5.3 is satisfied.

And conversely

Theorem 5.7. If P, has real coefficients and to every compact K <) there is a
compact K' <Q U w such that

u€E'(Q), sing supp Pu < K =sing supp u < K,

then 0Q has non-negative outer normal curvature at z° € 8Q\ w in every tangential di-
rection, which is bicharacteristic with respect to P.

Theorem 5.6 together with Theorem 3.7.4 in [2] gives a sufficient geometrical
condition for PD(Q; w) = D7(Q; w) at least when P, has real coefficients.

A final observation: When =2 and P has no multiple real characteristics, every
P-convex open set Q in R? also satisfies (b)) in Theorem 5.3. In particular it is
strongly P-convex. This follows, if we use Theorem 3.7.2 in [2] and observe that in
this case every non-characteristic C®-surface is strongly pseudo-convex, so that
Theorem 8.8.1 in [2] can be used in a similar way as Holmgren’s uniqueness theorem.
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